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BLOW-UP OF SOLUTIONS TO THE NONLINEAR

SCHRÖDINGER EQUATIONS ON STANDARD N-SPHERE

AND HYPERBOLIC N-SPACE

LI MA AND LIN ZHAO

Abstract. In this paper, we partially settle down the long standing
open problem of the finite time blow-up property about the nonlin-
ear Schrödinger equations on some Riemannian manifolds like the stan-
dard 2-sphere S

2 and the hyperbolic 2-space H
2(−1). Using the similar

idea, we establish such blow-up results on higher dimensional standard
sphere and hyperbolic n-space. Extensions to n-dimensional Riemann-
ian warped product manifolds with n ≥ 2 are also given.
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1. Introduction

In this paper, we partially settle down the long standing open prob-
lem of the finite time blow-up property about the nonlinear Schrödinger
equations on some Riemannian manifolds like the standard 2-sphere S2

and the hyperbolic 2-space H2(−1). The nonlinear Schrödinger equa-
tions of the following form

(1) iut = ∆u+ F (|u|2)u
play an important role in many areas of applied physics, such as non-
relativistic quantum mechanics, laser beam propagation, Bose-Einstein
condensates and so on (see [18]). The initial value problems (IVP) or
the initial-boundary value problems (IBVP) of (1) on Rn have been ex-
tensively studied in the last two decades (see [8, 13, 21, 10, 19, 20] ). In
particular, the blow-up properties in finite time for IVP or IBVP have
caught sufficient attention (see [11, 12, 16, 14, 15]). However, much
less results have been known on bounded domains in Rn or on compact
manifolds (M, g), with the notable exception of the works of H.Brézis
and T.Gallouet [5], J.Bourgain [1, 2, 3] (In [1], the case M = R2/Z2

was discussed in detail), and N.Burq, P.Gérard and N.Tzvetkov [6, 7].
In particular, the blow-up in finite time of Schrödinger equations (1)
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posed on an arbitrary Riemannian manifold (M ,g) is a long widely
known open problem. To our knowledge, the only examples of such
blow-up phenomena on Riemannian manifolds are given by the follow-
ing result, attributed to Ogawa-Tsutsuni [17] if the dimension n of M
equals to 1 and generalized to the case n = 2 by N.Burq, P.Gérard and
N.Tzvetkov [6].

Theorem 1. Let (M, g) be a compact Riemannian manifold of dimen-
sion n = 1 or n = 2. Assume there exist x0 ∈ M and a system of
coordinates near x0 in which

g =
d

∑

j=1

dx2
j .

Then there exist smooth solutions u ∈ C∞([0, T )×M) of

iut = ∆u+ |u|4/nu
such that as t → T ,

|u(t, x)|2 ⇀ ‖Q‖2L2(Rn)δ(x− x0),

where Q is the ground state solution on Rn of

∆Q +Q1+4/n = Q.

Even though the condition of Theorem 1 that the manifold near x0

is flat is a very strong restriction, the result is also impressive.
In this paper, we concentrate on the analysis of the blow-up phenom-

ena for IVP or BIVP of the Schrödinger equations posed on Riemannian
manifolds. To be precise, the IVP and BIVP are of the following forms
respectively

IVP







iut = ∆u+ F (|u|2)u, on M,
u(0, x) = u0(x),
∂M = ∅;

(2)

BIVP







iut = ∆u+ F (|u|2)u, on M,
u|R×∂M = 0,
u(0, x) = u0(x),

(3)

where F is a real-valued smooth function on the n-dimensional Rie-
mannian manifold (M, g) and F satisfies F (s) ≤ C(1 + s(p−1)/2) for
some p > 1 on [0,∞). Here ∆ is the Laplacian operator of the metric
g with the sign ∆u = u

′′

on the real line R. Noticing that (3) reduces
to (2) when ∂M = ∅, it’s convenient to establish our blow-up results
in the context of (3). The local wellposedness in Hs(M) for s > n/2 to
(3) with the interesting case F (|u|2)u = |u|p−1u (p > 1) is a classical
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consequence of energy estimates, and therefore, it’s relaxed to assume
that the solution u(t) to (3) satisfies

u ∈ C1([0, T ), L2) ∩ C([0, T ), H2 ∩H1
0 ∩ Lp+1),(4)

where T is the maximal existence time for the solution u(t).
Before stating our main results, let’s introduce some exact notations

concerning Riemannian manifolds used below. Let (M, g) be a com-
plete Riemannian manifold of dimension n with boundary ∂M or not.
We denote by D the Levi-Civita connection, and by TM =

⋃

x∈M TxM ,
where TxM is the tangent space at x ∈ M . It’s well known that the
smooth sections of TM are just vector fields. For f ∈ C1(M), its
gradient is defined as the unique vector field ∇f such that

∀x ∈ M, ∀ξ ∈ TM, g(∇f(x), ξ(x)) = (ξf)(x).

The divergence divX of a smooth vector field X is defined as the unique
smooth function on M such that

∀f ∈ C∞
0 (M),

∫

fdivX = −
∫

Xf.

The Laplace-Beltrami operator ∆ on M is the second order differential
operator defined by

∀f ∈ C2(M), ∆f = div(∇f).

Corresponding to our analysis, we need to extend g to be defined on
complex valued vector fields. For complex valued vectors X1 + iX2,
Y1 + iY2, where X1, X2, Y1, Y2 are real, we define

g(X1 + iX2, Y1 + iY2)

= g(X1, X2) + ig(X1, Y1) + ig(X2, Y1) + g(Y1, Y2).

It’s easy to see that g defined in such a way is bilinear in the field C

and accordingly

∇f = ∇ℜf + i∇ℑf, ∆f = ∆ℜf + i∆ℑf.
When M has a nonempty boundary ∂M , we denote by v the outer
unit normal vector along ∂M .
For the sake of simplicity, we omit the spatial integral variable x ∈ M

and omit the integral region when it’s the whole space M , and we
abbreviate Lq(M), Hk(M) to Lq,Hk respectively. We write the integral
∫

M
dVM and

∫

∂M
dV∂M as

∫

and
∮

respectively, and the norm of Lq as
‖ · ‖q. We denote by Sn the standard sphere of dimension n and by
Hn(−1) the hyperbolic n-space respectively. We denote by N the north
pole of Sn and by dist(N, x) the distance between N and x ∈ Sn \ {N}.
Our main results in 2-dimensions are the following two Theorems.
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Theorem 2. Consider the Schrödinger equation
{

iut = ∆u+ |u|p−1u, on S2,
u(0) = u0 ∈ H1.

For p ≥ 5, if u0(x) = u0(r), where r = dist(N, x) and u0(r) is an
asymmetric function at r = π

2
with u(π

2
) = 0 and E0 < 0, then the

asymmetric solution satisfying (4) blows up in finite time.

Theorem 3. Consider the Schrödinger equations (2) on M = H2(−1).
Assume there exists a constant κ ≥ 3 such that

sF (s) ≥ κG(s), ∀s ≥ 0.

Then any solution satisfying (4) with E0 < 0 blows up in finite time.

For higher dimensional results, please see Theorem 12 and 13. Here,
we just want to point out that the range of the exponent p for blow-up
of the solutions to the Schrödinger equation (1) with F (s) = s(p−1)/2

on Rn is p ≥ 1 + 4
n
, on Sn is p ≥ 5 and on Hn(−1) is p ≥ 1 + 4

n−1
.

We try to present very elementary proofs of our blow up results start-
ing from 2-sphere. This paper is organized as follows. In section 2, we
establish some new invariant quantities for the Schrödinger equations
on general Riemannian manifolds, which generalize the corresponding
classical results on R

n. In section 3, we construct blow-up solutions on
the unit sphere S2. In section 4, we establish the blow-up results on a
class of noncompact manifolds. We discuss the blow-up properties on
n-dim manifolds with n ≥ 3 in section 5.

2. Preliminary lemma

The following lemma is a generalization of the identities obtained by
Glassey [11] (see also [12]). We define

G(u) =

∫ u

0

F (s)ds.

Lemma 4. Suppose that (M, g) is a complete Riemannian manifold of
dimension n with boundary ∂M or not, and v is the outer unit normal
vector along ∂M . Let u be a solution of (3) satisfying (4), ρ be an
arbitrary smooth function on M , and X be a real smooth vector field
on M . Define J(t) :=

∫

ρ|u|2. Then we have
(A). ‖u(t)‖2 = ‖u0‖2,
(B).

∫

(g(∇u,∇ū)−G(|u|2)) ≡ const := E0,
(C). J ′(t) = −2ℑ

∫

g(∇ρ,∇u)ū,
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(D).

d

dt
ℑ
∫

g(X,∇u)ū

= −2

∫

DX(∇u,∇ū) +
1

2

∫

(∆divX)|u|2

+

∫

(divX)(F (|u|2)|u|2 −G(|u|2))

+

∮

g(∇u,∇ū)g(X,v).

Proof. The facts that
∫

ρ|u|2 and ℑ
∫

g(X,∇u)ū are of C1[0, T ) are
straightforward and the reader can refer to [12] for details.
For (A), multiply both sides of (3) by 2ū and take the imaginary

part to obtain

∂

∂t
|u|2 = 2∇ · ℑ(ū∇u).(5)

Integrating it over M we get (A).
For (B), multiply (3) by 2ūt, integrate, and take the real part of the

resulting expression.
For (C), multiply (5) by ρ and integrate by parts over M .
The derivation of (D) is a bit involved. We first multiply (3) by

2DXū to obtain

2i(DXū)ut = 2(DXū)∆u+ 2(DXū)F (|u|2)u(6)

:= I1 + I2.

Then, we take the real part of the left-hand side (LHS) of (6) to get

ℜ(LHS) = i((DXū)ut − (DXu)ūt)

= i((uDXū)t −DX(uūt))

= ℜ(i(uDX ū)t)− ℜ(iDX(uūt))

=
d

dt
ℑ(g(X,∇u)ū)− ℜ(iDX(uūt)).

Integrating this identity over M yields

ℜ
∫

LHS =
d

dt
ℑ
∫

g(X,∇u)ū− ℜ
∫

iDX(uūt).(7)
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Using integration by parts we have

ℜ
∫

iDX(uūt)

= −ℜ
∫

(divX)(iuūt)

= −ℜ
∫

(divX)(−u∆ū− F (|u|2)|u|2)

= −ℜ
∫

(g(∇(divX), u∇ū) + (divX)g(∇u,∇ū)) +

∫

(divX)F (|u|2)|u|2

= −1

2

∫

g(∇(divX),∇|u|2)−
∫

(divX)g(∇u,∇ū)

+

∫

(divX)F (|u|2)|u|2

=
1

2

∫

(∆divX)|u|2 −
∫

(divX)g(∇u,∇ū) +

∫

(divX)F (|u|2)|u|2.

Inserting this into (7) we obtain that

ℜ
∫

LHS =
d

dt
ℑ
∫

g(X,∇u)ū− 1

2

∫

(∆divX)|u|2(8)

+

∫

(divX)g(∇u,∇ū)−
∫

(divX)F (|u|2)|u|2.

To handle the right-hand side of (6), we use integration by parts
again to obtain

ℜ
∫

I1 = 2ℜ
∫

(DXū)∆u

= −2ℜ
∫

g(∇DXū,∇u) + 2ℜ
∮

g((DXū)∇u,v)

= −2ℜ
∫

(DX(∇u,∇ū) +
1

2
DXg(∇u,∇ū))

+ 2ℜ
∮

g((DXū)∇u,v)

= −2

∫

DX(∇u,∇ū)−
∫

DXg(∇u,∇ū)

+ 2

∮

g(∇u,∇ū)g(X,v).

The last ”=” in the above expression follows from the fact that u|∂M =
0, which implies ∇u = g(∇u,v)v.



BLOW-UP 7

Noticing that
∫

DXg(∇u,∇ū) = −
∫

(divX)g(∇u,∇ū) +

∮

g(∇u,∇ū)g(X,v),

we then get

ℜ
∫

I1 = −2

∫

DX(∇u,∇ū) +

∫

(divX)g(∇u,∇ū)(9)

+

∮

g(∇u,∇ū)g(X,v).

For I2 we have

ℜ
∫

I2 = 2ℜ
∫

(DXū)F (|u|2)u =

∫

(DX|u|2)F (|u|2)(10)

=

∫

DXG(|u|2) = −
∫

(divX)G(|u|2).

Combining (8)-(10) with (6) we get (D), and the proof of the lemma
is concluded. �

Remark 5. If we choose X = ∇ρ in lemma 2 (D), we then arrive at

J
′′

(t) = 4

∫

D2ρ(∇u,∇ū)−
∫

(∆2ρ)|u|2(11)

− 2

∫

(∆ρ)(F (|u|2)|u|2 −G(|u|2))

− 2

∮

g(∇u,∇ū)g(∇ρ,v).

This identity will play a vital role in our analysis. In particular, when
∇ρ = v, we have

g(∇u,∇ū)g(∇ρ,v) = g(∇u,∇ū) ≥ 0,

which is an important fact in our proof.

3. Blow-up phenomena on S2

To investigate the blow-up nature of the solution u, one method is to
observe the long time behavior of J(t) :=

∫

ρ|u|2. If there exists ρ ≥ 0
such that J(t) becomes negative after some finite time T due to the
conservation of the L2 norm and the energy E0, then u must blow up
before the time T . It’s classical that ρ(x) = |x|2 when M = R

d. But for
an arbitrary manifold, the sharp ρ adopted to the blow-up properties
is unknown explicitly. It seems that ∆|x|2 = 2n is a nice property for
us to use (11) on M = Rn. For noncompact manifolds and compact
manifolds with boundary, it’s possible to find ρ such that ∆ρ = const.
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We put this idea in practice on the half sphere S2
+ := S2 ∩ {x1 ≥ 0}

and the hyperbolic space M = H2(−1). We now state the result for
S2
+.

Theorem 6. Consider the Schrödinger equations (3) on M = S2
+.

Assume there exists a constant κ ≥ 3 such that

sF (s) ≥ κG(s), ∀s ≥ 0.

Then any solution satisfying (4) with E0 < 0 blows up in finite time.

Proof. In R3, S2
+ = {(x1)2 + (x2)2 + (x3)2 = 1} ∩ {x1 ≥ 0}. We want

to construct a function ρ such that
(a). ρ ∈ C4(S2

+);
(b). ρ > 0 on S2

+ \ {N};
(c). ∆ρ = 1 on S2

+;
(d). D2ρ(∇u,∇ū) ≤ g(∇u,∇ū), ∀u ∈ C1(S2

+).
We now give the form of ρ exactly. To make the calculations clear,

we recall the expressions of ∇f , ∆f and D2f for f ∈ C2(M) in local
coordinates. We use Einstein’s convention. Let g = gijdx

idxj, G =
det(gij) and (gij) = (gij)

−1. Then

∇f = gijfi∂j ,(12)

∆f =
1√
G
∂i(g

ij
√
Gfj),(13)

D2f = (fij − Γk
ijfk)dx

i ⊗ dxj ,(14)

where

Γk
ij =

1

2
gkl(

∂gil
∂xj

+
∂glj
∂xi

− ∂gij
∂xl

).

In our situation, we use the geodesic polar coordinate (r, θ) at the
north pole N for S2

+, i.e.,






x1 = cos r,
x2 = sin r cos θ,
x3 = sin r sin θ,

where r ∈ (0, π/2], θ ∈ [0, 2π). In this coordinate,






dx1 = − sin rdr,
dx2 = cos r cos θdr − sin r sin θdθ,
dx3 = cos r sin θdr + sin r cos θdθ,

and hence

g =

3
∑

i=1

(dxi)2 = dr2 + sin2 rdθ2,
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Γ1
11 = Γ1

12 = Γ1
21 = 0, Γ1

22 = − sin r cos r.

By (13) we have for ̺ = ̺(r) ∈ C2(0, π/2] that

∆̺(r) =
1

sin r
(sin r̺′(r))′ = ̺

′′

(r) + ̺′(r) cot r.

Solving the ODE






̺
′′

(r) + ̺′(r) cot r = 1, 0 < r ≤ π/2,
̺(r) > 0, 0 < r ≤ π/2,
̺′(π/2) = 1,

we get a solution ̺(r) = −2 log cos(r/2). We then define ρ(r) as

ρ(r) =

{

̺(r), 0 < r ≤ π/2,
0, r = 0.

It’s then easy to see that ρ(r) ∈ C4[0, π/2], i.e, ρ ∈ C4(S2
+).

From (12) and (14), we have for any u ∈ C1(S2
+),

g(∇u,∇ū) = |ur|2 +
1

sin2 r
|uθ|2

and

D2ρ(∇u,∇ū) = ρ
′′

(r)|ur|2 + ρ′(r)
cos r

sin3 r
|uθ|2

=
1− cos r

sin2 r
|ur|2 +

(1− cos r) cos r

sin4 r
|uθ|2.

It’s obvious that D2ρ(∇u,∇ū) ≤ g(∇u,∇ū) provided 0 < r ≤ π/2.
By a standard approximation process we get

∫

S2
+

D2ρ(∇u,∇ū) ≤
∫

S2
+

g(∇u,∇ū), ∀ u ∈ H1(S2
+).

Notice that ∇ρ = v on the boundary ∂S2
+. Then by (11) we have

J
′′

(t) ≤ 4

∫

S2
+

D2ρ(∇u,∇ū)− 2

∫

S2
+

(F (|u|2)|u|2 −G(|u|2))(15)

− 2

∮

∂S2
+

g(∇u,∇ū)g(∇ρ,v)

≤ 4

∫

S2
+

g(∇u,∇ū)− 2(κ− 1)

∫

S2
+

G(|u|2).

Combining Lemma 2 (B) with (15) we obtain

J
′′

(t) ≤ 4E0 + (6− 2κ)

∫

S2
+

G(|u|2) ≤ 4E0 < 0,
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which implies that J(t) becomes negative after some finite time T , i.e.,
the solution u satisfying E0 < 0 blows up in finite time. �

Remark 7. Here we only established the blow-up result for the Schrödinger
equations on S2

+. The method above can’t be applied to the whole sphere
S2 or some other compact manifolds because of the nonexistence of sub-
harmonic functions on compact manifolds. But this result allows us to
construct blow-up solutions for the Schrödinger equations posed on S2.
See the proof of Theorem 2.

Remark 8. If F (s) = s
p−1

2 where p > 1, then G(s) = 2
p+1

s
p+1

2 , and

the condition sF (s) ≥ κG(s) on [0,+∞) for some κ ≥ 3 is equivalent
to p ≥ 5. It’s already known that when 1 < p < 3, the Schrödinger
equation iut = ∆u+ |u|p−1u with u0 ∈ Hs (s ≥ 1) on S2 has a unique
global solution u ∈ C(R, Hs) (see [7]). We point out when p ≥ 5,
blow-up phenomena may occur by our Theorem 2.

Proof of Theorem 2: If u0(r) is asymmetric in r, then by the symme-
try of the Schrödinger equation, the solution u(t, x) is also asymmetric,
that is, u(t, r) is asymmetric with respected to r, which implies that
u(t, π/2) ≡ 0. We then cut the sphere S2 into two parts S2

+ and S2
−,

where
S2
+ = {(x1)2 + (x2)2 + (x3)2 = 1} ∩ {x1 ≥ 0},

S2
− = {(x1)2 + (x2)2 + (x3)2 = 1} ∩ {x1 ≤ 0}.

We write by ρ+ the function obtained in the proof of Theorem 6 on
S2
+, and define

ρ−(x) := ρ+(−x) for x ∈ S2
−.

We denote by v+ and v− the outer normal vector along ∂S2
+ and ∂S2

−.
Then v+ = −v−, and ∇ρ+ = v+, ∇ρ− = v−.
We now define

J(t) :=

∫

S2
+

ρ+|u|2 +
∫

S2
−

ρ−|u|2 := J1 + J2.

Since u = 0 on ∂S2
+ = ∂S2

−, we can use (11) directly for both J1 and
J2 to get that

J
′′

1 (t) ≤ 4

∫

S2
+

D2ρ+(∇u,∇ū)− 2

∫

S2
+

(F (|u|2)|u|2 −G(|u|2))(16)

− 2

∮

∂S2
+

g(∇u,∇ū)g(∇ρ+,v+)

≤ 4

∫

S2
+

g(∇u,∇ū)− 2(κ− 1)

∫

S2
+

G(|u|2),
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and

J
′′

2 (t) ≤ 4

∫

S2
−

D2ρ−(∇u,∇ū)− 2

∫

S2
−

(F (|u|2)|u|2 −G(|u|2))(17)

− 2

∮

∂S2
−

g(∇u,∇ū)g(∇ρ−,v−)

≤ 4

∫

S2
−

g(∇u,∇ū)− 2(κ− 1)

∫

S2
−

G(|u|2).

We obtain from (16)+(17) that

J
′′

(t) ≤ 4

∫

S2

g(∇u,∇ū)− 2(κ− 1)

∫

S2

G(|u|2)

= 4E0 + (6− 2κ)

∫

S2

G(|u|2)

≤ 4E0 < 0

provided κ ≥ 3, i.e., p ≥ 5, which implies that the solution u blows up
in finite time. This is the end of proof.

Remark 9. When 3 ≤ p < 5, the blow-up property of the solution on
S2 leaves open.

4. Blow-up on noncompact 2-dim manifolds

By the method of introducing some proper weight function ρ, we can
get similar blow-up results for noncompact manifolds. We first prove
the result for the hyperbolic 2-space H2(−1), i.e., Theorem 3, and then
generalize it to a class of noncompact manifolds.
Proof of Theorem 3: For H2(−1), it’s standard that for s ∈ [0,∞)

and θ ∈ [0, 2π),

g =
1

1 + s2
ds2 + s2dθ2.

Choose r(s) = sinh−1(s), then we have dr = 1√
1+s2

ds, and thus

g = dr2 + sinh2(r)dθ2.

Calculating by (13), we get for ρ = ρ(r) ∈ C2(0,∞),

∆ρ(r) =
1

sinh r
(sinh rρ′(r))′ = ρ

′′

(r) + ρ′(r) coth r.

Solving the ODE
{

ρ
′′

(r) + ρ′(r) coth r = 1, 0 < r < ∞,
ρ(r) > 0, 0 < r < ∞,
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we get a solution ρ(r) = 2 log cosh( r
2
). It’s easy to see that by defining

ρ(0) = 0, ρ ∈ C4[0,∞), i.e., ρ ∈ C4(H2(−1)).
From (12) and (14) we have for any u ∈ C1(H2(−1)),

g(∇u,∇ū) = |ur|2 +
1

sinh2 r
|uθ|2,

and

D2ρ(∇u,∇ū) = ρ
′′

(r)|ur|2 +
cosh r

sinh3 r
|uθ|2

=
cosh r − 1

sinh2 r
|ur|2 +

cosh r(cosh r − 1)

sinh4 r
|uθ|2.

Noticing that when r > 0 we have

cosh r − 1

sinh2 r
=

1

2 cosh2 r/2
≤ 1

2

and
cosh r(cosh r − 1)

sinh2 r
=

cosh r

2 cosh2 r/2
≤ 1,

we obtain that

D2ρ(∇u,∇ū) ≤ g(∇u,∇ū).

The remainder of the proof is the same as in Theorem 6. This completes
the proof of Theorem 3.
The next result generalize our analysis to a class of 2-dim noncom-

pact manifolds.

Theorem 10. Let (M, g) be a 2-dim Riemannian manifold such that
M can be covered by only one coordinate system in which

g = dr2 + h2(r)dθ2,

where h ∈ C4[0,∞) satisfying for some constants τ1, τ2 ∈ [0, 1],






h(r) ∈ C4[0,∞),
h(r) > 0, on (0,∞); h(0) = 0; h′(0) > 0,
τ1h

2(r) ≤ h′(r)
∫ r

0
h(s)ds ≤ τ2h

2(r), on (0,∞).

Consider the Schrödinger equations (2) on M . Assume there exists a
constant κ ≥ 2max{1− τ1, τ2}+ 1 such that

sF (s) ≥ κG(s), ∀s ≥ 0.

Then any solution satisfying (4) with E0 < 0 blows up in finite time.
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Proof. In above coordinate,

Γ1
11 = Γ1

12 = Γ1
21 = 0, Γ1

22 = −h(r)h′(r).

By (13) we have for ρ = ρ(r) ∈ C2(0,∞) that

∆ρ(r) =
1

h(r)
(h(r)ρ′(r))′ = ρ

′′

(r) + ρ′(r)
h′(r)

h(r)
.

Solving the ODE
{

ρ
′′

(r) + ρ′(r)h
′(r)
h(r)

= 1, 0 < r < ∞,

ρ(r) > 0, 0 < r < ∞,

we get a solution

ρ(r) =

∫ r

0

(

∫ s

0

h(t)dt)(h(s))−1ds.

We then define ρ(0) = 0, and thus it’s easy to see that ρ(r) ∈ C4[0,∞),
i.e, ρ ∈ C4(M).
From (12) and (14), we have for any u ∈ C1(M),

g(∇u,∇ū) = |ur|2 +
1

h2(r)
|uθ|2

and

D2ρ(∇u,∇ū) = ρ
′′

(r)|ur|2 + ρ′(r)
h′(r)

h3(r)
|uθ|2

= (1− h′(r)
∫ r

0
h(s)ds

h2(r)
)|ur|2 +

h′(r)
∫ r

0
h(s)ds

h4(r)
|uθ|2

≤ (1− τ1)|ur|2 +
τ2

h2(r)
|uθ|2

≤ max{1− τ1, τ2}g(∇u,∇ū).

The remainder of the proof is the same as in Theorem 6. �

5. Some results for higher dimensional manifolds

In this section, we make some calculations for Sn and Hn(−1). We
first compute the case Sn

+ = S2∩{x1 ≥ 0}. As above, for 0 < r ≤ π/2,
0 ≤ θ1, · · · , θn−1 < 2π, we have



























x1 = cos r,
x2 = sin r cos θ1,
x3 = sin r sin θ1 cos θ2,
· · · · · ·
xn = sin r sin θ1 · · · sin θn−2 cos θn−1,
xn+1 = sin r sin θ1 · · · sin θn−2 sin θn−1.
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By (13) we get

g = dr2 + sin2 r(dθ21 + sin2 θ1dθ
2
2 + · · ·+ sin2 θ1 · · · sin2 θn−2dθ

2
n−1),

and

∆ρ(r) =
(ρ′(r) sinn−1 r)′

sinn−1 r
.

Solving the ODE

∆ρ(r) = 1 on (0, π/2]

we get the desired positive solution

ρ(r) =

∫ r

0

(

∫ s

0

sinn−1 τdτ)(sinn−1 s)−1ds.

By defining ρ(0) = 0 we see that ρ ∈ C4(Sn
+).

From (12) and (14) we get for all u ∈ C1(Sn
+)

g(∇u,∇ū) = |ur|2 +
|uθ1|2
sin2 r

+ · · ·+ |uθn−1
|2

(sin r sin θ1 · · · sin θn−2)2
,

and

D2ρ(r) = ρ
′′

(r)dr ⊗ dr + ρ′(r) sin r cos rdθ1 ⊗ dθ1

+ ρ′(r) sin r cos r sin2 θ1dθ2 ⊗ dθ2

+ · · ·+ ρ′(r) sin r cos r sin2 θ1 · · · sin2 θn−2dθn−1 ⊗ dθn−1,

i.e.,

D2ρ(∇u,∇ū)

= ρ
′′

(r)|ur|2 + ρ′(r)
cos r

sin3 r
(|uθ1|2 + · · ·+ |uθn−1

|2
(sin θ1 · · · sin θn−2)2

)

= (1− (n− 1)
cos r

sinn r

∫ r

0

sinn−1 sds)|ur|2

+
cos r

sinn r

∫ r

0

sinn−1 sds(
|uθ1|2
sin2 r

+ · · ·+ |uθn−1
|2

(sin r sin θ1 · · · sin θn−2)2
)

≤ g(∇u,∇ū).

Following the analysis in section 3 and 4, we can easily obtain Theorem
11 and 12.

Theorem 11. Consider the Schrödinger equations (3) on M = Sn
+.

Assume there exists a constant κ ≥ 3 such that

sF (s) ≥ κG(s), ∀s ≥ 0.

Then any solution satisfying (4) with E0 < 0 blows up in finite time.
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Theorem 12. Consider the Schrödinger equation
{

iut = ∆u+ |u|p−1u, on Sn,
u(0) = u0 ∈ H1(Sn).

For p ≥ 5, if u0(x) = u0(r), where r = dist(N, x) and u0(r) is an
asymmetric function at r = π

2
with u(π

2
) = 0 and E0 < 0, then the

asymmetric solution satisfying (4) blows up in finite time.

We next compute the case M = Hn(−1). As above, for 0 < r < ∞,
0 ≤ θ1, · · · , θn−1 < 2π, we have

g = dr2 + sinh2 r(dθ21 + sin2 θ1dθ
2
2 + · · ·+ sin2 θ1 · · · sin2 θn−2dθ

2
n−1),

and

∆ρ(r) =
(ρ′(r) sinhn−1 r)′

sinhn−1 r
.

Solving the ODE
∆ρ(r) = 1 on (0, π/2]

we get the desired positive solution

ρ(r) =

∫ r

0

(

∫ s

0

sinhn−1 τdτ)(sinhn−1 s)−1ds.

By defining ρ(0) = 0 we see that ρ ∈ C4(Sn
+).

From (12) and (14) we get for all u ∈ C1(Sn
+)

g(∇u,∇ū) = |ur|2 +
|uθ1|2
sinh2 r

+ · · ·+ |uθn−1
|2

(sinh r sin θ1 · · · sin θn−2)2
(18)

and

D2ρ(r) = ρ
′′

(r)dr ⊗ dr + ρ′(r) sinh r cosh rdθ1 ⊗ dθ1

+ ρ′(r) sinh r cosh r sin2 θ1dθ2 ⊗ dθ2

+ · · ·+ ρ′(r) sinh r cosh r sin2 θ1 · · · sin2 θn−2dθn−1 ⊗ dθn−1,

i.e.,

D2ρ(∇u,∇ū)

(19)

= ρ
′′

(r)|ur|2 + ρ′(r)
cosh r

sinh3 r
(|uθ1|2 +

|uθ2|2
sin2 θ1

+ · · ·+ |uθn−1
|2

(sin θ1 · · · sin θn−2)2
)

= (1− (n− 1)
cosh r

sinhn r

∫ r

0

sinhn−1 sds)|ur|2

+
cosh r

sinhn r

∫ r

0

sinhn−1 sds(
|uθ1|2
sinh2 r

+ · · ·+ |uθn−1
|2

(sinh r sin θ1 · · · sin θn−2)2
).
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Claim:
1

n
<

cosh r

sinhn r

∫ r

0

sinhn−1 sds <
1

n− 1
, ∀r > 0.

Proof. For r > 0, we have

cosh r

sinhn r

∫ r

0

sinhn−1 sds >
1

sinhn r

∫ r

0

sinhn−1 s cosh sds =
1

n
,

and the left-hand side is proved. For the right-hand side, we write

φ(r) =
cosh r

sinhn r

∫ r

0

sinhn−1 sds.

Assume that φ(r) achieves its maximum at r = r0, then we have

φ′(r0) = sinhn−1 r0(cosh r0 sinh
n r0 + sinh2 r0

∫ r0

0

sinhn−1 sds

− n cosh2 r0

∫ r0

0

sinhn−1 sds)/ sinh2n r0

= 0,

which gives that
∫ r0

0

sinhn−1 sds =
cosh r0 sinh

n r0

n cosh2 r0 − sinh2 r0
.

Therefore at r = r0, we have

φ(r0) =
cosh2 r0

n cosh2 r0 − sinh2 r0

=
cosh2 r0

(n− 1) cosh2 r0 + 1
<

1

n− 1
.

The upper bound 1
n−1

is sharp due to the obvious fact

lim
r→∞

φ(r) =
1

n− 1
.

�

Comparing (18) and (19) with the help of the Claim, we obtain that

D2ρ(∇u,∇ū) ≤ 1

n− 1
g(∇u,∇ū), ∀u ∈ C2(Hn(−1)).

Following the analysis in section 3 and 4, we can easily obtain Theorem
13 below on the hyperbolic space Hn(−1).
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Theorem 13. Consider the Schrödinger equations (2) onM = Hn(−1).
Assume there exists a constant κ ≥ 1 + 2

n−1
such that

sF (s) ≥ κG(s), ∀s ≥ 0.

Then any solution satisfying (4) with E0 < 0 blows up in finite time.

If F (s) = s
p−1

2 where p > 1, the condition sF (s) ≥ κG(s) on [0,+∞)
for some κ ≥ 1+ 2

n−1
is equivalent to p ≥ 1+ 4

n−1
. We state this result

as Theorem 14.

Theorem 14. Consider the Schrödinger equation
{

iut = ∆u+ |u|p−1u, on Hn(−1),
u(0) = u0 ∈ H1,

where p ≥ 1+ 4
n−1

. Then any solution satisfying (4) with E0 < 0 blows
up in finite time.

We remark that the similar result is also true for the complete warped
product manifold M := R+×Bn−1 with the metric g = dr2+ k(r)2ds2.
Here (Bn−1, ds2) is a closed manifold of dimension n − 1 and k(r) is
a non-negative smooth function in [0,∞) with k(0) = 0, k(r) > 0 for
all r > 0, and k′(0) > 0. Assume that (M, g) has bounded geometry.
Then we choose the function

ρ = ρ(r) :=

∫ r

0

k−(n−1)(s)

(
∫ s

0

k(τ)n−1dτ

)

ds

as the weight function in

J(u) =

∫

M

ρ|u|2.

As showed in page 31 of [9], we have

∆ρ = 1, ρ(0) = 0, ρ′ ≥ 0,

with uniform bounded Hessian

D2ρ ≤ cg

for some positive constant c. Then, using the similar argument, we
have the following result:

Theorem 15. Consider the Schrödinger equations (2) on the warped
product M as above. Assume there exists a constant κ ≥ 2c + 1 such
that

sF (s) ≥ κG(s), ∀s ≥ 0.

Then any solution satisfying (4) with E0 < 0 blows up in finite time.
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Finally, we remark that our blow-up result can be extended to the
following Schrödinger equations with harmonic potential on the warped
product manifold M above:

{

iut = ∆u+ ρu+ |u|p−1u, on M,
u(0) = u0 ∈ H1(M).

However, we prefer not to give the detailed statements here. Using the
similar method, we can also set up the blow-up result for Klein-Gordon
equations on Riemannian manifolds. We believe our method can also
be used to some other evolution systems (see [4]).
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46(1987)113-129.
[14] Merle, F., Limit of the Solution of a Nonlinear Schrödinger Equation at Blow-Up

Time, J. Funct. Anal., 84(1989)201-214.
[15] Merle, F., L

2 Concentration of Blow-UP Solutions for the Nonlinear Schrödinger

Equation with Critical Power Nonlinearity, J. Diff. Eq., 84(1990)205-214.
[16] Ogawa, T. and Tsutsumi, Y., Blow-up of H1 Solution for the Nonlinear Schrödinger

Equation, J. Diff. Eq., 92(1991)317-330.
[17] Ogawa, T. and Tsutsuni, Y., Blow-up Solutions for the Nolinear Schrödinger Equaiton

with Quartic Potential and Periodic Boundary Conditions, Lecture Notes in Math,
1450(1989)236-251.



BLOW-UP 19

[18] Sulem, C. and Sulem, P.L., The Nonlinear Schrödinger Equation. Self-Focusing and

Wave Collapse, Applied Mathematical Sciences, Vol. 139, Springer-Verlag, New York,
1999.

[19] Weinstein, M.I., Nonlinear Schrödinger Equations and Sharp Interpolate Estimates,
Commmu. Math. Phys., 87(1983)567-576.

[20] Weinstein, M.I., On the Structure and Formation of Singularities in Solutions to

Nonlinear Dispersive Evolution Equations, Comm. Part. Diff. Eq., 11(1986)545-565.
[21] Yajima, K., Existence of Solutions for Schrödinger Evolution Equations, Commmu.

Math. Phys., 110(1987)415-426.

Li Ma, Department of Mathematical Sciences, Tsinghua University, Peking

100084, P. R. China

E-mail address: lma@math.tsinghua.edu.cn


	1. Introduction
	2. Preliminary lemma
	3. Blow-up phenomena on S2
	4. Blow-up on noncompact 2-dim manifolds
	5. Some results for higher dimensional manifolds
	References

