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Abstract

We answer a question of László Babai concerning the abelian sandpile model. Given
a graph, the model yields a finite abelian group of recurrent configurations which is
closely related to the combinatorial Laplacian of the graph. We explicitly describe the
group elements and operations in the case of thick trees with loops—that is, graphs
which are obtained from trees by setting arbitrary edge multiplicities and adding loops
at vertices. We do this both concretely (by describing the so-called recurrent and
identity configurations) and abstractly (by computing the group’s abstract structure),
and define maps identifying the two.

1 Introduction

The abelian sandpile model (ASM) was defined in [8] for any graph, generalizing the case
of a grid from [3]. This model is a prime example of self-organized criticality [3] which has
transformed the understanding of how complexity arises in nature (see [18] for a summary
of applications to modelling earthquakes, forest fires, landslides, etc.) The ASM is related
to the chip-firing game, introduced by Spencer [16], and later modified by Björner, Lovász,
and Shor [5]. For general references on the abelian sandpile model, see e.g. [1, 9].

We will only consider undirected graphs. An (undirected) abelian sandpile model begins
with any connected undirected graph (with arbitrary edge multiplicities) with vertex set
V and edge set E, together with a distinguished vertex s ∈ V called the sink. Then, a
configuration of the abelian sandpile model is an element of ZV0

≥0, V0 := V \{s}, which assigns
a nonnegative integer to each vertex except the sink, considered the number of grains of sand
at that vertex. A configuration is stable if the number of grains of sand on each vertex is
less than the degree of the vertex (otherwise it is unstable). Then, one obtains a dynamical
system on the space of configurations, where at each time step, each unstable vertex sends
one grain of sand along each incident edge. Sending grains of sand to the sink merely reduces
the total number of grains. Because every vertex has a path to the sink, it turns out that
this yields a well-defined stabilization of any configuration in finite time. The system can
remain in motion by continually adding grains (e.g., at random vertices).
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One basic question about any dynamical system is to find “recurrent configurations.”
For sandpiles, Dhar [8] defined these to be stable configurations that can be obtained from
any configuration by adding grains and stabilizing. Dhar showed that they form an abelian
group (under adding and stabilizing), called “the sandpile group,” whose abstract group
structure is Z

n/∆Z
n, where ∆ is the matrix obtained from the Laplacian of the graph by

deleting the row and column corresponding to the sink.
However, the concrete structure (in terms of configuration on the graph) of these recurrent

configurations turns out to be quite complicated and interesting. For example, Creutz’s paper
[6] displays intricate fractal patterns of the identity element of this group in the case of a
square grid, which was further studied in [7, 13].

László Babai suggested that the authors study the sandpile group for “thick” graphs:
graphs which may have large edge multiplicities, but whose combinatorial structure is simple.
In this note, we consider thick trees with loops : graphs which become trees when all positive
edge multiplicities are dropped to one, and all loops are discarded. We concretely describe
the group elements and operations in these cases, compute the abstract group structure, and
relate the two using recursive formulas. To our knowledge, this is the first result giving the
complete, explicit structure of the sandpile group in any class of undirected graphs. In [10]
(the grid) and [2, 12, 17] (other graphs), information about the abstract group structure for
more complicated graphs was given.

The note is organized as follows: in Section 2 we recall the necessary background. In
Section 3 we state our main theorem and its corollaries. In Section 4 we prove the theorem.

2 The abelian sandpile model

We review the theory of the (undirected) abelian sandpile model (ASM), following [1].
Let A be a finite connected undirected graph with arbitrary edge multiplicities, allowing

loops. Precisely, A = (V,E, g), where V is the set of vertices, E is the set of edges, and
g : E → V (2) is the incidence map. Here V (2) is the set of one- and two-element subsets of
V (i.e., unordered pairs of vertices). We have g(e) = {i, j} where i, j are the endpoints of e.
We require that A be connected, i.e., there is a path of edges connecting any two vertices.

Definition 2.1. An (undirected) ambient space is a collection (A, s) where A is an undi-
rected, connected graph with vertex set V and edge set E (allowing multiple edges and
loops), and s ∈ V is a distinguished vertex, called the sink. All other vertices are called
ordinary. Let V0 := V \ {s} be the set of ordinary vertices.

Notation 2.2. We will use bold letters (e.g. u) to denote vectors, usually in Z
V0

≥0.

Definition 2.3. A configuration of the ASM associated to (A, s) is a vector u ∈ Z
V0

≥0, i.e.,
an assignment of a nonnegative integer ui to each ordinary vertex i (called its height).

Definition 2.4. For any i, j ∈ V , define the edge multiplicity to be ei,j := #{a ∈ E :
g(a) = {i, j}}.
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We may now define the notion of stability of a configuration:

Definition 2.5. Given a configuration u, a vertex i ∈ V0 is called stable if ui < deg(i).
Otherwise i is called unstable. A configuration is called stable if all vertices are stable.

Definition 2.6. If i ∈ V0 is unstable for u, then define the state τi(u)i by τi(u)i := ui −
deg(i) + ei,i and τi(u)j := uj + ei,j for j 6= i. Passing from u to τi(u) is called “toppling the
vertex i.”

Given any unstable configuration, one may continually perform such topplings τi until a
stable configuration results, which we call the stabilization.

Theorem 2.7. [8, 5] (cf. also [4]) Given any ambient space (A, s) and any configuration
u of its ASM, then there exists a unique stable configuration σ(u), which satisfies σ(u) =
τi1τi2 · · · τim(u) for some sequence of topplings τi1 , τi2 , . . . , τim.

(The theorem rests on an application of the Diamond Lemma, since if two vertices are
unstable at once, one may topple them in either order with the same result.)

Definition 2.8. For each configuration u, we denote by σ(u) its unique stabilization.

With this in mind, one may conclude that the set of stable configurations form a monoid
under vertexwise addition:

Definition 2.9. [8] Let M be the set of stable configurations. Define the operation ⊕ on
M by u⊕ v := σ(u+ v), where + is vector addition.

Lemma 2.10. [8] The operation ⊕ is commutative and associative, making (M,⊕) a com-
mutative monoid, called the sandpile monoid.

Even the abstract structure of the sandpile monoid (without discussing concrete configu-
rations) can be quite complicated. However, Dhar [8] noticed that the subset of “recurrent”
configurations has a much simpler abstract structure:

Definition 2.11. A configuration u is called recurrent if, for all configurations v, there
exists a configuration w such that v ⊕w = u.

Proposition 2.12. [8] The set of recurrent configurations, G, is an abelian group under ⊕,
called the sandpile group.

(Actually, as noticed in [1], the above is true for any finite commutative monoid, if one
replaces G by the unique minimal ideal.) In [8] (elaborated in [10]) there is a surprisingly
simple formula for the abstract structure of this group:

Definition 2.13. The toppling matrix ∆ = (∆ij)i,j∈V0
is given by

∆ij =

{

deg(i)− ei,i, if i = j,

−ei,j , otherwise.
(2.0.1)
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Note that any two configurations which have the same stabilization are related by an
element in the row span of ∆; also, adding a large enough multiple of the sum of the rows
∆i must give a unique stabilization. Using this, one has the

Definition 2.14. Let Λ := 〈∆i〉i∈V0
be the lattice spanned by the rows ∆i of the toppling

matrix.

Theorem 2.15. [8, 1] The natural map Z
V0

≥0 ։ G, c 7→ σ(c + eA) descends to an isomor-
phism Z

V0/Λ ∼= G. In particular, #(G) = det(∆).

(Note: G ∼= Z
V0/Λ and #(G) = det(∆) are due to [8]; the map c 7→ σ(c + eA) was

pointed out in [1].)
Dhar found an algorithm to test for recurrence, of linear time in the combinatorial size

of A (the number of edges counted without multiplicity plus the number of vertices):

Definition 2.16. Let β ∈ Z
V0

≥0 be given by β =
∑

i∈V0
∆i. That is, βi = ei,s.

We consider adding β to be “toppling of the sink”. One has the

Algorithm 2.17 (Burning algorithm). [8, 15] To test whether a stable configuration u is
recurrent, stabilize u+ β. Each vertex can topple at most once in the stabilization process,
and u is recurrent iff every vertex topples (equivalently, iff u⊕ β = u).

The term “burning algorithm” (with which each vertex that topples in the process is
considered “burned”) was introduced in [14]. The algorithm above was discovered by [8],
and the proof follows from [8] and [15].

3 The sandpile group for thick trees

Definition 3.1. Following L. Babai, we call an undirected graph T a thick tree if the
underlying simple graph T ′ obtained by reducing all nonzero edge multiplicities to 1 is a tree
(i.e., a connected graph without cycles). A vertex i is called a leaf if degT ′ i = 1 and i 6= s.

Definition 3.2. An undirected graph T is called a thick tree with loops if, after removing
all loops (dropping ei,i to zero for all i ∈ V ), the obtained graph is a thick tree.

Recall that a graph is a tree iff, for any two vertices, there exists a unique path from one
to the other. Let i, j ∈ V . We define a partial ordering � on V , where i � j if j is on the
unique path of T ′ from i to the sink. By definition, this means that j � s for all j ∈ V .
Also, i ≻ j if the condition i 6= j is added. Vertex p(j) is the parent of j if p(j) ≻ j and
p(j) is adjacent to j.

For a thick tree with loops, T , we define � using the underlying tree T ′.
We have the following main result, whose proof is the content of the next section.

Notation 3.3. For any vertex i ∈ V0, let δi be the elementary vector given by (δi)j = δij = 1
if i = j and 0 otherwise.
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Theorem 3.4. The sandpile group (G ⊂ Z
V0

≥0,⊕) for a thick tree T with loops can be char-
acterized as follows (recall Notation 3.3):

(i) G = {u ∈ Z
V0

≥0 : ∀j ∈ V0, deg(j) > uj ≥ deg(j)− ej,p(j)}.

(ii) The map φ : G →
∏

j∈V0
Z/ej,p(j), u 7→

∑

j∈V0
δj

(
∑

i�j ui (mod ej,p(j))
)

is a group
isomorphism. In particular, the abstract group structure does not depend on which
vertex is chosen to be the sink.

(iii) The map φ−1 may be expressed recursively as follows: For any j ∈ V0,

φ−1(v)j =







ṽj, if j is a leaf,

fj

(

ṽj −
∑

i≻j

φ−1(v)i

)

, otherwise, (3.0.2)

where for any m ∈ Z/p, we let m̃ ∈ {0, 1, . . . , p − 1} be its preferred representative,
and for any j ∈ V0, fj : Z → {deg(j) − ej,p(j), . . . , deg(j) − 1} is given (uniquely) by
fj(m) ≡ m (mod ej,p(j)).

Corollary 3.5. Let u be any configuration. Then the associated recurrent configuration
σ(u+ eT ) is given recursively by

σ(u+ eT )j =

{

uj − ⌊uj/ej,p(j)⌋ej,p(j) if j is a leaf,

uj + λjej,p(j) +
∑

i≻j(ui − σ(u+ eT )i) otherwise,
(3.0.3)

where λj = ⌊
(

deg(j)− uj −
∑

i≻j(ui − σ(u+ eT )i)− 1
)

/ej,p(j)⌋. If σ(u) is already recurrent,

we can delete the eT ’s.

Proof. Simply apply the map φ and then the map φ−1; we then expand fj .

Corollary 3.6. The identity configuration eT is given by

eTj =

{

0 if j is a leaf,

λjej,p(j) −
∑

i≻j e
T
i otherwise,

(3.0.4)

where λj = ⌊
(

deg(j) +
∑

i≻j e
T
i − 1

)

/ej,p(j)⌋.

Proof. Specialize Corollary 3.5 to the case of u = 0. (Alternatively, specialize (3.0.2) to the
case of v = 0 and expand fj.)

4 Proof of Theorem 3.4

We divide Theorem 3.4 into Propositions 4.1, 4.3, and 4.4, corresponding to (refinements of)
parts (i), (ii), and (iii), respectively.
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Proposition 4.1. In a thick tree T with loops, the following statements are equivalent:

(i) Configuration u is recurrent.

(ii) For all j ∈ V0, deg(j) > uj ≥ deg(j)− ej,p(j).

Proof. Take any stable configuration u. We apply Algorithm 2.17. This means that we try
to stabilize u+ β, and test whether or not every vertex topples. Since β adds sand only to
the vertices adjacent to the sink, one easily sees that no vertex can topple before its parent.
We can view adding β as having “the sink topple,” and thus inductively, a configuration is
recurrent iff every vertex can topple once its parent topples. We conclude that every vertex
fires iff, for every vertex j, the amount of chips needed to topple (deg(j) − uj) is less than
or equal to the amount of chips it inductively receives from its parent (ei,p(i)).

Lemma 4.2. The lattice Λ can be characterized as

Λ = {v : ej,p(j) |
∑

i�j

vi, ∀j ∈ V0}. (4.0.5)

Proof. First, we show the inclusion ⊆. It suffices to show that, if v = ∆k for any k ∈ V0,
then ej,p(j) |

∑

i�j vi for any j ∈ V0.
For k = p(j), one has

∑

i�j

vi = −ej,p(j) ≡ 0 (mod ej,p(j)). (4.0.6)

For k = j, one has
∑

i�j

vi = ej,p(j) ≡ 0 (mod ej,p(j)). (4.0.7)

For all k ∈ V0 \ {j, p(j)}, one has
∑

i�j

vi = 0. (4.0.8)

The result is proved.
Next, we show the inclusion ⊇. For any j ∈ V0, consider the sum

∑

i�j

∆i = −ej,p(j)(δp(j) − δj). (4.0.9)

A simple inductive argument on V0 shows that these elements span the desired space W =
{v : ej,p(j) |

∑

i�j vi, ∀j ∈ V0}. To do this, note that if j is a leaf, ∆jj = ej,p(j), and one
may express all elements of W as a sum of such ∆j ’s and vectors which are zero in the leaf
components.

As a consequence, we deduce the
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Proposition 4.3. One has an isomorphism φ̄ : Z/Λ ∼=
∏

j∈V0
Z/ej,p(j) which descends from

the map

φ : ZV0

≥0 →
∏

j∈V0

Z/ej,p(j), φ(u)j =
∑

i�j

ui (mod ej,p(j)). (4.0.10)

Hence, the restriction φ
∣

∣

G
: G →

∏

j∈V0
Z/ej,p(j) is a group isomorphism, and one has φ(c) =

φ
∣

∣

G
◦ σ(c+ eT ), where eT ∈ G is the identity element, and c ∈ Z

V0

≥0 is arbitrary.

It remains to combine the two propositions to give an explicit inverse of the isomorphism
φ
∣

∣

G
(to express the sandpile group G ⊆ M ⊆ Z

V0

≥0 in terms of configurations), which is part
(iii) of Theorem 3.4.

Proposition 4.4. The inverse of φ
∣

∣

G
is given by (3.0.2).

Proof. Since φ
∣

∣

G
is an isomorphism and hence a bijection, we need only check that (i)

the formula (3.0.2) indeed gives a recurrent element (i.e., an element of G) for every v ∈
∏

j∈V0
Z/ej,p(j), and (ii) the composition φ ◦ φ−1 is the identity.

The first part (i) is obviously true by definition, using Proposition 4.1 (we defined fj to
satisfy this). Let us check (ii). To avoid confusion, let us denote the map recursively defined
in (3.0.2) by (φ−1)′ for now (so replace every instance of φ−1 with (φ−1)′. We then compute

φ ◦ (φ−1)′(v)j = fj(vj)−
∑

i≻j

(φ−1)′(v)i +
∑

i≻j

(φ−1)′(v)i (mod ej,p(j)) = vj . (4.0.11)
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