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1 BETTI NUMBERS AND SHIFTS IN MINIMAL GRADED FREE
RESOLUTIONS

TIM RÖMER

ABSTRACT. Let S= K[x1, . . . ,xn] be a polynomial ring andR= S/I whereI ⊂ S is a
graded ideal. The Multiplicity Conjecture of Herzog, Huneke, and Srinivasan which
was recently proved using the Boij–Söderberg theory states that the multiplicity ofR is
bounded above by a function of the maximal shifts in the minimal graded free resolu-
tion of R over S as well as bounded below by a function of the minimal shifts ifR is
Cohen–Macaulay. In this paper we study the related problem to show that the total Betti-
numbers ofR are also bounded above by a function of the shifts in the minimal graded
free resolution ofR as well as bounded below by another function of the shifts ifR is
Cohen–Macaulay. We also discuss the cases when these boundsare sharp.

1. INTRODUCTION

Let S= K[x1, . . . ,xn] be a polynomial ring over a fieldK equipped with the standard
grading by setting deg(xi) = 1. We consider a standard gradedK-algebraR= S/I where
I ⊂ S is a graded ideal and the minimal graded free resolution ofR:

0→
⊕

j∈Z

S(− j)β S
p, j (R) → ·· · →

⊕

j∈Z

S(− j)β S
1, j(R) → S→ 0

whereβ S
i, j(R) = dimK TorSi (R,K) j are the graded Betti numbers andp = projdim(R) is

the projective dimension ofR. Let β S
i (R) = ∑ j∈Zβ S

i, j(R) be thei-th total Betti number of
R. Recall thatRhas apure resolutionif the resolution has the following shape:

0→ S(−dp)
β S

p(R) → ·· · → S(−d1)
β S

1 (R) → S→ 0

for some numbersd1, . . . ,dp. Let e(R) denote the multiplicity ofR. If R is Cohen–
Macaulay with a pure resolution, then Herzog and Kühl [11],and Huneke and Miller [14]
observed that the following formulas hold:

e(R) =
1
p!

p

∏
i=1

di andβ S
i (R) = (−1)i+1∏

j 6=i

d j

d j −di
for i = 1, . . . , p.

Consider for 1≤ i ≤ p the numbers

Mi = max{ j ∈ Z : β S
i, j(R) 6= 0} andmi = min{ j ∈ Z : β S

i, j(R) 6= 0}.
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In the last years many people studied the Multiplicity Conjecture of Herzog, Huneke and
Srinivasan (see [12] and [14]) which states in its original form that ifR= S/I is Cohen–
Macaulay, then

1
p!

p

∏
i=1

mi ≤ e(R)≤
1
p!

p

∏
i=1

Mi .

Migliore, Nagel and the author [15] extended this conjecture by the questions that we
have equality below or above if and only ifR has a pure resolution. This conjecture is
proved as a corollary of the Boij–Söderberg theory which was conjectured and developed
partly by Boij–Söderberg [3] and then completely proved byEisenbud–Schreyer [8] (see
also [3] and [7]). A natural question is whether under the Cohen–Macaulay assumption
the i-th total Betti numberβ S

i (R) can also be bounded by using the shifts in the minimal
graded free resolution ofR. A natural guess for bounds is

∏
1≤ j<i

mj

mi −mj
· ∏

i< j≤p

mj

mj −mi
≤ β S

i (R)≤ ∏
1≤ j<i

M j

Mi −M j
· ∏

i< j≤p

M j

M j −Mi
(1)

for i = 1, . . . , p. We show that these bounds hold ifR is a complete intersection and ifI
is componentwise linear. Moreover, in these cases we have equality above or below for
all i if and only if R has a pure resolution. In general these bounds are not valid.Indeed,
we give a counterexample in Example 3.1. For Cohen–Macaulayalgebras withstrictly
quasi-pure resolutions, i.e.mi > Mi−1 for all i, we show the bounds

∏
1≤ j<i

mj

Mi −mj
· ∏

i< j≤p

mj

M j −mi
≤ β S

i (R)≤ ∏
1≤ j<i

M j

mi −M j
· ∏

i< j≤p

M j

mj −Mi
(2)

for i = 1, . . . , p. Again we have equality below or above for alli if and only if Rhas a pure
resolution. Observe that

∏
1≤ j<i

mj

Mi −mj
· ∏

i< j≤p

mj

M j −mi
≤ ∏

1≤ j<i

mj

mi −mj
· ∏

i< j≤p

mj

mj −mi
,

becauseMi −mj ≥ mi −mj > 0 for 1≤ j < i andM j −mi ≥ mj −mi > 0 for i < j ≤ p
respectively. Thus the weaker lower bounds in (2) hold also for all cases where the lower
bounds in (1) are valid. But the numbers∏1≤ j<i

M j
mi−M j

·∏i< j≤p
M j

mj−Mi
may be negative

and thus are not candidates for upper bounds in general. Notethat the Cohen–Macaulay
assumption for the lower bound (2) is essential. We construct a non Cohen–Macaulay
ideal as a counterexample in Example 4.2. We have that

∏
1≤ j<i

M j

Mi −M j
· ∏

i< j≤p

M j

M j −Mi
≤

1
(i −1)! · (p− i)! ∏

j 6=i

M j

because in the Cohen–Macaulay case we haveMi−M j ≥ i− j for 1≤ j < i andM j −Mi ≥
j − i for i < j ≤ p respectively. Hence one might still ask if the upper bound

β S
i (R)≤

1
(i −1)! · (p− i)! ∏

j 6=i

M j(3)

is valid for i = 1, . . . , p. In addition to the cases that the bounds in (1) hold ifR is a
complete intersection and ifI is componentwise linear, the bounds in (2) hold ifR has
a strictly quasi-pure resolution, using the Boij–Söderberg theory we show that the lower
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bounds in (2) and the upper bounds in (3) hold ifS/I is Cohen–Macaulay. Moreover, we
discuss the case where we have equality everywhere. See also[16] for related results.
Some remarks on possible upper bounds for non Cohen–Macaulay algebras are included
in this paper.

We are grateful to Prof. J. Herzog for inspiring discussionson the subject of this paper.

2. COMPLETE INTERSECTIONS

One of the first examples of Cohen–Macaulay algebras are complete intersection. For
this we consider a complete intersectionR= S/I whereI = ( f1, . . . , fp) is a graded ideal
generated by a regular sequencef1, . . . , fp. Let deg( fi) = di for i = 1, . . . , p. Without loss
of generality we assume thatd1 ≥ ·· · ≥ dp. The Koszul complex gives rise to a minimal
graded free resolution ofR and thus we get that

βi(R) =

(

p
i

)

,

Mi = d1+ · · ·+di ,

mi = dp+ · · ·+dp−i+1

for i = 1, . . . , p. Note thatR has a pure resolution if and only ifd1 = · · ·= dp. The idealI
has a linear resolution if and only ifd1 = · · ·= dp = 1. Using these facts we prove:

Theorem 2.1. Let R= S/I be a complete intersection as described above. Then:

(i) We have for i= 1, . . . , p that

β S
i (R)≤ ∏

1≤ j<i

M j

Mi −M j
· ∏

i< j≤p

M j

M j −Mi
≤

1
(i −1)! · (p− i)! ∏

j 6=i

M j .

The first upper bound is reached for all i if and only if R has a pure resolution.
Every upper bound is reached for all i if and only if I has a linear resolution.

(ii) We have for i= 1, . . . , p that

β S
i (R)≥ ∏

1≤ j<i

mj

mi −mj
· ∏

i< j≤p

mj

mj −mi
≥ ∏

1≤ j<i

mj

Mi −mj
· ∏

i< j≤p

mj

M j −mi
.

Every lower bound is reached for all i if and only if R has a pureresolution.

Proof. (i): To prove the upper bound we compute forp≥ j > i that

M j

M j −Mi
=

d1+ · · ·+d j

di+1+ · · ·+d j
=

d1+ · · ·+di

di+1+ · · ·+d j
+1≥

i ·di

( j − i) ·di+1
+1≥

i
j − i

+1=
j

j − i

and for 1≤ j < i that

M j

Mi −M j
=

d1+ · · ·+d j

d j+1+ · · ·+di
≥

j ·d j

(i − j) ·d j+1
≥

j
(i − j)

.
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Observe that we have equality for all integersi, j if and only if d1 = · · ·= dp. Thus

β S
i (R) =

(

p
i

)

=
i −1

1
·
i −2

2
· · ·

1
i −1

·
p

p− i
·

p−1
p−1− i

· · ·
i +1

1

≤
Mi−1

Mi −Mi−1
·

Mi−2

Mi −Mi−2
· · ·

M1

Mi −M1
·

Mp

Mp−Mi
·

Mp−1

Mp−1−Mi
· · ·

Mi+1

Mi+1−Mi

= ∏
1≤ j<i

M j

Mi −M j
· ∏

i< j≤p

M j

M j −Mi

≤
1

(i −1)! · (p− i)! ∏
j 6=i

M j

where the last inequality was observed in Section 1. Moreover, we have thatβ S
i (R) =

∏1≤ j<i
M j

Mi−M j
·∏i< j≤p

M j
M j−Mi

for all 1≤ i ≤ p if and only if R has a pure resolution. It is

also easy to see thatβ S
i (R) =

1
(i−1)!·(p−i)! ∏ j 6=i M j for all 1≤ i ≤ p if and only if I has a

linear resolution.
(ii): Similarly, it follows from

mj

mj −mi
=

dp+ · · ·+dp− j+1

dp−i + · · ·+dp− j+1
=

dp+ · · ·+dp−i+1

dp−i + · · ·+dp− j+1
+1

≤
i ·dp−i+1

( j − i) ·dp−i
+1≤

i
( j − i)

+1=
j

( j − i)

for p≥ j > i and

mj

mi −mj
=

dp+ · · ·+dp− j+1

dp− j + · · ·+dp−i+1
≤

j ·dp− j+1

(i − j) ·dp− j
≤

j
(i − j)

for 1≤ j < i that

β S
i (R) =

(

p
i

)

≥ ∏
1≤ j<i

mj

mi −mj
· ∏

i< j≤p

mj

mj −mi

≥ ∏
1≤ j<i

mj

Mi −mj
· ∏

i< j≤p

mj

M j −mi
.

The last inequality was observed in Section 1. Again we have equations everywhere for
all 1≤ i ≤ p if and only if R has a pure resolution.

This concludes the proof. �

Remark 2.2. Instead of this direct approach one can also use the Boij–Söderberg theory
(see [3], [4], [7]and [8]). See Section 5 for details where weobtain beside other things
again the lower bounds in (2) and the upper bounds in (3) usingthis approach.
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3. IDEALS WITH STRICTLY QUASI-PURE RESOLUTIONS

Motivated by the results of Section 2 one could hope that the bounds in (1) are always
valid. This is not the case as the following example shows.

Example 3.1. We consider the following situation. LetS= K[x1, . . . ,x6] be a polynomial
ring in 6 variables and consider the graded idealI = (x1x2,x1x3,x2x4−x5x6,x3x4). Using
for example CoCoA [5] one checks thatS/I is Cohen–Macaulay of dimension 3 and it
has the minimal graded free resolution:

0→ S2(−5)→ S2(−3)⊕S3(−4)→ S4(−2)→ S→ 0

which is not pure. We have

M1 = m1 = 2, M2 = 4,m2 = 3, M3 = m3 = 5.

But
M2

M2−M1
·

M3

M3−M1
=

4
2
·
5
3
=

20
6

< 4= β S
1 (R)

and hence the upper bound of (1) is not valid. Moreover,
m2

m2−m1
·

m3

m3−m1
=

3
1
·
5
3
= 5> 4= β S

1 (R).

Thus also the lower bound of (1) is false in general. But the resolution is strictly quasi-
pure sincemi > Mi−1 for all 1≤ i ≤ 3. Note that the bounds in (2) hold. Indeed, e.g. for
β S

1 (R) we have
M2

m2−M1
·

M3

m3−M1
=

4
1
·
5
3
=

20
3

> 4= β S
1 (R)

and
m2

M2−m1
·

m3

M3−m1
=

3
2
·
5
3
=

15
6

< 4= β S
1 (R).

We recall the following well-known result which is due to Peskine and Szpiro [17].

Lemma 3.2. Let I ⊂ S be a graded ideal such that R= S/I is Cohen–Macaulay and let
p= projdim(R). Then:

(i) ∑p
i=1(−1)i ∑ j β S

i j (R) = ∑p
i=1(−1)iβ S

i (R) =−1.

(ii) ∑p
i=1(−1)i ∑ j jk ·β S

i j (R) = 0 for 1≤ k≤ p−1.

Proof. We have∑p
i=1(−1)i ∑ j β S

i j (R) = ∑p
i=1(−1)iβ S

i (R) =−β S
0 (R) =−1. For a proof of

the other equalities see also e.g. [12, Lemma 1.1]. �

We see that the graded Betti numbers satisfy a certain systemof equations which some-
times is nowadays also called theHerzog-K̈uhl equations. Note that ifR has a pure res-
olution, then using this system, Cramer’s rule and the Vandermonde determinant it is not
difficult to prove the formulas of the multiplicity and the total Betti-numbers in [11] and
[14]. Recall from [12] thatR has aquasi-pure resolutionif mi ≥ Mi−1 for all i. Unfortu-
nately, we can not prove in general the bounds in (2) for the total Betti-numbers in this
case. We say thatR has astrictly quasi-pure resolutionif mi > Mi−1 for all i. In this case
we show that the bounds in (2) are valid. The idea of the proof is similar to the one of [12,
Theorem 1.2].
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Theorem 3.3. Let I ⊂ S be a graded ideal such that R= S/I is Cohen–Macaulay which
has a strictly quasi-pure resolution and let p= projdim(R). Then:

(i) We have for i= 1, . . . , p that

β S
i (R)≤ ∏

1≤ j<i

M j

mi −M j
∏

i< j≤p

M j

mj −Mi
≤

1
(i −1)! · (p− i)! ∏

j 6=i

M j .

The first upper bound is reached for all i if and only if R has a pure resolution.
Every upper bound is reached for all i if and only if I has a linear resolution.

(ii) We have for i= 1, . . . , p that

β S
i (R)≥ ∏

1≤ j<i

mj

Mi −mj
· ∏

i< j≤p

mj

M j −mi
.

Every lower bound is reached for all i if and only if R has a pureresolution.

Proof. We consider the(p× p)-square matrix

A=











∑ j β S
1 j(R) ∑ j β S

2 j(R) · · · ∑ j β S
p j(R)

∑ j j ·β S
1 j(R) ∑ j j ·β S

2 j(R) · · · ∑ j j ·β S
p j(R)

...
...

...
...

∑ j j p−1 ·β S
1 j(R) ∑ j j p−1 ·β S

2 j(R) · · · ∑ j j p−1 ·β S
p j(R)











.

We compute the determinant ofA as

det(A) = ∑
j1

· · ·∑
jp

V( j1, . . . , jp) · ∏
1≤l≤p

β S
l j l (R)

with the Vandermonde determinants

V( j1, . . . , jp) = det











1 1 · · · 1
j1 j2 · · · jp
...

...
...

...
j p−1
1 j p−1

2 · · · j p−1
p











.

SinceR has a strictly quasi-pure resolution we have thatj i > jk for all integersi,k such
that i > k, β S

i j i
(R) 6= 0 andβ S

k jk
(R) 6= 0. Thus all the involved Vandermonde determinants

are always positive.
We may compute det(A) also in a different way. Fixi ∈ {1, . . . , p}. By replacing thei-

th column ofA by the alternating sum of all columns ofA, we obtain a matrixA′ such that
det(A) = det(A′). It follows from Lemma 3.2, that thei-th column ofA′ is the transpose
of the vector((−1)i+1,0, . . . ,0). Hence by expanding the determinant ofA′ with respect
to thei-th column, we get

det(A) = det(A′) = det(B),

whereB is the(p−1× p−1)-matrix






∑ j jβ S
1 j(R) · · · ∑ j jβ S

i−1 j(R) ∑ j jβ S
i+1 j(R) · · · ∑ j jβ S

p j(R)
...

...
...

...
...

...
∑ j j p−1β S

1 j(R) · · · ∑ j j p−1β S
i−1 j(R) ∑ j j p−1β S

i+1 j(R) · · · ∑ j j p−1β S
p j(R)






.



BETTI NUMBERS AND SHIFTS IN MINIMAL GRADED FREE RESOLUTIONS 7

Thus

det(A) = det(B)

= ∑
j1

· · · ∑
j i−1

∑
j i+1

· · ·∑
jp

U( j1, . . . , j i−1, j i+1, . . . , jp) · ∏
1≤l≤p,l 6=i

j l ·β S
l j l (R)

with the corresponding Vandermonde determinants

U( j1, . . . , j i−1, j i+1, . . . , jp)

= det











1 · · · 1 1 · · · 1
j1 · · · j i−1 j i+1 · · · jp
...

...
...

...
...

...
j p−2
1 · · · j p−2

i−1 j p−2
i+1 · · · j p−2

p











.

Observe that

V( j1, . . . , jp) = ∏
i<l≤p

( j l − j i) · ∏
1≤l<i

( j i − j l) ·U( j1, . . . , j i−1, j i+1, . . . , jp).

All in all we obtain from the discussion so far that

∑
j1

· · ·∑
jp

∏
i<l≤p

( j l − j i) · ∏
1≤l<i

( j i − j l ) ·U( j1, . . . , j i−1, j i+1, . . . , jp) · ∏
1≤l≤p

β S
l j l (R)(4)

= ∑
j1

· · · ∑
j i−1

∑
j i+1

· · ·∑
jp

U( j1, . . . , j i−1, j i+1, . . . , jp) · ∏
1≤l≤p,l 6=i

j l · ∏
1≤l≤p,l 6=i

β S
l j l (R).

It follows from the fact thatR has a strict quasi-pure resolution that for all integersl

∏
1≤l<i

(mi −Ml) ∏
i<l≤p

(ml −Mi)(5)

≤ ∏
1≤l<i

( j i − j l) ∏
i<l≤p

( j l − j i)≤ ∏
1≤l<i

(Mi −ml ) ∏
i<l≤p

(Ml −mi).

We always have for thosej l with β S
l j l
(R) 6= 0 that

∏
1≤l≤p,l 6=i

ml ≤ ∏
1≤l≤p,l 6=i

j l ≤ ∏
1≤l≤p,l 6=i

Ml .(6)

Using (4), the lower bound of (5) and the upper bound of (6) we obtain

β S
i (R) · ∏

i<l≤p

(ml −Mi) ∏
1≤l<i

(mi −Ml)

·∑
j1

· · · ∑
j i−1

∑
j i+1

· · ·∑
jp

U( j1, . . . , j i−1, j i+1, . . . , jp) · ∏
1≤l≤p,l 6=i

β S
l j l (R)

≤ ∏
1≤l≤p,l 6=i

Ml ∑
j1

· · · ∑
j i−1

∑
j i+1

· · ·∑
jp

U( j1, . . . , j i−1, j i+1, . . . , jp) · ∏
1≤l≤p,l 6=i

β S
l j l (R)

and thus

β S
i (R)≤ ∏

1≤ j<i

M j

mi −M j
· ∏

i< j≤p

M j

mj −Mi
.
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Analogously using (4), the upper bound of (5) and the lower bound of (6) we get

β S
i (R)≥ ∏

1≤ j<i

mj

Mi −mj
· ∏

i< j≤p

mj

M j −mi
.

(These lower bounds will also be proved in Section 5 where we show that they hold
in general for all Cohen–Macaulay rings.) Checking the inequalities we see that we have
equality above or below for all 1≤ i ≤ p if and only if Rhas a pure resolution. We already
observed that we have the inequalities∏1≤ j<i

M j
mi−M j

∏i< j≤p
M j

mj−Mi
≤ 1

(i−1)!·(p−i)! ∏ j 6=i M j .

A straightforward discussion shows thatβ S
i (R) =

1
(i−1)!·(p−i)! ∏ j 6=i M j for all i if and only

if I has a linear resolution. This concludes the proof. �

4. COMPONENTWISE LINEAR IDEALS

Let I ⊂ S= K[x1, . . . ,xn] be a graded ideal. Recall thatI has ak-linear resolutionif
β S

i,i+ j(I) = 0 for j 6= k. For a non-negative integerk we denote byI〈k〉 ⊂ Sthe ideal which
is generated by all elements inIk. Herzog and Hibi [10] calledI componentwise linearif
I〈k〉 has ak-linear resolution for allk≥ 0.

It is well-known that a lot of important classes of ideals in combinatorial commutative
algebra are componentwise linear. Recall that an idealI ⊂ S is called amonomial idealif
it is generated by monomials ofS. Then we denote byG(I) the unique minimal system
of generators ofI . A monomial idealI ⊂ S is calledstrongly stable, if for all monomials
xu = ∏n

k=1xuk
k ∈ G(I) and i with xi |xu we have for all 1≤ j ≤ i that (xu/xi)x j ∈ I . It is

well-known that strongly stable ideals are componentwise linear. But also stable ideals,
squarefree (strongly) stable ideals and more generallya-stable ideal are componentwise
linear. (See [18, Theorem 3.11] for definitions and a proof.)In particular, this implies that
all generic initial ideals are componentwise linear provided char(K) = 0. (E.g. see [1] or
[13, Lemma 3.3].)

In the proof of the next theorem we will need the Eliahou–Kervaire formula [9] for the
graded Betti-numbers of a strongly stable idealI : we have for alli ≥ 1 and j ≥ 0 that
β S

i,i+ j(S/I) = ∑xu∈G(I), degxu= j+1
(m(u)−1

i−1

)

where we setm(u) = max{i : 1≤ i ≤ n, ui > 0}
for a monomialxu with u∈ N

n. Here we make the convention that
(a

b

)

= 0 for a,b ∈ Z

unless 0≤ b ≤ a. (Note that these formulas above are already true for stableideals.)
Observe the following facts. Ifβ S

i,i+ j(S/I) 6= 0 for somei, thenβ S
k,k+ j(S/I) 6= 0 for 1≤

k ≤ i. Moreover, only thosexu ∈ G(I) with m(u) ≥ i are relevant for the totali-th Betti
numberβ S

i (S/I) 6= 0 and then degxu ≥ mi − i +1.

Theorem 4.1. Let I ⊂ S be a componentwise linear ideal such that R= S/I is Cohen–
Macaulay and let p= projdim(R). Then:

(i) We have for i= 1, . . . , p that

β S
i (R)≤ ∏

1≤ j<i

M j

Mi −M j
· ∏

i< j≤p

M j

M j −Mi
≤

1
(i −1)! · (p− i)! ∏

j 6=i

M j .

Every upper bound is reached for all i if and only if I has a linear resolution.
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(ii) We have for i= 1, . . . , p that

β S
i (R)≥ ∏

1≤ j<i

mj

mi −mj
· ∏

i< j≤p

mj

mj −mi
≥ ∏

1≤ j<i

mj

Mi −mj
· ∏

i< j≤p

mj

M j −mi
.

Every lower bound is reached for all i if and only if I has a linear resolution.

Proof. Without loss of generality we may assume that the fieldK is infinite. We denote
by gin(I) the generic initial ideal ofI with respect to the reverse lexicographical order.
The proof of the main result in [1] and [13, Lemma 3.3] shows that gin(I) has the same
graded Betti numbers asI and is a stable ideal in all characteristics. If we replaceI by
gin(I), then the Betti numbers ofI do not depend on the characteristic ofK and we may
assume that char(K) = 0. Replacing another timeI by gin(I) does not change the Betti
numbers and thus we may now assume thatI is a strongly stable ideal.

SinceR is Cohen–Macaulay and it is known thatxn, . . . ,xn−depth(R)+1 is a regular se-
quence forR, we may assume that dim(R) = 0 and thus a pure power of each variable
belongs toI . Let a> 0 be the smallest natural number such thatxa

n ∈ I . Then deg(xu)≤ a
for all xu ∈ G(I) andxa

n ∈ G(I), becauseI is strongly stable. Note that for (i) and (ii) we
have to show only the corresponding first inequalities, since the other are trivially true as
noted in the other sections of this paper.

(i): It follows from the Eliahou–Kervaire formula for the graded Betti numbers ofR
that

Mi = a+ i −1 for i = 1, . . . ,n.

We have that(x1, . . . ,xn)
a ⊆ I and thus it follows from [6, Theorem 3.2] that

β S
i (S/I)≤ β S

i (S/(x1, . . . ,xn)
a) = ∏

1≤ j<i

M j

Mi −M j
· ∏

i< j≤n

M j

M j −Mi

where the last equation follows from the fact that(x1, . . . ,xn)
a has ana-linear resolution,

the maximal shifts coincide with the ones ofI and that in this case the equation follows
from [11, Theorem 1]).

If I has a linear resolution, thenI = (x1, . . . ,xn)
a and the upper bounds forβ S

i (S/I) are
reached. Assume that we have equations everywhere. Then it follows thatβ S

i (S/I) =
β S

i (S/(x1, . . . ,xn)
a) for i = 1, . . . ,n. In the proof of [6, Theorem 3.2] it is shown, that this

implies

|xu ∈ G(I〈 j〉) : m(u) = k|= |xu ∈ G((x1, . . . ,xn)
a
〈 j〉) : m(u) = k| for j ∈ Z, 1≤ k≤ n−1.

This implies thatI〈 j〉 = 0 for j < a and thusI = (x1, . . . ,xn)
a. HenceI has ana-linear

resolution.
(ii): Fix 1 ≤ i ≤ n and writemi = i +b−1 for some natural numberb. Let J = I≥b be

the ideal which is generated by all elements ofI of degree greater or equal tob. It follows
from the Eliahou–Kervaire formula and the observations given above that

β S
j (S/J) = β S

j (S/I) for j ≥ i,

mj(S/J) = mj(S/I) for j ≥ i,

mj(S/J) ≥ mj(S/I) for 1≤ j < i,

mj(S/J) = mi(S/J)− (i − j) for 1≤ j < i.
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Note thatS/J is still zero dimensional. Assume that we could prove the lower bound for
S/J, then it would follow that

β S
i (S/I) = β S

i (S/J)

≥ ∏
1≤ j<i

mj(S/J)

mi(S/J)−mj(S/J)
· ∏

i< j≤n

mj(S/J)

mj(S/J)−mi(S/J)

= ∏
1≤ j<i

mj(S/J)

mi(S/I)−mj(S/J)
· ∏

i< j≤n

mj(S/I)

mj(S/I)−mi(S/I)

≥ ∏
1≤ j<i

mj(S/I)

mi(S/I)−mj(S/I)
· ∏

i< j≤n

mj(S/I)

mj(S/I)−mi(S/I)
.

The last inequality follows because for 1≤ j < i we have

mj(S/J)

mi(S/I)−mj(S/J)
≥

mj(S/I)

mi(S/I)−mj(S/I)

⇔ mj(S/J)mi(S/I)−mj(S/J)mj(S/I)≥ mj(S/I)mi(S/I)−mj(S/I)mj(S/J)

⇔ mj(S/J)mi(S/I)≥ mj(S/I)mi(S/I)

⇔ mj(S/J)≥ mj(S/I).

Here the last inequality follows from the definition ofJ as noted above. It remains to
show the lower bound forβ S

i (S/J). Let L = (x1, . . . ,xn)
b. We observe thatJ ⊆ L and we

have

mj(S/L) = mi(S/L)− (i − j) for 1≤ j < i,

mj(S/L) = mi(S/L)+( j − i) for i < j ≤ n,

mj(S/J) = mj(S/L) for j ≤ i,

mj(S/J) ≥ mj(S/L) for i < j ≤ n.

Moreover, it follows from [6, Theorem 3.2] thatβ S
i (S/J)≥ β S

i (S/L). We compute

β S
i (S/J) ≥ β S

i (S/(x1, . . . ,xn)
b)

= ∏
1≤ j<i

mj(S/L)

mi(S/L)−mj(S/L)
· ∏

i< j≤n

mj(S/L)

mj(S/L)−mi(S/L)

= ∏
1≤ j<i

mj(S/J)

mi(S/J)−mj(S/J)
· ∏

i< j≤n

mj(S/L)

mj(S/L)−mi(S/J)

≥ ∏
1≤ j<i

mj(S/J)

mi(S/J)−mj(S/J)
· ∏

i< j≤n

mj(S/J)

mj(S/J)−mi(S/J)
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The last inequality follows because fori < j ≤ n we have

mj(S/L)

mj(S/L)−mi(S/J)
≥

mj(S/J)

mj(S/J)−mi(S/J)

⇔ mj(S/L)mj(S/J)−mj(S/L)mi(S/J)≥ mj(S/J)mj(S/L)−mj(S/J)mi(S/J)

⇔ −mj(S/L)mi(S/J)≥−mj(S/J)mi(S/J)

⇔ mj(S/J)≥ mj(S/L).

The last inequality is valid as noted above. Thus we get the desired lower bound forJ and
hence also forI .

Assume that for alli the lower bound forβ S
i (S/I) is reached. Fori = 1 the correspond-

ing constructedJ is justI . It follows then also thatβ S
1 (S/I)= β S

1 (S/L) and applying again
[6, Theorem 3.2] we see thatβ S

i (S/I) = β S
i (S/L) for 1≤ i ≤ n. Now we deduce as in the

proof of (i) that indeedI has a linear resolution. This concludes the proof. �

The Cohen–Macaulay assumption is essential for the lower bounds in (2). In fact, we
can construct a strongly stable ideal as a counterexample. The ideal is taken from [12].

Example 4.2. Let S= K[x1, . . . ,x4] be a polynomial ring in 4 variables and we consider
the strongly stable idealI = (x2

1,x1x2,x3
2,x

2
2x3,x2

2x4). ThenS/I is not Cohen–Macaulay
because dim(S/I) = 2 and depth(S/I) = 0. It follows from the Eliahou–Kervaire formula
that

β S
1 (S/I) = 5, β S

2 (S/I) = 7, β S
3 (S/I) = 4, β S

4 (S/I) = 1

and
m1 = 2, m2 = 3, m3 = 5, M4 = m4 = 6.

But now

β S
4 (S/I) = 1<

m3

M4−m3
·

m2

M4−m2
·

m1

M4−m1
=

5 ·3 ·2
1 ·3 ·4

=
30
12

.

On the other hand for strongly stable ideals we still can givean upper bound for thei-th
total Betti number without the Cohen–Macaulay assumption.

Theorem 4.3. Let I ⊂ S be a componentwise linear ideal and p= codim(S/I). We have
for i = 1, . . . , p that

β S
i (S/I)≤

(

i +M1−2
i −1

)

·

(

p+M1−1
p− i

)

.

The upper bound is reached for all i if and only if S/I is Cohen–Macaulay and I has a
linear resolution.

Proof. As shown in the proof of Theorem 4.1 we may assume that char(K) = 0 and thatI
is a strongly stable ideal. It is known thatxn, . . . ,xn−depth(S/I)+1 is a regular sequence for
S/I and thus we may assume that depth(S/I) = 0, i.e. projdim(S/I) = n.

Let J = I≥M1(S/I) be the ideal which is generated by all elements ofI of degree greater
or equal toM1(S/I). It follows from [6, Theorem 3.2] thatβ S

i (S/I)≤ β S
i (S/J). Note that

Mi ≤ M1+ i −1 as one deduces from the Eliahou–Kervaire formula. By construction of
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J we haveM1(S/J) = M1 andJ has anM1-linear resolution. Assuming that we can show
the upper bound forS/J, we get for 1≤ i ≤ n that

β S
i (S/I)≤ β S

i (S/J)≤

(

i +M1−2
i −1

)

·

(

n+M1−1
n− i

)

.

It remains to show the upper bound forS/J. Note that

β S
i (S/J) = ∑

xu∈G(J)

(

m(u)−1
i −1

)

=
n

∑
j=i

(

j −1
i −1

)

|{xu ∈ G(J) : m(u) = j}|

≤
n

∑
j=i

(

j −1
i −1

)(

j +M1−1−1
M1−1

)

.

We prove by induction onn− i that
n

∑
j=i

(

j −1
i −1

)(

j +M1−2
M1−1

)

=

(

i +M1−2
i −1

)

·

(

n+M1−1
n− i

)

.

The assertion is trivial fori = n. Let i < n. Using the induction hypothesis we compute
n

∑
j=i

(

j −1
i −1

)(

j +M1−2
j −1

)

=
n−1

∑
j=i

(

j −1
i −1

)(

j +M1−2
j −1

)

+

(

n−1
i −1

)(

n+M1−2
n−1

)

=

(

i +M1−2
i −1

)

·

(

n−1+M1−1
n−1− i

)

+

(

n−1
i −1

)(

n+M1−2
n−1

)

=

(

i +M1−2
i −1

)

·

(

n+M1−1
n− i

)

−

(

i +M1−2
i −1

)(

n+M1−2
n− i

)

+

(

n−1
i −1

)(

n+M1−2
n−1

)

=

(

i +M1−2
i −1

)

·

(

n+M1−1
n− i

)

because
(i+M1−2

i−1

)(n+M1−2
n−i

)

=
(n−1

i−1

)(n+M1−2
n−1

)

as one verifies by a direct computation.
If S/I is Cohen–Macaulay andI has a (M1-)linear resolution, then we know by [11]
that β S

i (S/I) reaches the upper bound for alli. Assume now thatβ S
i (S/I) =

(i+M1−2
i−1

)

·
(p+M1−1

p−i

)

for i = 1, . . . , p. As seen above we may assume thatp= n. Then the correspond-
ing bounds forS/J are also achieved. It follows from the inequalities above that every
monomial of degreeM1 is a minimal generator ofJ. This means thatJ = (x1, . . . ,xn)

M1.
ThusS/J is zero dimensional and hence Cohen–Macaulay. But sinceJ = I≥M1 then also
S/I is zero dimensional and therefore Cohen–Macaulay. Now we can apply Theorem 4.1
(i) to conclude thatI has a linear resolution. �



BETTI NUMBERS AND SHIFTS IN MINIMAL GRADED FREE RESOLUTIONS 13

Remark 4.4. The results of this section can also be used to prove bounds for the Betti
numbers ifI is not componentwise linear, at least if char(K) = 0. LetI ⊂ Sbe an arbitrary
graded ideal andp = projdim(S/I). Recall that reg(S/I) = max1≤i≤projdim(S/I){Mi − i}
is called theCastelnuovo–Mumford regularityof S/I . It is well-known that reg(S/I) =
reg(S/gin(I)) where gin(I) is the generic initial ideal ofI with respect to the reverse
lexicographical order (see [2]). Moreover,β S

i (S/I)≤ β S
i (S/gin(I)) for all i. Since gin(I)

is componentwise linear it follows from these observationsand Theorem 4.3 that

β S
i (S/I) ≤ β S

i (S/gin(I))

≤

(

i + reg(S/gin(I))−1
i −1

)

·

(

p+ reg(S/gin(I))
p− i

)

=

(

i + reg(S/I)−1
i −1

)

·

(

p+ reg(S/I)
p− i

)

wherep= codim(S/I)= codim(S/gin(I)). With similar arguments one can use Theorem
4.1 to prove upper bounds in the Cohen–Macaulay case using the regularity. Since we get
better results for this case in the next section, we omit the details.

5. COHEN–MACAULAY RINGS

We saw that the lower and upper bounds in (1) do not hold in general. Also the upper
bounds in (2) are not candidates for upper bounds since the numbers may be negative.
Using the Boij–Söderberg theory which was conjectured anddeveloped partly by Boij–
Söderberg [3] and then completely proved by Eisenbud-Schreyer [8] (see also [3] and [7])
we show that the lower bounds in (2) and upper bounds in (3) hold under the Cohen–
Macaulay assumption.

We recall parts of the Boij–Söderberg theory which is needed in the following. Fix
a positive integerp. For any strictly increasing sequence of non-negative integersd =
(d0,d1, . . . ,dp) with d0 = 0 we define a diagramπ(d) by

π(d)i, j =

{

∏1≤k<i
dk

di−dk
∏i<k≤p

dk
dk−di

if j = di ,

0 else

and callπ(d) a pure diagram. The sequenced = (d0,d1, . . . ,dp) is called thedegree
sequenceof the diagram. Note that there is a choice which diagrams arecalled the pure
ones up to multiplication with respect to a positive real number. We choose them in such
a way thatπ(d)0,0 = 1. A pure diagram is calledlinear if dk = d1+(k−1) for 1≤ k≤ p.
There exists a partial order on pure diagrams by definingπ(d)≤ π(d′) for two increasing
sequences of non-negative integersd = (0,d1, . . . ,dp) andd′ = (0,d′

1, . . . ,d
′
p) if and only

if d ≤ d′ coefficientwise. For two fixed increasing sequences of positive integersd and
d denote byΠd,d the set of pure diagramsπ(d) such thatπ(d) ≤ π(d) ≤ π(d). Since
π(d)i, j 6= 0 only for finitely manyi, j we can consider the convex hull ofΠd,d, that is the
set of convex combinationsD = ∑π(d)∈Πd,d

λdπ(d) with real non-negative coefficientsλd

and∑π(d)∈Πd,d
λd = 1.

One of the main results of the Boij–Söderberg theory implies (see [3, Conjecture 2.4]
and the full proof in [8]) that for a Cohen–Macaulay algebraR of projective dimensionp
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the Betti-diagramβ S(R) = (β S
i, j(R)) is a convex combination of the convex hull ofΠm,M

wherem= (m1, . . . ,mp) andM = (M1, . . . ,Mp) and themi ,Mi are the usual maximal and
minimal shifts in the minimal graded free resolution ofR.

Note that the Boij–Söderberg theory treads more generallymodules instead of rings.
Then one of the results is that the Betti diagram of a Cohen–Macaulay module may be
written (uniquely) as a positive rational linear combination of pure diagrams whose degree
sequences form a totally ordered sequence. Sinceβ S

0,0(R) = 1 andβ S
0, j(R) = 0 for j 6= 0,

the Betti diagram ofR is already a convex combination of pure diagrams as considered
above and we restrict ourself to this situation.

Now we consider the convex hull ofΠd,d, and a convex combinationD as described
above. We define formally for 0≤ i ≤ p and j ∈ Z the numbers

βi, j(D) = ∑
π(d)∈Πd,d

λdπ(d)i, j , βi(D) = ∑
j∈Z

βi, j(D).

We also set for 1≤ i ≤ p

Mi(D) = max{ j ∈ Z : βi, j(D) 6= 0} andmi(D) = min{ j ∈ Z : βi, j(D) 6= 0}.

Observe that

Mi(D) = max{di : λd 6= 0} andmi(D) = min{di : λd 6= 0}.

Note also that it follows from the definition of the diagramsπ(d) thatMi(D) < Mi+1(D)
andmi(D)<mi+1(D) hold for 1≤ i < p. At first we prove the following purely numerical
result.

Theorem 5.1. Let d= (d0, . . . ,dp) and d = (d0, . . . ,dp) be two strictly increasing se-

quences of non-negative integers with d0 = d0 = 0 such that d≤ d. Assume that D=
∑π(d)∈Πd,d

λdπ(d) is a convex combination of elements ofΠd,d. Then:

(i) We have for i= 1, . . . , p that

βi(D)≤
1

(i −1)! · (p− i)! ∏
j 6=i

M j(D).

The upper bound is reached for all i if and only if D is a linear diagram.
(ii) We have for i= 1, . . . , p that

βi(D)≥ ∏
1≤ j<i

mj(D)

Mi(D)−mj(D)
· ∏

i< j≤p

mj(D)

M j(D)−mi(D)
.

Every lower bound is reached for all i if and only if D is a pure diagram.
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Proof. (i) We compute

βi(D) = ∑
π(d)∈Πd,d

λdπ(d)i

= ∑
π(d)∈Πd,d

λd ∏
1≤ j<i

d j

di −d j
· ∏

i< j≤p

d j

d j −di

≤ ∑
π(d)∈Πd,d,λd 6=0

λd ∏
1≤ j<i

M j(D)

i − j
· ∏

i< j≤p

M j(D)

j − i

=
1

(i −1)! · (p− i)! ∏
j 6=i

M j(D).

Note that ifD is not a pure diagram, then the inequality is strict. But evenfor a pure
diagram which is not linear the inequality is strict. Hence we have equality if and only if
D is a linear diagram.

(ii) Observe thatMi(D)−mj(D) ≥ mi(D)−mj(D)> 0 for j < i and similarM j(D)−
mi(D)> 0 for i < j. Then we get

βi(D) = ∑
π(d)∈Πd,d

λdπ(d)i

= ∑
π(d)∈Πd,d

λd ∏
1≤ j<i

d j

di −d j
· ∏

i< j≤p

d j

d j −di

≥ ∑
π(d)∈Πd,d,λd 6=0

λd ∏
1≤ j<i

mj(D)

Mi(D)−mj(D)
· ∏

i< j≤p

mj(D)

M j(D)−mi(D)
.

= ∏
1≤ j<i

mj(D)

Mi(D)−mj(D)
· ∏

i< j≤p

mj(D)

M j(D)−mi(D)
.

Note that ifD is not a pure diagram, then the inequalities are strict in general. Hence we
have equalities for alli if and only if D is a pure diagram. �

As alwaysK is a field andS= K[x1, . . . ,xn] a standard graded polynomial ring. As a
corollary of Theorem 5.1 and the Boij–Söderberg theory we get:

Corollary 5.2. Let I ⊂ S be a graded ideal such that R= S/I is Cohen–Macaulay and let
p= projdim(R). Then:

(i) We have for i= 1, . . . , p that

β S
i (R)≤

1
(i −1)! · (p− i)! ∏

j 6=i

M j .

The upper bound is reached for all i if and only if I has a linearresolution.
(ii) We have for i= 1, . . . , p that

β S
i (R)≥ ∏

1≤ j<i

mj

Mi −mj
· ∏

i< j≤p

mj

M j −mi
.

Every lower bound is reached for all i if and only if R has a pureresolution.
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Remark 5.3. Note that it is also known that the Betti diagram of a graded ringS/I which
is not necessarily Cohen–Macaulay may be written (uniquely) as a positive rational linear
combination of pure diagrams (see [4]). But here the appearing degree sequences maybe
of different lengths and this causes problems. Indeed the Cohen–Macaulay assumption is
essential for the lower bound (2) as we saw in Example (4.2). Similar upper bounds as
the ones in (3) can be proved in the case whereS/I is not Cohen–Macaulay. Since the
formulas in this case are not as nice and compact as the ones inthe Cohen–Macaulay case
we do not present them here and leave the details to the interested reader.
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