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THE DENSITY OF INTEGRAL POINTS ON COMPLETE

INTERSECTIONS

OSCAR MARMON

with an appendix by Per Salberger

Abstrat. In this paper, an upper bound for the number of integral

points of bounded height on an a�ne omplete intersetion de�ned over

Z is proven. The proof uses an extension to omplete intersetions of

the method used for hypersurfaes by Heath-Brown [7℄, the so alled

�q-analogue� of van der Corput's AB proess.

1. Introdution

If X is an a�ne algebrai set de�ned by a set of equations

fi(x1, . . . xn) = 0, i = 1, . . . , r

with integral oe�ients, and if B is a box in Rn
- that is, a produt of losed

intervals - then we de�ne the quantity

N(X,B) = # {x = (x1, . . . , xn) ∈ Zn; fi(x) = 0,x ∈ B} .

If m is a positive integer, and if B is small enough as to ontain at most one

representative of eah ongruene lass modulo m, then we de�ne

N(X,B,m) = # {x = (x1, . . . , xn) ∈ Zn; fi(x) ≡ 0 (mod m),x ∈ B} .

Sine N(X,B) ≤ N(X,B,m) one an obtain upper bounds for N(X,B) by
onsidering N(X,B,m) for suitably hosen m. If B = [−B,B]n for some

B > 0 we write

N(X,B) = N(X,B) and N(X,B,m) = N(X,B,m).

Throughout this paper we shall be onerned with the ase when X is a

omplete intersetion, that is, when dimX = n − r, where r is the num-

ber of equations de�ning X in An
. Our main onern shall be to �nd an

upper bound for N(X,B). One result in this diretion is the following, by

Fujiwara [3℄: let X be a non-singular hypersurfae in An
de�ned by the van-

ishing of a polynomial f with integer oe�ients, of degree at least 2. Then
N(X,B) ≪f,n Bn−2+2/n

for n ≥ 4. Fujiwara proved this by exhibiting an

asymptoti formula for N(X,B, p) for primes p, the proof of whih uses the

estimates for exponential sums by Deligne [2℄ as a key tool. Heath-Brown

[7℄ was able to sharpen the exponent to n− 2 + 2/(n+ 1) by averaging over

primes in an interval. In the same paper he introdued a new tehnique, the

so alled q-analogue of van der Corput's method. He ould then prove the

bound

(1) N(X,B) ≪f,n Bn−3+15/(n+5)
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for a non-singular hypersurfae X de�ned by a polynomial f of degree at

least 3 (Theorem 2 in [7℄), by onsidering N(X,B, pq) for two suitable primes

p and q.
In this paper we will generalize the method of Heath-Brown to omplete

intersetions of arbitrary odimension. We shall use the following notation: if

X is a sheme over Z we let XQ = X×Spec ZQ and Xq = XFq = X×Spec ZFq

for every prime q.

Theorem 1. Let

X = Spec Z[X1, . . . ,Xn]/(f1, . . . , fr),

where the leading forms F1, . . . , Fr of f1, . . . , fr are of degree ≥ 3, and let

Z = Proj Z[X1, . . . ,Xn]/(F1, . . . , Fr).

Assume that ZQ is non-singular of odimension r in Pn−1
Q . Then, if n ≥

4r + 2, we have for B ≥ 1

N(X,B) ≪n,d,ǫ B
n−3r+r2 13n−5−3r

n2+4nr−n−r−r2 (logB)n/2

(

r
∑

i=1

log ‖Fi‖

)2r+1

,

where d = maxi(deg fi).

Remark. The fator (logB)n/2 an in fat be disposed of, and we sketh in

the end of Setion 4 how this an be done.

The estimate given by Theorem 1 in the ase r = 1 is in fat slightly

sharper than (1), owing to the use of estimates by Katz [10℄ on exponential

sums modulo q. Theorem 1 is a orollary to the following theorem.

Theorem 2. Let

X = Spec Z[X1, . . . ,Xn]/(f1, . . . , fr),

where r < n and the leading forms F1, . . . , Fr of f1, . . . , fr are of degree ≥ 3,
and let

Z = Proj Z[X1, . . . ,Xn]/(F1, . . . , Fr).

Let B be a positive number, and let p and q be primes, with 2p < 2B + 1 <
q − p, suh that both Zp and Zq are non-singular of dimension n − 1 − r.
Then we have

N(X,B, pq) =
(2B + 1)n

prqr
+On,d

(

B(n+1)/2p−r/2q(n−r−1)/4(log q)n/2

+B(n+1)/2p(n−2r)/2q−1/4(log q)n/2 +Bn/2p−r/2q(n−r)/4(log q)n/2

+Bn/2p(n−r)/2(log q)n/2 +Bnp−(n+r−1)/2q−r +Bn−1p−r+1q−r
)

,

where d = maxi(deg fi).

The proof of Theorem 2 is arried out in Setion 4 and more or less follows

[7℄. However, in ontrast to Heath-Brown, we do not use Poisson summation,

but a more diret approah.

We also prove, in Setion 3, a generalization (and slight sharpening) of

Theorem 3 in [7℄, a weighted asymptoti formula for the density of Fq-points

on a�ne omplete intersetions de�ned over Fq. However, for the proof of
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Theorem 2, we will use an unweighted version of this result, proven by Sal-

berger in an Appendix to this paper. This is beause we desire an unweighted

asymptoti formula in Theorem 2.

Aknowledgement. I wish to thank my supervisor Per Salberger for intro-

duing me to the topi of this paper, and for numerous helpful suggestions

during the way.

2. Preliminary Results from Algebrai Geometry

We reall some fats from algebrai geometry that will provide helpful

tools for proving our main results.

De�nition. Let X be a sheme. A point x ∈ X is a singular point of X if

the loal ring OX,x is not a regular loal ring. X is said to be singular if it

has singular points, and non-singular if not. We denote the singular lous

of X - the set of singular points - by SingX.

If X is a sheme and x a point on X, then Ox is the loal ring at x, mx

its maximal ideal and κ(x) = Ox/mx the residue �eld of x. If X → Y is a

morphism of shemes, ΩX/Y denotes the sheaf of relative di�erentials of X
over Y , and we abbreviate ΩX/Spec R = ΩX/R.

We have the following haraterization of singular points on a sheme.

Proposition 1. Let X be a sheme of �nite type over a perfet �eld k.
Suppose that X is equidimensional of dimension n. Then for every point

x ∈ X, the following onditions are equivalent:

(i) x is a singular point of X;

(ii) dimκ(x)ΩX/k,x ⊗Ox κ(x) > n.

Proof. Sine this is a loal question, we an assume that X = Spec R with

R equidimensional. Suppose x = p ∈ Spec R. Then we have, by [14, Ex.

14.36℄,

(2)

n =htp+ dimR/p

=dimOx + tr.d.κ(x)/k.

By de�nition, x is singular if and only if

dimκ(x)mx/m
2
x > dimOx.

Furthermore, by [6, Ex. II.8.1℄, we have an exat sequene of κ(x)-vetor
spaes

0 → mx/m
2
x → ΩOx/k ⊗Ox κ(x) → Ωκ(x)/k → 0.

Sine ΩOx/k is equal to the stalk ΩX/k,x of the sheaf of relative di�erentials,

and sine dimκ(x)Ωκ(x)/k = tr.d.κ(x)/k by [6, Thm. II.8.6A℄, this implies

that

dimκ(x)ΩX/k,x ⊗Ox κ(x) = dimκ(x)mx/m
2
x + tr.d.κ(x)/k.

In view of (2) it follows that x ∈ SingX if and only if

dimκ(x)ΩX/k,x ⊗Ox κ(x) > dimOx + tr.d.κ(x)/k = n.

�
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Remark 1. By [6, Ex. II.5.8℄ the funtion

ϕ(x) = dimκ(x)ΩX/k,x ⊗Ox κ(x)

is upper semiontinuous, so that in the situation desribed in the proposition,

SingX is a losed subsheme of X.

Remark 2. The proposition also shows that for X equidimensional and of

�nite type over a perfet �eld k, X is non-singular if and only if it is smooth

over k (see [6, Ch. III.10℄).

Remark 3. The partiular ase where we will use the proposition is for X a

omplete intersetion of positive dimension in projetive spae over a perfet

�eld. Suh X are indeed equidimensional, sine �rstly, any loal omplete

intersetion is Cohen-Maaulay ([6, Prop. 8.23℄) and thus loally equidi-

mensional, and seondly, a omplete intersetion in Pn
k of dimension ≥ 1 is

onneted ([6, Ex. III.5.5℄).

When working in a projetive spae Pn
with homogeneous oordinates

x0, . . . , xn we denote by P̌n
the dual projetive spae with homogeneous

oordinates ξ0, . . . , ξn. For a point a = (a0, . . . , an) in P̌n
we will let Ha

denote the hyperplane de�ned in Pn
by the equation a · x = a0x0 + . . . +

anxn = 0. We begin by proving the following orollary to Bertini's Theorem.

By onvention, the dimension of the empty set is de�ned to be −1.

Lemma 1. Let k be an algebraially losed �eld. Let X be a non-empty

omplete intersetion in Pn
k . Suppose that

dimSingX = s.

Then there is a hyperplane H suh that dim(X ∩H) = dimX − 1 and

dimSing(X ∩H) < max(s, 0).

Proof. The ase s = −1 follows immediately from Bertini's Theorem [9,

Cor 6.11(2)℄. (X is then smooth over k by Remark 2.) If s ≥ 0, let Y =
X \ SingX, so that Y is smooth. Then, by Bertini's Theorem, there exists

a non-empty Zariski open subset U of P̌n
k suh that for hyperplanes Ha

parametrized by losed k-points a in U , Y ∩ Ha is smooth and thus non-

singular by Remark 2. Hene, for a ∈ U(k) we have

(3) Sing(X ∩Ha) ⊆ SingX ∩Ha.

Furthermore, there are non-empty open sets U ′, U ′′
suh that for all losed k-

points a of U ′
, no irreduible omponent of SingX of dimension s is ontained

in Ha, and for a ∈ U ′′(k) no irreduible omponent of X is ontained in Ha.

Then we have, for a ∈ U ∩ U ′ ∩ U ′′(k), that dim(X ∩Ha) = dimX − 1 and

dimSing(X ∩Ha) < s. �

Remark 4. For any hyperplane H suh that dimX ∩ H = dimX − 1,
dimSing(X ∩H) ≥ dimSingX − 1 (see [10, Lemma 3℄).

The next lemma is an �e�etive� version of Bertini's Theorem. For a more

expliit result of the same type, see [1℄.
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Lemma 2. Let n, r, d1, . . . , dr be natural numbers, and let F1, . . . , Fr be

forms in X0, . . . ,Xn with integer oe�ients, and with degFi = di. Let

V = Proj Z[X0, . . . ,Xn]/(F1, . . . , Fr), and suppose that VQ has dimension

n− r ≥ 0. Then for every prime q suh that Vq has dimension n − r, there
is a non-zero form Φq ∈ Fq[ξ0, . . . , ξn] with degree bounded in terms of n and

d1, . . . , dr only, suh that for every point a = (a0, . . . , an) ∈ P̌n
Fq

satisfying

Φq(a0, . . . , an) 6= 0 we have

(i) dimSing(Vq ∩Ha) = max(−1,dimSingVq − 1)
(ii) dimVq ∩Ha = dimVq − 1.

In partiular, for eah q ≥ q0 = q0(n, d1, . . . , dr) there is an a ∈ P̌n
Fq

with the

properties (i) and (ii).

Proof. We let Pi, for eah i = 1, . . . , r, be the projetive spae over Z
parametrizing all hypersurfaes in Pn

Z of degree di (as a Hilbert sheme), and

work in the large multiprojetive spae P = P1× . . .×Pr. For a k-point in P

representing a tuple (F1, . . . , Fr) we write V (F1, . . . , Fr) for the intersetion
of the orresponding r hypersurfaes in Pn

k . Let W ⊆ P× P̌n
Z×Pn

Z be de�ned

as the losed set of points P ∈ P × P̌n
Z × Pn

Z representing (F1, . . . , Fr,a,x)
that satisfy

x ∈ V (F1, . . . , Fr) ∩Ha.

Let

π : W → P′ := P× P̌n
Z

be the projetion. The funtion ϕ(P ) := dimκ(P )ΩW/P′,P is upper semion-

tinuous (see Remark 1), so the set

S = {P ∈ W ;ϕ(P ) ≥ n− r}

is losed. Now, let π̃ : S → P′
be the restrition of π to S, and let for every

s ∈ {−1, 0, 1, . . . , n}

As =
{

Q ∈ P′; dim π̃−1(Q) ≥ s
}

.

By Chevalley's Semiontinuity Theorem [5, Cor 13.1.5℄, As is losed in P′
,

as is the set

D =
{

Q ∈ P′; dimπ−1(Q) ≥ n− r
}

.

For eah s ∈ {−1, 0, . . . , n}, let Ts = D ∪ As. Then Ts is losed as well, so

there exist multihomogeneous forms Hs
1 , . . . ,H

s
t over Z that de�ne Ts.

For a losed k-point P ∈ W representing (F1, . . . , Fr,a,x) we have an

isomorphism of stalks ΩW/P′,P
∼= ΩY/k,x, where

Y = V (F1, . . . , Fr) ∩Ha ⊆ Pn
k .

Thus, for eah tuple (F1, . . . , Fr,a) suh that both V = V (F1, . . . , Fr) and
V ∩Ha are omplete intersetions of odimension r and r + 1, respetively,
the �ber π̃−1(F1, . . . , Fr,a) is preisely Sing(V ∩Ha) by Proposition 1. For

every other point (F1, . . . , Fr,a) we have π̃−1(F1, . . . , Fr,a) = Pn
k . We

onlude that Ts, for eah s, is the set of tuples (F1, . . . , Fr,a) suh that

V (F1, . . . , Fr) ∩ Ha either has odimension ≤ r or has a singular lous of

dimension at least s. In partiular, if we have a losed k-point Q ∈ P

representing (F1, . . . , Fr) suh that V = V (F1, . . . , Fr) satis�es

(4) dimV = n− r, dimSingV = s,
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and if πs : Ts → P is the projetion, then the �ber π−1
s (Q) is the losed

set of points a ∈ P̌n
k suh that either dimSing(V ∩ Ha) ≥ dimSingV or

dim(V ∩Ha) = dimV .

Now let F1, . . . , Fr be forms as in the hypothesis, and let q be a prime suh

that (4) is satis�ed for Q ∈ P representing the tuple of (mod q)-redutions
((F1)q, . . . , (Fr)q). Then π−1

s (Q) is de�ned in Pn
k , where k = κ(Q) = Fq,

by the speializations Hs
i |Q of the multihomogeneous forms Hs

i . Applying

Lemma 1 we get that π−1
s (Q)×Spec k̄ is a proper losed subset of Pn

k̄
(where k̄

is an algebrai losure of k). Therefore one of the forms Hs
i |Q ∈ k[ξ0, . . . , ξn]

must be non-zero, so the form

Φq(ξ0, . . . , ξn) = Hs
i |Q (ξ0, . . . , ξn)

has the desired properties.

The last assertion of the lemma follows from the easy observation that a

polynomial of degree at most q annot vanish at every point of Pn
Fq
. �

The following lemma explores the new geometry arising from the Weyl dif-

ferening in Setion 4. For a polynomial f(X1, . . . ,Xn) we denote by ∇f the

gradient

(

∂f
∂X1

, . . . , ∂f
∂Xn

)t
and by ∇2f the Hessian matrix

(

∂f
∂Xi∂Xj

)

1≤i,j≤n
.

Lemma 3. Let G1, . . . , Gr be homogeneous polynomials in Z[X1, . . . ,Xn] of
degrees d1, . . . , dr, and let

V = Proj Z[X1, . . . ,Xn]/(G1, . . . , Gr).

Let q be a prime suh that q ∤ di for all i = 1, . . . , r and suppose that Vq is a

non-singular omplete intersetion of odimension r in Pn−1
Fq

.

(i) Let

S =
{

(x,y) ∈ Pn−1
Fq

× Pn−1
Fq

; y · ∇Gi(x) = 0, i = 1, . . . , r,

rank
(

y · ∇2Gi(x)
)

1≤i≤r
< r
}

.

Then dimS ≤ n− 2.
(ii) For y ∈ Pn−1

Fq
, let

Sy =
{

x ∈ Pn−1
Fq

; y · ∇Gi(x) = 0, i = 1, . . . , r,

rank
(

y · ∇2Gi(x)
)

1≤i≤r
< r,

}

.

For s = −1, 0, 1, . . . , n− 1, let Ts =
{

y ∈ Pn−1
Fq

; dimSy ≥ s
}

. Then

Ts is Zariski losed and dimTs ≤ n− s− 2.

(iii) For eah s, let T
(1)
s , T

(2)
s , . . . be the irreduible omponents of Ts.

Then

∑

j

deg(T (j)
s ) = On,r,d1,...,dr(1).

To prove Lemma 3 we shall need the following lemma.



THE DENSITY OF INTEGRAL POINTS ON COMPLETE INTERSECTIONS 7

Lemma 4. Let k be a �eld, and let V be a losed subsheme of Pn
k × Pn

k .
Let ∆ ⊆ Pn × Pn

be the diagonal, ∆ = {(x,x); x ∈ Pn
k}. If dimV ≥ n, then

V ∩∆ 6= ∅.

Proof. Consider the rational map

f : P2n+1
99K Pn × Pn

given by

(X0 : . . . : X2n+1) 7→ ((X0 : . . . : Xn), (Xn+1 : . . . : X2n+1)) .

Its domain of de�nition is the Zariski open set U := P2n+1 \ (L ∪M), where
L = {X0 = . . . = Xn = 0} and M = {Xn+1 = . . . = X2n+1 = 0}. Moreover,

let ∆̂ be the variety in P2n+1
de�ned by X0 = Xn+1, . . . ,Xn = X2n+1. Then

f is an isomorphism between ∆̂ and ∆. Let V̂ be the Zariski losure in P2n+1

of f−1(V ). Then

dim V̂ = dimV + 1 ≥ n+ 1,

so that

codim∆̂ + codimV̂ ≤ 2n+ 1.

Thus, by the Projetive Dimension Theorem [11, Ex. 3.3.4℄, ∆̂ ∩ V̂ is

nonempty. But a point P in this intersetion automatially lies in U , sine

∆̂ ∩ (L ∪M) is empty, and we get a point f(P ) in ∆ ∩ V. �

Proof of Lemma 3. (i) Assume that dimS ≥ n − 1. Aording to Lemma

4, we then must have S ∩ ∆ 6= ∅. Thus, suppose (x,x) ∈ S ∩ ∆. By the

de�nition of S, we then have

{

x · ∇Gi(x) = 0, i = 1, . . . , r

rank
(

x · ∇2Gi(x)
)

1≤i≤r
< r.

But x · ∇2Gi(x) = ∇(x · ∇Gi(x)), so by Euler's identity we have (sine q
does not divide any of the degrees of the Gi)

{

Gi(x) = 0, i = 1, . . . , r

rank (∇Gi(x))1≤i≤r < r.

Therefore, by the Jaobian Criterion, x is a singular point of V, in ontra-

dition with the hypothesis.

(ii) Let π : S → Pn−1
be the projetion onto the seond oordinate,

(x,y) 7→ y. Then Sy = π−1(y) × {y}. The fat that Ts is losed follows

from Chevalley's semiontinuity theorem [5, Cor 13.1.5℄. Now let Ss = S ∩
(

Pn−1 × Ts

)

for eah s = −1, . . . , n − 1. Sine Ss is the disjoint union of

�bres

Ss =
⋃

y∈Ts

π−1(y),

we have, by (i)

dimTs + s ≤ dimSs ≤ dimS ≤ n− 2,

whene dimTs ≤ n− s− 2.
(iii) As in Lemma 2, we shall let Pi be the projetive spaes parametrizing

hypersurfaes of degree di in Pn
Z, and put P = P1 × . . . × Pr. Now, let
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S =
{

(G1, . . . , Gr,x,y) ∈ P× Pn−1
Z × Pn−1

Z ; y · ∇Gi(x) = 0, i = 1, . . . , r,

rank
(

y · ∇2Gi(x)
)

1≤i≤r
< r,

}

.

Let π̃ : S → P×Pn−1
Z be the projetion (G1, . . . , Gr,x,y) 7→ (G1, . . . , Gr,y),

and de�ne for eah s

Ts =
{

P = (G1, . . . , Gr,y); dim π̃−1(P) ≥ s
}

.

Then Ts is losed by Chevalley's theorem, so it is de�ned in P × Pn−1
Z by

multihomogeneous polynomials H1, . . . ,Ht where t = On,r,d1,...,dr(1). Now

we �x polynomials G1, . . . , Gr and a prime q. The set Ts is then de�ned

in Pn−1
Fq

by H1|G1,...,Gr
, . . . , Ht|G1,...,Gr

. Now by Bézout's Theorem [4, Ex.

8.4.6℄ we have

∑

j

deg(T (j)
s ) ≤

∏

i

deg(Hi) ≪n,r,d1,...,dr 1.

�

3. Points on Complete Intersetions over Fq

The following result is well-known and trivial, but we inlude a proof for

the sake of ompleteness.

Lemma 5. Let X = Spec Fq[X1, . . . ,Xn]/(f1, . . . , fρ) be a losed subsheme

of An
Fq
, and let d = maxi(deg fi). Let B ≥ 1. Then, for any box B =

[a1 − b1, a1 + b1]× . . .× [an − bn, an + bn], with |bi| ≤ B, ontaining at most

one representative of eah ongruene lass modulo q, we have

N(X,B, q) ≪n,ρ,d B
dimX .

Proof. We identify An
Fq

with the open subset {X0 6= 0} of Pn
Fq

and onsider

the sheme-theoreti losure Y of X in Pn
Fq

de�ned by the homogenizations

F1, . . . , Fρ of f1, . . . , fρ. Then the sum DX of the degrees of the irreduible

omponents of Y is at most dρ by Bézout's Theorem [4, Ex. 8.4.6℄. Thus it

su�es to show that N(X,B, q) ≪n,DX
BdimX

for every losed subshemeX.

We prove this by indution over ν = dimX. If ν = 0, then #X(Fq) ≤ DX ,

so we are done. Thus, suppose that ν ≥ 1. Sine X has at most DX

irreduible omponents, it is enough to prove that N(X ′,B, q) ≪n,DX
Bν

for

an arbitrary irreduible omponent X ′
of X. For some i ∈ {1, . . . , n}, all the

hyperplanes Ha :xi = a, where a ranges over Fq, interset X
′
properly. Sine

DX∩Ha ≤ DX , the indution hypothesis yields that N(X ′ ∩Ha,B, q) ≪n,DX

Bν−1
for eah a ∈ Fq . Sine we only need to onsider at most 2B values of

a, we get

N(X ′,B, q) =
∑

a

N(X ′ ∩Ha,B, q) ≤ 2B ·On,DX
(Bν−1) ≪n,DX

Bν ,

as desired. �

Delignes work on the Weil Conetures [2℄ yields a sharp asymptoti for-

mula for the number of Fq-points on a non-singular projetive omplete inter-

setion. In the paper by Hooley [8℄ (with an appendix by Katz) an extension
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to the singular ase is proven. The following lemma is an a�ne reformulation

of Hooley's result.

Lemma 6. Let Y be a losed subsheme of Pn
Fq

that is a omplete intersetion

of odimension r ≤ n and multidegree (d1, . . . , dr). Let Z = Y ∩ {x0 = 0}
and suppose that dimZ = dimY − 1. Put X = Y \ Z and s = dimSingZ.

Then we have

#X(Fq) = qn−r +On,d1,...,dr(q
(n−r+2+s)/2).

Proof. In ase n = r the lemma is a trivial onsequene of Bézout's Theorem.

We may thus assume that n > r. By [8, Appendix, Thm. 1℄ we have

#Z(Fq) = 1 + q + . . .+ qn−r−1 +O(q(n−r+s)/2).

However, s ≥ dimSingY − 1 by Remark 4, so by the same theorem we get

#Y (Fq) = 1 + q + . . .+ qn−r +O(q(n−r+2+s)/2).

Subtrating these two equations, we get

#X(Fq) = qn−r +O(q(n−r+2+s)/2),

as stated. �

The following result is a generalization of Theorem 3 in [7℄. However, even

in the ase of a hypersurfae we get a slightly sharper estimate. The reason

for this is the use of estimates by Katz [10℄ for �singular� exponential sums.

A similar appliation of those results are found in a paper by Luo [12℄.

Notation. For an element x = (x1, . . . , xn) in Zn
we let xq = (x1+qZ, . . . , xn+

qZ) ∈ Fn
q .

Theorem 3. Let W : Rn → R be an in�nitely di�erentiable funtion, sup-

ported in a ube of side 2L. Let q be a prime and B a real number with

1 ≤ B ≪L q. Let

X = Spec Z[X1, . . . ,Xn]/(f1, . . . , fr),

where the leading forms F1, . . . , Fr of f1, . . . , fr are of degree at least 2, and
let

Zq = Proj Z[X1, . . . ,Xn]/(q, F1, . . . , Fr).

Assume that dimZq = n− 1− r. Let s = dimSingZq and d = maxi(degFi).
De�ne a weighted ounting funtion

NW (X,B, q) =
∑

x∈Zn

xq∈Xq

W

(

1

B
x

)

.

Then we have

(5)

NW (X,B, q) = q−rNW (An, B, q)

+On,d,L

(

D2nB
s+1q(n−r−s−2)/2(B + q1/2)

)

,

where, for eah natural number k, Dk is the maximum over Rn
of all partial

derivatives of W of order k.
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Proof. We begin with some preparatory onsiderations, to justify the use of

Lemma 6 later in the proof. Let

Yq = Proj Z[X0, . . . ,Xn]/(q,G1, . . . , Gr),

where Gi(X0, . . . ,Xn) = Xdi
0 fi(X1/X0, . . . ,Xn/X0) for i = 1, . . . , n. Then

Zq = Yq ∩ {X0 = 0} and Xq = Yq \ Zq . Moreover, sine dimZq = n − 1 − r
we must have dimYq = n− r.

We shall follow the approah of Heath-Brown [7℄ and use indution with

respet to s, starting with the ase when Zq is non-singular, that is, when

s = −1. In ase n − r ≥ 2 we shall use Katz' results. We begin, however,

with two trivial ases. Suppose �rstly that n− r = 1. Then

NW (X,B, q) ≪n,L D0N(X,B, q) ≪n,d D0B

by Lemma 5, and

q−rNW (An, B, q) ≪n,L D0q
−n+1Bn ≪n,L D0B,

so

NW (X,B, q) − q−rNW (An, B, q) ≪n,d,L D2n(B + q1/2)

as required for (5). Next, suppose that n − r = 0. Also in this ase the

formula (5) holds, sine NW (X,B, q) ≪n,d,L D0 and q−rNW (An, B, q) ≪n,L

D0q
−nBn ≪n,L D0, whereas the error term required for (5) is D2n(Bq−1/2+

1).
From now on, we assume that n − r ≥ 2. By the Poisson Summation

Formula we have

NW (X,B, q) =
∑

z∈Xq

∑

u∈Zn

W

(

1

B
(z+ qu)

)

=
∑

z∈Xq

(

B

q

)n
∑

a∈Zn

eq(a · z)Ŵ

(

B

q
a

)

=

(

B

q

)n
∑

a∈Zn

Ŵ

(

B

q
a

)

Σq(a),

where

Σq(a) =
∑

z∈Xq

eq(a · z),

a sum whih we shall now investigate. In ase a ≡ 0 (mod q), we an use

Lemma 6 to onlude that we have

Σq(a) = #Xq(Fq) = qn−r +On,d(q
(n−r+1)/2).

Next we onsider Σq(a) for a 6≡ 0 (mod q). Sine Zq is a projetive omplete

intersetion of dimension at least 1, it is geometrially onneted. Being non-

singular, it is thus geometrially integral. The hypothesis that degFi ≥ 2 for
all i now implies that for eah a ∈ Fn

q \{0} we have dim(Zq∩Ha) = n−r−2,
where Ha is the hyperplane de�ned by a ·x = 0. Then, by Theorems 23 and

24 in [10℄, we have

Σq(a) ≪ q(n−r+1+δ(a))/2,
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where δ(a) = dimSing(Zq ∩Ha). Thus we get

(6)

NW (X,B, q) =

(

B

q

)n




∑

q|a

Ŵ

(

B

q
a

)

(

qn−r +On,d

(

q(n−r+1)/2
))





+O

(

(

B

q

)n
∑

a∈Zn

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣

q(n−r+1+δ(a))/2

)

.

The �rst term here equals

(7)

(

B

q

)n

qn−r
∑

v∈Zn

Ŵ (Bv) +On,d

(

(

B

q

)n

q(n−r+1)/2
∑

v∈Zn

Ŵ (Bv)

)

= q−rNW (An, B, q) +On,d,L

(

Bnq−(n+r−1)/2
)

,

by the Poisson formula in the reverse diretion and sine NW (An, B, q) =
On,d,L(B

n). In order to estimate the seond term in (6) we write

∑

a∈Zn

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣

q(n−r+1+δ(a))/2 = Σ1 +Σ2,

where

Σ1 =
∑

|a|≤q/2

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣

q(n−r+1+δ(a))/2
and

Σ2 =
∑

|a|>q/2

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣

q(n−r+1+δ(a))/2.

It follows from a result of Zak (see [8, Appendix, Thm. 2℄) that δ(a) = −1
or 0 for all a. By Lemma 2, all a for whih δ(a) = 0 satisfy Φ(a) ≡ 0
(mod q) for a non-zero polynomial Φ(ξ1, . . . , ξn) with integer oe�ients,

whose degree is On,d(1). Thus, let us split Σ1 into two sums

Σ1 =
∑

|a|≤q/2
Φ(a)≡0(q)

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣

q(n−r+1)/2 +
∑

|a|≤q/2
Φ(a)6≡0(q)

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣

q(n−r)/2

and denote the �rst by Σ11 and the seond by Σ12. We observe that, sine

the in�nitely di�erentiable funtion W has ompat support, we have an

estimate

∣

∣

∣
Ŵ (t)

∣

∣

∣
≪n,L Dk |t|

−k
for |t| ≥ 1 and any k ≥ 0, and moreover

Dk ≪n,L Dk+1 for every k. In partiular, for any t ∈ Rn
we have the

estimate

(8)

∣

∣

∣Ŵ (t)
∣

∣

∣≪n,L Dk min(1, |t|−k), k ≥ 0

Thus we get

∑

|a|≤q/2
Φ(a)≡0(q)

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣

≪n,L D2n

∑

|a|≤q/2
Φ(a)≡0(q)

min

(

1,

∣

∣

∣

∣

B

q
a

∣

∣

∣

∣

−2n
)

.
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Without loss of generality we an assume that ξn ours in the polynomial

Φ(ξ1, . . . , ξn). Then, for eah �xed determination of a1, . . . , an, there are

On,d(1) values for whih Φ(a1, . . . , an) ≡ 0 (mod q), and we get

∑

|a|≤q/2
Φ(a)≡0(q)

min

(

1,

∣

∣

∣

∣

B

q
a

∣

∣

∣

∣

−2n
)

=
∑

|a1|≤q/2

· · ·
∑

|an−1|≤q/2

∑

|an|≤q/2
Φ(a)≡0(q)

min

(

1,

∣

∣

∣

∣

B

q
a

∣

∣

∣

∣

−2n
)

≪n,d

n−1
∏

i=1

∑

|ai|≤q/2

min

(

1,

∣

∣

∣

∣

B

q
ai

∣

∣

∣

∣

−2
)

.

Now, for eah i = 1, . . . , n− 1 we have

∑

|ai|≤q/2

min

(

1,

∣

∣

∣

∣

B

q
ai

∣

∣

∣

∣

−2
)

=
∑

|ai|≤q/B

1 +
∑

q/B<|ai|≤q/2

∣

∣

∣

∣

B

q
ai

∣

∣

∣

∣

−2

≪
q

B
,

and we onlude that

Σ11 ≪n,d,L D2n

( q

B

)n−1
q(n−r+1)/2.

Moreover, using (8) and the fat that

(9)

∑

u∈Zn

|u|>U

|u|−(n+1) ≪n U−1

we have

Σ12 ≤
∑

|a|≤q/2

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣

q(n−r)/2

≤ q(n−r)/2





∑

|a|≤q/B

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣

+
∑

q/B<|a|≤q/2

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣





≪n,L Dn+1

( q

B

)n
q(n−r)/2.

We arrive at the estimate

(10) Σ1 ≪n,d,L D2n

( q

B

)n
q(n−r−1)/2(B + q1/2).

It turns out that Σ2 does not ontribute to the error term. Indeed, using (8)

and (9) again we have

Σ2 ≤
∑

|a|>q/2

∣

∣

∣

∣

Ŵ

(

B

q
a

)∣

∣

∣

∣

q(n−r+1)/2 ≪n,L Dn+1

( q

B

)n
q(n−r−1)/2,

whih is dominated by the bound (10) for Σ1. Thus, inserting (7) and (10)

into the formula (6) yields

NW (X,B, q) = q−rNW (An, B, q) +On,d,L

(

D2nq
(n−r−1)/2(B + q1/2)

)

,

as required for the ase s = −1.
Suppose now that Zq is singular, so that s ≥ 0. Following Heath-Brown

[7℄ we will ount points on hyperplane setions. We begin with remarking

that it is enough to prove the theorem for q greater than some onstant
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q0 = q0(n, d). Indeed, if q ≪n,d 1, then B ≪n,d,L 1, so that trivially we have

NW (X,B, q) − q−rNW (An, B, q) ≪n,d,L 1. Thus, using Lemma 2, we an

assume that it is possible to �nd a primitive integer vetor b, with b ≪n,d 1,
suh that dim(Zq ∩ Hb) = n − r − 2 and dimSing((Zq ∩ Hb)q) = s − 1,
where Hb is the hyperplane in Pn−1

de�ned by b · x = 0. We an �nd a

unimodular integer matrix M , all of whose entries are On,d(1) suh that the

automorphism of Pn−1
Z indued by M maps Hb onto the hyperplane Xn = 0,

whih we identify with Pn−2 = Proj Z[X1, . . . ,Xn−1]. Let Z̃q be the image

of Zq ∩Hb. Then

Z̃q = Proj Z[X1, . . . ,Xn−1]/(q,G1, . . . , Gr)

where Gi(X1, . . . ,Xn−1) = Fi(M
−1(X1, . . . ,Xn−1, 0)) for i = 1, . . . , r, and

eah Gi is of the same degree as Fi. Obviously we have dimSingZ̃q = s− 1.
Moreover,

NW (X,B, q) =
∑

xq∈Xq

W

(

1

B
x

)

=
∑

xq∈X̃q

W̃

(

1

B
x

)

,

where X̃ is the image of X under the automorphism of An
indued byM and

where W̃ (t) = W (M−1t). Then W̃ is supported in a ube of side L′ ≪n,d L,
so we an write

(11) NW (X,B, q) =
∑

−BL′≤c≤BL′

∑

xq∈X̃q
xn=c

W̃

(

1

B
x

)

.

For eah c ∈ Z, the intersetion of X̃ with the hyperplane xn = c is isomor-

phi to

X̃c = Spec Z[X1, . . . ,Xn−1]/(g
c
1, . . . , g

c
r)

where gci (X1, . . . ,Xn−1) = fi(X1, . . . ,Xn−1, c) for i = 1, . . . , r. For eah c
and i, the leading form of gci is Gi, so our indution assumption applies to

X̃c, Z̃q and the new weight funtion W̃c on Rn−1
de�ned by W̃c(t) = W̃ (t, c).

We get

∑

xq∈X̃q
xn=c

W̃

(

1

B
x

)

= NW̃c
(X̃c, B, q)

= q−rNW̃c
(An−1, B, q) +On,d,L

(

D2nB
sq(n−r−s−2)/2(B + q1/2)

)

.

We shall now add the ontributions from all c in the interval [−BL′, BL′].
Observe that

∑

−BL′≤c≤BL′

NW̃c
(An−1, B, q) =

∑

−BL′≤c≤BL′

∑

y∈Zn−1

W̃

(

1

B
(y, c)

)

=
∑

x∈Zn

W

(

1

B
M−1x

)

=
∑

x′∈Zn

W

(

1

B
x′

)

= NW (An, B, q),
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sine M is unimodular. Thus, summing aording to (11) we dedue that

NW (X,B, q) = q−rNW (An, B, q)+On,d,L

(

D2nB
s+1q(n−r−s−2)/2(B + q1/2)

)

and the indution step is �nished. �

4. Proof of the Main Result

The aim of this setion is to prove Theorem 2. Throughout the proof, any

impliit onstant is allowed to depend only on n and d, and we will omit the

subsripts n, d from the O- and ≪-notation.

Note. It will su�e to prove the theorem under the somewhat weaker hy-

pothesis that p < 2B+1 < q, but with the additional assumption that 2B+1
is a multiple of p. We will now prove that the general ase follows from this

ase. If p and q are given primes and B is an arbitrary real number suh that

2p < 2B+1 < q− p, then there are integers B1 and B2, with B1 ≤ B ≤ B2,

suh that 2B1 + 1 and 2B2 + 1 are multiples of p and p < 2Bi + 1 < q for

i = 1, 2. We have

N(X,B, pq)−
(2B + 1)n

prqr
≤ N(X,B2, pq)−

(2B + 1)n

prqr

= N(X,B2, pq)−
(2B2 + 1)n

prqr
+O(Bn−1p−r+1q−r),

and similarly

N(X,B, pq)−
(2B + 1)n

prqr
≥ N(X,B1, pq)−

(2B1 + 1)n

prqr
+O(Bn−1p−r+1q−r).

Thus, if we assume Theorem 2 to be true for B1 and B2, then we see that it

must also hold for B, sine B1, B2 ≍ B.

From now on we assume that 2B + 1 is a multiple of p between p and q.
To failitate the notation we introdue the harateristi funtion of the box

B = [−B,B]n ∩ Zn
,

χB(x) =

{

1 if max |xi| ≤ B,

0 otherwise.

Then

N := N(X,B, pq) =
∑

x∈Zn

pq|fi(x)

χB(x) =
∑

w∈Fn
p

p|fi(w)

∑

x≡w(p)
q|fi(x)

χB(x).

The �expeted value� of the inner sum is

K := p−nq−r(2B + 1)n,

so let us write

N =
∑

w∈Fn
p

p|fi(w)









∑

x≡w(p)
q|fi(x)

χB(x)−K









+K
∑

w∈Fn
p

p|fi(w)

1.
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If we denote the �rst of these two sums by S, then, using Lemma 6, we get

(12)

N = S +K#X(Fp) = S +K
(

pn−r +O(p(n−r+1)/2)
)

=
(2B + 1)n

prqr
+ S +O(Bnp−(n+r−1)/2q−r).

Now we turn our attention to S. By Cauhy's inequality

S2 ≤











∑

w∈Fn
p

p|fi(w)

1





















∑

w∈Fn
p

p|fi(w)









∑

x≡w(p)
q|fi(x)

χB(x) −K









2










,

so that, if we denote the expression in the rightmost parentheses by Σ, and
apply Lemma 5, we get

(13) S ≪ p(n−r)/2Σ1/2.

We estimate Σ by adding some extra (positive) terms:

Σ ≤
∑

w∈Fn
p

∑

a∈Fr
q









∑

x≡w(p)
fi(x)≡ai(q)

χB(x)−K









2

=
∑

w∈Fn
p

∑

a∈Fr
q









∑

x≡w(p)
fi(x)≡ai(q)

χB(x)









2

− 2K
∑

x∈Zn

χB(x) + pnqrK2.

The middle term here is just −2pnqrK2
, so, denoting the �rst sum by Z we

get

(14) Σ ≤ Z − pnqrK2.

To analyze Z, we write

Z =
∑

x∈Zn

χB(x)
∑

x′∈Zn

x′≡x(p)
fi(x′)≡fi(x)(q)

χB(x
′).

We make the variable hange x′ = x + py in the seond sum, introduing

the �di�erentiated� polynomials

fy
i (x) = fi(x+ py)− fi(x).

If By denotes the new box B ∩ (B − py) = {x ∈ Zn;x ∈ B,x+ py ∈ B}, we
get

Z =
∑

x∈Zn

χB(x)
∑

y∈Zn

fy

i (x)≡0(q)

χB(x+ py)

=
∑

y∈Zn

∑

x∈Zn

fy

i (x)≡0(q)

χBy
(x).
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Let us de�ne

∆(y) =
∑

x∈Zn

fy

i (x)≡0(q)

χBy
(x)− q−r

∑

x∈Zn

χBy
(x),

and write

Z =
∑

y∈Zn

∆(y) + q−r
∑

y∈Zn

∑

x∈Zn

χBy
(x).

Now one sees that, sine we are assuming p | (2B + 1),

∑

y∈Zn

∑

x∈Zn

χBy
(x) =

n
∏

i=1





∑

yi∈Z

∑

xi∈Z

χ[−B,B](xi)χ[−B−pyi,B−pyi](xi)





=

(

(2B + 1)2

p

)n

= pnq2rK2.

In other words, Z =
∑

∆(y) + pnqrK2
, so we get by (14)

(15) Σ ≤
∑

y∈Zn

∆(y).

Our task is now to estimate

∑

∆(y). To this end, denote the leading forms

of fy
1 , . . . , f

y
r by Fy

1 , . . . F
y
r and let

Xy = Spec Fq[x1, . . . , xn]/(f
y
1 , . . . , f

y
r ),

Zy = Proj Fq[x1, . . . , xn]/(F
y
1 , . . . , F

y
r ).

Observe that for eah i = 1, . . . , r we have

Fy
i = py · ∇Fi,

unless the right hand side vanishes identially (mod q) in x. Due to the

non-singularity of Z, this happens only if y ≡ 0 (mod q). Indeed, if y · ∇Fi

is identially zero for some i, then, in the notation of Lemma 3, Sy = Pn−1
Fq

.

Thus y is a point on the a�ne one over Tn−1 = ∅.

Lemma 7.

∑

y∈Zn

∆(y) ≪ Bn+1p−nq(n−r−1)/2(log q)n +Bn+1p−rq−1/2(log q)n

+Bnp−nq(n−r)/2(log q)n +Bn(log q)n.

Proof. First, we note that ∆(y) = 0 for all y with |y| ≥ (2B + 1)/p. Thus,
we only need to sum over the set

B = {y ∈ Zn; |y| < (2B + 1)/p} .

Let us deompose this set into subsets: B = B0 ∪ B1 ∪ . . . ∪ Br, where

Bσ = {y ∈ B; codimZy = σ} , σ = 0, . . . , r.

For y ∈ Br, we an use Theorem 1 of the Appendix [13℄ to get

∆(y) ≪n,d B
s(y)+1q(n−r−s(y)−2)/2(B + q1/2)(log q)n,

where s(y) = dimSing(Zy). Next we need to �nd out how often eah value

of s(y) arises. We onsult Lemma 3. Sine Zy is a omplete intersetion

of odimension r, the Jaobian Criterion implies that Sing(Zy) = Sy. Thus,
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the set of all y suh that s(y) = s is ontained in the a�ne one over the

set Ts. By part (ii) of Lemma 3, Ts has projetive dimension n − s − 2, so
by part (iii) and Lemma 5, we get

# {y ∈ Br; s(y) = s} ≪n,d

(

B

p

)n−s−1

.

Summing, we get

∑

y∈Br

∆(y) ≪
n−r−1
∑

s=−1

(

B

p

)n−s−1

Bs+1q(n−r−s−2)/2(B + q1/2)(log q)n

≪ Bn(log q)n
(

Bp−nq(n−r−1)/2 + p−nq(n−r)/2 +Bp−rq−1/2 + p−r
)

.

It remains to onsider the ontribution from y ∈ Bσ, σ < r. We make a

simple observation about the varieties Zy originating from these values of y:

now the set Sy is very large.

Lemma 8. Let G1, . . . , Gr be forms in the variables X1, . . . ,Xn. Let

V = {G1 = . . . = Gr = 0} ⊆ Pn−1

and let

W =

{

G1 = . . . = Gr = 0, rank

(

∂Gi

∂Xj

)

< r

}

.

Suppose that codim(V ) = σ < r. Then W ontains all irreduible ompo-

nents of V of dimension n− 1− σ. In partiular, dimW = n− 1− σ.

Proof. Let V ′
be an irreduible omponent of V with dimV ′ = n − 1 − σ.

Assume that there were a point P ∈ V ′
suh that rank

(

∂Gi

∂Xj

)

(P ) = r. Then

we would have

dimTPV
′ = n− 1− r < n− 1− σ = dimV ′,

a ontradition. Thus V ′ ⊆ W. �

We see that if y ∈ Bσ, then, by Lemma 8, dimSy = n− 1− σ. Realling
that, in the notation of Lemma 3, Tn−1−σ has dimension less than or equal

to σ − 1, we must have

|Bσ| ≪

(

B

p

)σ

.

Using Lemma 5 to get the trivial estimate ∆(y) ≪ Bn−σ
for y ∈ Bσ, we

ompute the ontribution from the Bσ, σ < r:

r−1
∑

σ=0

∑

y∈Bσ

∆(y) =

r−1
∑

σ=0

(

B

p

)σ

Bn−σ = Bn
r−1
∑

σ=0

p−σ ≪ Bn.

In sum, then,

∑

y∈B

∆(y) =

r
∑

σ=0

∑

y∈Bσ

∆(y)

≪ Bn+1p−nq(n−r−1)/2(log q)n +Bn+1p−rq−1/2(log q)n

+Bnp−nq(n−r)/2(log q)n +Bn(log q)n,
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and Lemma 7 follows. �

Working our way bak through the estimates (15), (13) and (12), we now

arrive at

(16)

N =
(2B + 1)n

prqr
+O

(

B(n+1)/2p−r/2q(n−r−1)/4(log q)n/2

+B(n+1)/2p(n−2r)/2q−1/4(log q)n/2 +Bn/2p−r/2q(n−r)/4(log q)n/2

+Bn/2p(n−r)/2(log q)n/2 +Bnp−(n+r−1)/2q−r
)

.

This ompletes the proof of Theorem 2.

We shall now prove Corollary 1, where the modest dependene upon ‖Fi‖
is due to the following lemma.

Lemma 9. Let X and Z be de�ned as in Theorem 2, and assume that ZQ is

non-singular of dimension n− 1− r. If P ≥ (
∑r

i=1 log ‖Fi‖)
1+δ

, then there

is a prime p ≍δ P suh that Zp is non-singular of dimension n− 1− r.

Proof. As in the proof of Lemma 2, let P = P1 × . . . × Pr, where Pi is the

projetive spae parametrizing all hypersurfaes of degree di in Pn−1
Z . By

a semiontinuity argument analogous to that in the proof of Lemma 2, the

subset U ⊆ P de�ned by

(G1, . . . , Gr) ∈ U ⇔ V (G1, . . . , Gr) is non-singular of odimension r,

is Zariski open, its omplement thus being de�ned by multihomogeneous

polynomials H1, . . . ,Ht in the oe�ients of G1, . . . , Gr. Now by the hy-

potheses, for some j we must have Hj(F1, . . . , Fr) 6= 0. We observe �rstly

that

log |Hj(F1, . . . , Fr)| ≪n,d

r
∑

i=1

log ‖Fi‖ .

Seondly, for an arbitrary positive number A we have

# {p > AP ; p | Hj(F1, . . . , Fr)} ≪
log |Hj(F1, . . . , Fr)|

logAP
.

Thus, if we hoose A large enough, there are fewer than

a :=

[

r
∑

i=1

log ‖Fi‖

]

suh primes. Hene among the a �rst prime numbers greater than AP , there
must be one prime p suh that p ∤ Hj(F1, . . . , Fr). By Chebyshev's Theorem

it is possible to �nd an interval [AP, cδAP ] that ontains more than P 1/(1+δ)

primes. Sine P ≥ a1+δ
, this interval must ontain p. �

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. Theorem 2 yields in partiular that

N(X,B, pq) ≪n,d

[

Bn

prqr
+B(n+1)/2p−r/2q(n−r−1)/4

+B(n+1)/2p(n−2r)/2q−1/4 +Bn/2p−r/2q(n−r)/4 +Bn/2p(n−r)/2

+Bnp−(n+r−1)/2q−r +Bn−1p−r+1q−r

]

(log q)n/2

Thus we want to optimize the expression

Bn

prqr
+B(n+1)/2p−r/2q(n−r−1)/4 +B(n+1)/2p(n−2r)/2q−1/4

+Bn/2p−r/2q(n−r)/4 +Bn/2p(n−r)/2 +Bnp−(n+r−1)/2q−r +Bn−1p−r+1q−r

by hoosing appropriate p and q. It turns out that

p ≍ B
1− 5nr−r2−5r

n2+4nr−n−r2−r , q ≍ B
2−

2(4nr−r2)

n2+4nr−n−r2−r .(17)

would be an optimal hoie. (Note that the last two terms in the expression

are dominated by the �rst term, so the optimization onsists of trying to get

the �rst �ve terms to be of approximately equal order of magnitude.) The

restrition n ≥ 4r + 2 ensures that (17) is ompatible with the requirement

that 2p < 2B+1 < q−p. The trouble is now to make sure that the intervals

spei�ed in (17) ontain �good� primes, that is, primes suh that both Zp

and Zq are non-singular of dimension n− 1− r.
For B large enough, (17) is a valid hoie. Indeed, if

B ≥

(

r
∑

i=1

log ‖Fi‖

)e1

, where

e1 =

(

1−
5nr − r2 − 5r

n2 + 4nr − n− r2 − r

)−1(

1 +
1

2r

)

,

then by Lemma 9 (with δ = (2r)−1
) we an hoose p and q, satisfying (17),

suh that Theorem 2 holds. For these B, and with p and q subjet to (17),

Theorem 2 implies that

N(X,B) ≪n,d N(X,B, pq) ≪n,d B
n−3r+r2 13n−3r−5

n2+4nr−n−r2−r (logB)n/2.

For B < (
∑r

i=1 log ‖Fi‖)
e1
, we use the trivial estimate

N(X,B) ≪n,d B
n−r

obtained by Lemma 5 to get

N(X,B) ≪n,d B
n−3r+r2 13n−3r−5

n2+4nr−n−r2−r

(

r
∑

i=1

log ‖Fi‖

)e2

, where

e2 = e1

(

2r − r2
13n− 3r − 5

n2 + 4nr − n− r2 − r

)

≤ 2r + 1.

This proves the theorem. �
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Remark. If we are ontent with just an upper bound for N(X,B, pq) in

Theorem 2, we an get rid of the fator (log q)n/2 and thus prove a slightly

sharpened version of Theorem 1, without the fator (logB)n/2. This an

be ahieved by introduing an in�nitely di�erentiable weight funtion into

the proof of Theorem 2, as in [7℄, and using Theorem 3 in the plae of [13,

Thm. 1℄ . More preisely, if instead of N(X,B, pq) we onsider the weighted
ounting funtion

NW (X,B, pq) =
∑

x∈Zn

xp∈Xp

xq∈Xq

W

(

1

2B
x

)

,

where W is a non-negative, in�nitely di�erentiable weight funtion on Rn

supported in [−1, 1]n, we an prove an asymptoti formula for NW (X,B, pq)
where the main term is

p−rq−r
∑

x∈Zn

W

(

1

2B
x

)

.

The error term would then onsist of the �rst four error terms of Theorem

2 with the fator (log q)n/2 removed, the �fth error term unhanged, and an

additional term whih is o (p−rq−rBn) and thus negligible for the appliation

of Theorem 1. To prove this asymptoti formula one imitates the proof of

Theorem 2, with χB(x) replaed by W
(

1
2Bx

)

and K by

KW = p−nq−r
∑

x∈Zn

W

(

1

2B
x

)

.

One is then led to estimate expressions

∆W (y) =
∑

x∈Zn

fy

i (x)≡0(q)

Wy(x)− q−r
∑

x∈Zn

Wy(x),

whereWy(x) = W
(

1
2Bx

)

W
(

1
2B (x+ py)

)

. At this point we invoke Theorem

3. Here the error term, in ontrast to the unweighted formula of Theorem 1 in

the Appendix, ontains no fator (log q)n, whene the promised improvement

of the upper bound. The only main divergene from the proof of Theorem 2

lies in the alulation of the sum

∑

y∈Zn

∑

x∈Zn Wy(x). This an be done by

means of Poisson summation (see [7, p. 20℄) and gives rise to the additional

error term mentioned above.
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Appendix

Per Salberger

The aim of this note is to ount Fq-points in boxes on a�ne varieties. If

x = (x1, . . . , xn) ∈ Zn
and q is a prime, then we set xq = (x1 + qZ, . . . , xn +

qZ) ∈ Fn
q . If B is a box in Rn

and W a losed subsheme of An
Z, then we let

N(W,B, q) = # {x = (x1, . . . , xn) ∈ B ∩ Zn : xq ∈ W (Fq)} .

Lemma 1. Let q be a prime and B be a box in Rn
suh that eah side

has length at most 2B < q. Let f1, . . . fr, l1, . . . , ls+1 be polynomials in

Z[x1, . . . , xn], r+s+1 ≤ n suh that the leading forms F1, . . . , Fr of f1, . . . fr
are of degree ≥ 2 and the leading forms L1, . . . , Ls+1 of l1, . . . , ls+1are of de-

gree 1. Let

X = Spec Z[x1, . . . , xn]/(f1, . . . , fr, l1 . . . , ls+1),

Λ = Spec Z[x1, . . . , xn]/(l1 . . . , ls+1) and

Z = Proj Z[x1, . . . , xn]/(F1, . . . , Fr, L1, . . . , Ls+1).

Suppose that Zq = ZFq is non-singular of odimension r + s + 1 in Pn−1
Fq

.

Then

N(X,B, q) = q−rN(Λ,B, q) +On,d(q
(n−r−s−2)/2(B + q1/2)(log q)n),

where d = maxi degFi.

Proof. If r + s + 1 = n, then #X(Fq) ≤ dn by the theorem of Bezout

and hene N(X,B, q) − q−rN(Λ,B, q) ≪n,d 1 ≤ q(n−r−s−2)/2(B + q1/2). If
r + s + 1 = n − 1, then N(X,B, q) = On,d(B) by Lemma 5 in [4℄ so that

N(X,B, q) − q−rN(Λ,B, q) ≪n,d B ≤ q(n−r−s−2)/2(B + q1/2). We may thus

assume that r + s + 1 ≤ n − 2. Then, Zq is geometrially onneted sine

it is a omplete intersetion of dimension ≥ 1 (see [1, Ex. II.8.4()℄). It

is thus geometrially integral sine it is non-singular. Therefore, by the

homogeneous Nullstellensatz we obtain that a linear form a · x = a1x1 +
. . . + anxn, (a1, . . . , an) ∈ Fn

q vanishes on Zq if and only if a · x belongs

to the linear Fq-spae V of linear forms in (x1, . . . , xn) generated by the

redutions of L1, . . . , Ls+1 (mod q). We now follow the approah of [3℄. Let

S1(a) =
∑

b∈B∩Zn eq(−a · b) and S2(a) =
∑

x∈X(Fq)
eq(a · x) for a ∈ Fq.

Then,

N(X,B, q) = q−n
∑

a∈Fn
q

S1(a)S2(a).



THE DENSITY OF INTEGRAL POINTS ON COMPLETE INTERSECTIONS 23

Let Πa = Proj Fq[x1, . . . , xn]/(a1x1 + . . .+ anxn) for a = (a1, . . . , an) ∈ Fn
q .

Then,

q−(s+1)
∑

a∈V

S1(a)S2(a) = q−(s+1)
∑

a∈V

∑

x∈X(Fq)

∑

b∈B∩Zn

eq(a · (x− b))

=
∑

x∈X(Fq)

∑

b∈B∩Zn

s+1
∏

i=1





1

q

∑

a∈Fq

eq(aLi(x− b))





= # {(x,b) ∈ X(Fq)× (B ∩ Zn) : L1(x− b) ≡ . . . ≡ Ls+1(x− b) ≡ 0 (mod q)}

= # {(x,b) ∈ X(Fq)× (B ∩ Zn) : l1(b) ≡ . . . ≡ ls+1(b) ≡ 0 (mod q)}

= #X(Fq)N(Λ,B, q).

Here #X(Fq) = qn−r−s−1 + On,d(q
(n−r−s)/2) by Lemma 6 in [4℄. There is

also a set of n − s − 1 indies i(1), . . . , i(n − s − 1) ∈ {1, . . . , n} suh that

any b = (b1, . . . , bn) ∈ B ∩ Zn
with bq ∈ Λ(Fq) is uniquely determined by

(bi(1), . . . , bi(n−s−1)). Hene, #N(Λ,B, q) ≪n Bn−s−1
. We have thus shown

that

q−n
∑

a∈V

S1(a)S2(a) = q−(n−s−1)#X(Fq)N(Λ,B, q)

= q−rN(Λ,B, q) +On,d(q
−(n−s−1)+(n−r−s)/2Bn−s−1).

As q−(n−s−1)+(n−r−s)/2Bn−s−1 < q(n−r−s−2)/2B, we onlude that

q−n
∑

a∈V

S1(a)S2(a) = q−rN(Λ,B, q) +On,d(q
(n−r−s−2)/2B).

We now estimate q−n
∑

a∈Fn
q \V

S1(a)S2(a). Sine dimZq ∩ Πa < dimZq

for a /∈ V , we obtain from the theorem of Katz (f. [3℄) that

S2(a) ≪n,d q
(n−r−s+δ)/2

where δ = dimSing(Zq ∩Πa) < dimZq ∈ {−1, 0}. As
∑

a∈Fn
q

|S1(a)| ≪n,d q
n(log q)n

(see [3℄), we get that the total ontribution to q−n
∑

a∈Fn
q \V

S1(a)S2(a) from

all a ∈ Fn
q \ V where Zq ∩Πa is non-singular is On,d(q

(n−r−s−1)/2(log q)n).
To estimate the ontribution from the remaining a ∈ Fn

q , we use that there

exists a form Φ ∈ Z[y1, . . . , yn] of degree On,d(1) in the dual oordinates

(y1, . . . , yn) of (x1, . . . , xn) suh that Φ(a) = 0 in Z/qZ for all n-tuples a

where Zq ∩Πa is singular (f. Lemma 2 in [4℄). Hene,

∑

a∈Fn
q

Sing(Zq∩Πa)6=∅

|S1(a)| ≤
∑

a∈Fn
q

Φ(a)=0

|S1(a)| ≪n,d q
n−1B(log q)n−1,

where the last inequality omes from an argument in [3℄. The n-tuples a

where Zq ∩Πa is singular will therefore ontribute with

On,d(q
(n−r−s−2)/2B(log q)n−1)

to q−n
∑

a∈Fn
q
S1(a)S2(a). This ompletes the proof of the lemma. �
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For a linear form L = a1x1 + . . . + anxn ∈ Z[x1, . . . , xn], we will write

‖L‖ = sup(|a1|, . . . , |an|).

Theorem 1. Let q be a prime and B be a box in Rn
suh that eah side has

length at most 2B < q. Let f1, . . . fr be polynomials in Z[x1, . . . , xn], r < n
with leading forms F1, . . . , Fr of degree ≥ 2. Let

X = Spec Z[x1, . . . , xn]/(f1, . . . , fr) and

Z = Proj Z[x1, . . . , xn]/(F1, . . . , Fr)

Suppose that Zq = ZFq is a losed subsheme of Pn−1
Fq

of odimension r with

singular lous of dimension s. Then,

N(X,B, q) = q−rN(An
Z,B, q) +On,d(B

s+1q(n−r−s−2)/2(B + q1/2)(log q)n),

where d = maxi degFi.

Proof. It is enough to prove the statement for q greater than some onstant

q0 depending only on n and d, sine for q ≪n,d 1 we have B ≪n,d 1 and thus,

trivially, N(X,B, q)− q−rN(An
Z,B, q) ≪n,d 1. Thus, assuming that q is large

enough, we hoose s+ 1 linear forms L1, . . . , Ls+1 ∈ Z[x1, . . . , xn] suh that

‖Li‖ = Od,n(1) and suh that

Zi
q = Proj Z[x1, . . . , xn]/(q, F1, . . . , Fr, L1, . . . , Li)

is a losed subsheme of odimension r + i in Pn−1
Fq

with singular lous of

dimension s− i for i = 1, . . . , s+1. Suh forms were used already in [2℄ and

one gets a proof of their existene from Lemma 2 in [4℄.

Let I = L(B ∩ Zn) for the map L : Zn → Zs+1
whih sends b =

(b1, . . . , bn) to (L1(b), . . . , Ls+1(b)). Then #I = On,d(B
s+1). Moreover,

if c = (c1, . . . , cs+1) ∈ Zs+1
, then we may apply Lemma 1 to the a�ne

subsheme Xc of An
Z de�ned by (f1, . . . , fr, L1 − c1, . . . , Ls+1 − cs+1) and

onlude that

N(Xc,B, q) = q−rN(Λc,B, q) +On,d(q
(n−r−s−2)/2(B + q1/2)(log q)n)

for Λc = Spec Z[x1, . . . , xn]/(L1 − c1, . . . , Ls+1 − cs+1). If we sum over

all c = (c1, . . . , cs+1) ∈ I, then we get the desired asymptoti formula for

N(X,B, q). This �nishes the proof. �

Remark. Note that q−rN(An
Z,B, q) = q−r#(B∩Zn), sine di�erent elements

in B ∩ Zn
are non-ongruent (mod q) by the assumption on B.

Referenes

[1℄ Robin Hartshorne. Algebrai geometry. Springer-Verlag, New York, 1977.

[2℄ D. R. Heath-Brown. The density of rational points on nonsingular hypersurfaes.

Pro. Indian Aad. Si. Math. Si., 104(1):13-29, 1994.

[3℄ Wenzhi Luo. Rational points on omplete intersetions over Fp. Internat. Math. Res.

Noties, (16):901-907, 1999.

[4℄ O. Marmon. The density of integral points on omplete intersetions. Preprint.

Department of Mathematial Sienes, Chalmers University of Tehnol-

ogy and Göteborg University, SE-412 96 Göteborg, Sweden

E-mail address: marmon�math.halmers.se, salberg�math.halmers.se


	1. Introduction
	2. Preliminary Results from Algebraic Geometry
	3. Points on Complete Intersections over Fq
	4. Proof of the Main Result
	References
	Appendix
	References

