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A NOTE FOR EXTENSION OF ALMOST SURE CENTRAL LIMIT

THEORY

YU MIAO AND GUANGYU YANG

Abstract. Hörmann (2006) gave an extension of almost sure central limit theorem
for bounded Lipschitz 1 function. In this paper, we show that his result of almost
sure central limit theorem is also hold for any Lipschitz function under stronger
conditions.

1. Introduction

The classical results on the almost sure central limit theorem (ASCLT) dealt with
partial sums of random variables. A general pattern is that, if X1, X2, . . . be a
sequence of independent random variables with partial sums Sn = X1 + · · · + Xn

satisfying (Sn−bn)/an
L−→ H for some sequences an > 0, bn ∈ R and some distribution

function H , then under some mild conditions we have

lim
n→∞

1

log n

n
∑

k=1

1

k
I
{

(Sk − bk)/ak ≤ x
}

= H(x) a.s.

for any continuity point x of H .
Several papers have dealt with logarithmic limit theorems of this kind and the

above relation has been extended in various directions. Fahrner and Stadtmüller
[5] gave an almost sure version of a maximum limit theorem. Berkes and Horváth
[2] obtained a strong approximation for the logarithmic average of sample extremes.
Berkes and Csáki [1] showed that not only the central limit theorem, but every weak
limit theorem for independent random variables has an analogous almost sure version.
For stationary Gaussian sequences with covariance rn, Csáki and Gonchigdanzan [3]
proved an almost sure limit theorem for the maxima of the sequences under the con-
dition rn log n(log logn)

1+ε = O(1). For some dependent random variables, Peligrad
and Shao [7] and Dudziński [4] obtained corresponding results about the almost sure
central limit theorem.
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Recently, Hörmann [6] gave an extension of almost sure central limit theory under
some regularity condition as the following form:

lim
N→∞

D−1
N

N
∑

k=1

dkf
(Sk

ak
− bk

)

=

∫ ∞

−∞

f(x)dH(x) a.s. (1.1)

where f is a bounded Lipschitz 1 function and DN =
∑N

k=1 dk, {dk}k≥1 is a sequence
of positive constants. Using his method, we will show that for any Lipschitz function
f , (1.1) holds under some additional conditions.
At first, we give our main result.

Theorem 1.1. Let X1, X2, . . . be independent random variables with partial sums Sn

and assume that

: (C1) For some numerical sequences an > 0 and bn, we have
Sn

an
− bn

L−→ H,

where H is some (possibly degenerate) distribution function.
: (C2) kdk = O(1) and for some 0 < α < 1, dkk

α is eventually non-increasing.

: (C3) For some ρ > 0, dk = O
( Dk

k(logDk)ρ

)

.

: (C4) There exist positive constants C, β, such that ak/al ≤ C(k/l)β (1 ≤ k ≤
l). Furthermore, for some 0 < r < ρ,

E

∣

∣

∣

Sn

an
− bn

∣

∣

∣

µ

= O(1), for some integer µ ≥ (2 ∨ 4/(ρ− r)). (1.2)

Then for any Lipschitz function f on the real line, we have (1.1).

Remarks 1.2. Obviously, for any bounded Lipschitz 1 function f , under the above
assumptions, the equation (1.1) holds, i.e. we can obtain Theorem 1 in [6].

2. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1, according to the process of
Hörmann in [6].

Lemma 2.1. (See Lemma 1 in [6] ) Let (DN) be a summation procedure, then the
condition (C3) of Theorem 1.1 implies that DN = o(N ε) for any ε > 0.

Lemma 2.2. Assume that condition (C4) of Theorem 1.1 is satisfied and bn = 0.
Then for every Lipschitz function f : R → R there exists constant c > 0 such that

∣

∣

∣
Cov

(

f
(Sk

ak

)

, f
(Sl

al

))
∣

∣

∣
≤ c(k/l)β (1 ≤ k ≤ l), (2.1)

where β is the same as in (C4).
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Proof. Firstly, we assume f(0) = 0. Denoting ‖f‖ the Lipschitz constant of f , we
get, by using the independence of Sk and Sl − Sk,

∣

∣

∣
Cov

(

f
(Sk

ak

)

, f
(Sl

al

))
∣

∣

∣
=

∣

∣

∣
Cov

(

f
(Sk

ak

)

, f
(Sl

al

)

− f
(Sl − Sk

al

))
∣

∣

∣

≤E

∣

∣

∣
f
(Sk

ak

)[

f
(Sl

al

)

− f
(Sl − Sk

al

)]
∣

∣

∣
+ E

∣

∣

∣
f
(Sk

ak

)
∣

∣

∣
E

∣

∣

∣
f
(Sl

al

)

− f
(Sl − Sk

al

)
∣

∣

∣

≤‖f‖2ak
al
E

[S2
k

a2k

]

+ ‖f‖2ak
al
(E

[Sk

ak

]

)2

≤2‖f‖2ak
al
E

[S2
k

a2k

]

≤ 2C‖f‖2E
[S2

k

a2k

]

(k/l)β,

where the last inequality is due to condition (C4). Since the equation (1.2), we can

take c > 0 such that for any k ≥ 1, 2C‖f‖2E
[S2

k

a2k

]

≤ c. So (2.1) is obtained.

If f(0) 6= 0, we can define a function g, such that g(x) = f(x)− f(0), then g is a
Lipschitz function and g(0) = 0. And noting that,

Cov
(

f
(Sk

ak

)

, f
(Sl

al

))

= Cov
(

g
(Sk

ak

)

, g
(Sl

al

))

we complete the proof of the lemma.
�

Remarks 2.3. It is obvious to see that if we replace β by any 0 < β
′

< β, the
Lemma 2.2 also holds. Hence, without loss of generality, we can assume that β is the
same as α in condition (C2) of Theorem 1.1.

Next we will use the following notations,

ξl := f
(Sl

al

)

− Ef
(Sl

al

)

, ξk,l := f
(Sl − Sk

al

)

− Ef
(Sl − Sk

al

)

. (2.2)

Lemma 2.4. Assume that condition (C4) of Theorem 1.1 is satisfied and bn = 0,
and define ξl and ξk,l as in (2.2). If {dk, k ≥ 1} are arbitrary positive weights, then
we have for any k ≤ m ≤ n and p ∈ N, p ≤ µ,

E

∣

∣

∣

n
∑

l=m

dl(ξl − ξk,l)
∣

∣

∣

p

≤ Ep

(

n
∑

l=m

d2l l
)p/2

,

where Ep = cpC
p‖f‖p

[(2κ

κ

)

∨
(

1 +
1

κ

)]p/2

and κ = 2β.
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Proof. Let Q(l) = Q(k, l) = ξl − ξk,l, then

E|Q(l)|p =E

∣

∣

∣
f
(Sl

al

)

− f
(Sl − Sk

al

)

− E

[

f
(Sl

al

)

− f
(Sl − Sk

al

)]
∣

∣

∣

p

≤‖f‖p(ak/al)pE
( |Sk|

ak
+ E

( |Sk|
ak

))p

≤Cp‖f‖pE
( |Sk|

ak
+ E

( |Sk|
ak

))p

(k/l)pβ

≤cpC
p‖f‖p(k/l)pβ,

where C is the same as in condition (C4) and cp is a positive constant such that for

all k, E
( |Sk|

ak
+ E

( |Sk|
ak

))p

≤ cp. Thus by the Hölder inequality, we get

E

∣

∣

∣

n
∑

l=m

dl(ξl − ξk,l)
∣

∣

∣

p

≤
n

∑

l1=m

· · ·
n

∑

lp=m

dl1 · · · dlp(E|Q(l1)|p · · ·E|Q(lp)|p)1/p

≤cpC
p‖f‖pkpβ

n
∑

l1=m

· · ·
n

∑

lp=m

dl1 · · · dlpl−β
1 · · · l−β

p

=cpC
p‖f‖pkpβ

(

n
∑

l=m

dll
−β

)p

≤cpC
p‖f‖pmpβ

(

n
∑

l=m

d2l l
)p/2(

n
∑

l=m

l−2β−1
)p/2

.

For m ≥ 2, it is easy to see that

mpβ
(

n
∑

l=m

l−2β−1
)p/2

≤mpβ
(

∫ ∞

m−1

l−2β−1dl
)p/2

≤
( m

m− 1

)pβ( 1

2β

)p/2

≤
(2κ

κ

)p/2

,

where κ := 2β. Similarly, we get for m = 1

(

n
∑

l=1

l−2β−1
)p/2

≤
(

1 +
1

κ

)p/2

.

Hence, we have

E

∣

∣

∣

n
∑

l=m

dl(ξl − ξk,l)
∣

∣

∣

p

≤ cpC
p‖f‖pτ(κ)p/2

(

n
∑

l=m

d2l l
)p/2

,

where τ(κ) :=
[(

2κ

κ

)

∨
(

1 + 1
κ

)]

. This completes the proof of our result. �
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Lemma 2.5. Assume that conditions (C2)− (C4) of Theorem 1.1 are satisfied. Fur-
ther let bn = 0 in condition (C4) and f be a Lipschitz function. Then for every p ≤ µ
and p ∈ N we have

E

∣

∣

∣

N
∑

k=1

dk

(

f
(Sk

ak

)

− Ef
(Sk

ak

))
∣

∣

∣

p

≤ Cp

(

∑

1≤k≤l≤N

dkdl

(k

l

)β)p/2

, (2.3)

where Cp > 0 is a constant and β is the same as in (C4).

Proof. At first, we set Cp = (4γ)p
2

and

Vm,n :=
n

∑

l=m

dll
−β

(

l
∑

k=1

dkk
β
)

, (1 ≤ m ≤ n).

For obtaining our result, it is enough to show that the following claim,
”if the number γ is chosen large enough, then

E

∣

∣

∣

n
∑

k=m

dkξk

∣

∣

∣

p

≤ Cp(Vm,n)
p/2, for all 1 ≤ m ≤ n, (2.4)

where ξk is defined as in (2.2).”
We will use induction on p to show (2.4). By Lemma 2.2, we have

E

∣

∣

∣

n
∑

k=m

dkξk

∣

∣

∣

2

≤ 2
∑

m≤k≤l≤n

dkdl|Eξkξl| ≤ 2c
∑

m≤k≤l≤n

dkdl(k/l)
β ≤ 2cVm,n.

Hence if we choose γ so large that (4γ)4 ≥ 2c, then (2.4) holds for p = 2.
Assume now that (2.4) is true for p−1 ≥ 2. From kdk = O(1) it follows that there

is a positive constant A such that
∑l

k=1 dkk
β ≥ Alβ. Then we get for Vm,n ≤ γ as

the proof of Lemma 2.4, there exists a constant Ap such that

E

∣

∣

∣

n
∑

k=m

dkξk

∣

∣

∣

p

≤
n

∑

k1=m

· · ·
n

∑

kp=m

dk1 · · · dkp(E|ξk1|p · · ·E|ξkp|p)1/p

≤Ap‖f‖p
n

∑

k1=m

· · ·
n

∑

kp=m

dk1 · · ·dkp

=Ap‖f‖p
(

n
∑

k=m

dk

)p

≤Ap‖f‖pA−p
(

n
∑

k=m

dkk
−β

(

k
∑

l=1

dll
β
))p

.

Now choose γ so large that the Cp ≤ (Ap
1/p‖f‖/A)pγp/2. In the case of Vm,n ≤ γ, we

have shown (2.4) is valid.
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We now want to show that if for any given X ≥ γ and the inequality (2.4) holds
for Vm,n ≤ X , then it will also hold for Vm,n ≤ 3X/2 and this will show that (2.4)
holds for any value of Vm,n, i.e. complete the induction step.
Assume Vm,n ≤ 3X/2 and set

S1 + S2 :=

w
∑

k=m

dkξk +

n
∑

k=w+1

dkξk, T2 :=

n
∑

k=w+1

dkξw,k, (m ≤ w ≤ n).

From the discussion of Lemma 4 in Hörmann, S. [6] (2006), and Lemma 2.1, for a
fixed m and n we choose w in such a way that

Vm,w ≤ X, Vw+1,n ≤ X and
Vw+1,n

Vm,w
= λ ∈ [1/2, 1].

From the mean value theorem we get

|Sj
2 − T j

2 | ≤ j|S2 − T2|(|S2|j−1 + |T2|j−1) (j ≥ 1). (2.5)

Since condition (C2) and Remarks 2.3, there exists a constant B > 0 such that for
all l ≥ 1,

B
l

∑

k=1

dkk
β ≥ l1+βdl.

This also shows that
n

∑

l=m

ld2l ≤ BVm,n, for all 1 ≤ m ≤ n.

By Lemma 2.4, we get for all j ≥ 1,

E|S2 − T2|j ≤ Fj(Vw+1,n)
j/2,

where Fj = Bj/2Ej and Ej is the constant in Lemma 2.4.
From the induction hypothesis in the case of 1 ≤ j ≤ p − 1 and from the validity

of (2.4) for Vm,n ≤ X in the case of j = p, we have

E|S1|j ≤ Cj(Vm,w)
j/2, (1 ≤ j ≤ p) (2.6)

and

E|S2|j ≤ Cj(Vw+1,n)
j/2 ≤ Cjλ

j/2(Vm,w)
j/2, (1 ≤ j ≤ p). (2.7)

The remains of the proof are the same as in Lemma 4 in Hörmann, S. [6] (2006), but
for completeness, we still give the proof. By Cr inequality, we have

E|T2|j ≤ 2jCjλ
j/2(Vm,w)

j/2, (1 ≤ j ≤ p). (2.8)

Furthermore, from Hölder inequality the following result is easy,

E|S1|j|S2 − T2||S2|p−j−1 ≤ (E|S1|p)j/p(E|S2 − T2|p)1/p(E|S2|p)(p−j−1)/p

≤ C(p−1)/p
p F 1/p

p λ(p−j)/2(Vm,w)
p/2. (2.9)
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The last inequality remains valid, with an extra factor 2p−j−1 on the right hand
side, if |S2|p−j−1 on the left hand side is replaced by |T2|p−j−1. Since S1 and T2 are
independent, we get

E|S1 + S2|p ≤ E|S1|p + E|S2|p +
p−1
∑

j=1

Gj
p(E|S1|j|Sp−j

2 − T p−j
2 |+ E|S1|jE|T2|p−j),

where Gj
p denote the combination, i.e., Gj

p = p![j!(p−j)!]−1. Substituting (2.5)−(2.9)

(using also the analogue of (2.9) with |T2|p−j−1) in the above inequality and get

E|S1 + S2|p ≤Cp(Vm,w)
p/2

(

1 + λp/2 + C−1/p
p F 1/p

p

p−1
∑

j=1

2p−jGj
p(p− j)λ(p−j)/2

+ C−1
p

p−1
∑

j=1

2p−jGj
pλ

(p−j)/2CjCp−j

)

.

Note that

C−1/p
p F 1/p

p ≤ const · τ(κ)1/2c1/pp (4γ)−p

and

CjCp−j/Cp ≤ (4γ)−p, (1 ≤ j ≤ p− 1),

thus, by λ ≤ 1, we have

C−1/p
p F 1/p

p

p−1
∑

j=1

2p−jGj
p(p− j)λ(p−j)/2 ≤ const · τ(κ)1/2p c1/pp γ−p

and

C−1
p

p−1
∑

j=1

2p−jGj
pλ

(p−j)/2CjCp−j ≤ const · γ−p.

Since λ ≥ 1/2 we have shown that for a large γ the relation E|S1 + S2|p ≤ Cp(1 +
λ)p/2(Vm,w)

p/2 = Cp(Vm,n)
p/2 is true, i.e., for Vm,n ≤ 3X/2, (2.4) is valid. �

Lemma 2.6. (See Lemma 5 in [6]) Assume the condition (C3) of Theorem 1.1 is
satisfied. Then for any α > 0 and any η < ρ, we have

∑

1≤k≤l≤N

dkdl

(k

l

)α

= O
( D2

N

(logDN)η

)

.

Proof of Theorem 1.1. Without loss of generality, from Lemma 2.5 and Lemma
2.6, we have, for any ε > 0, p ≤ µ and p ∈ N,

P

(
∣

∣

∣

N
∑

k=1

dkξk

∣

∣

∣
> εDN

)

≤ c(p, ε)(logDN)
−pη/2, for N ≥ N0.
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Since µ ≥ (2 ∨ 4/(ρ − r)) for some 0 < r < ρ, we can choose suitable η < ρ and p
such that pη > 4. By (C3), we have DN+1/DN → 1, thus we can choose (Nj) such
that DNj

∼ exp{√j}. Applying Borel-Cantelli lemma, we get

lim
j→∞

D−1
Nj

Nj
∑

k=1

dkξk = 0 a.s..

For Nj ≤ N ≤ Nj+1, we have

D−1
N |

N
∑

k=1

dkξk| ≤ D−1
Nj
|

Nj
∑

k=1

dkξk|+ 2(DNj+1
/DNj

− 1) a.s..

The convergence of the subsequence implies that whole sequence converges a.s., since
DNj+1

/DNj
→ 1. This complete the proof of the theorem. �
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[4] Dudziński, M. A note on the almost sure central limit theorem for some depen-
dent random variables. Statistics and Probability Letters, 2003, 61: 31-40.

[5] Fahrner, I., Stadtmüller, U. On almost sure max-limit theorems. Statistics and
Probability Letters, 1998, 37(3): 229-236.
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