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Abstract

There are local operators on (labeled) graphs G with labels (gij) coming
from a finite field. If the filed is binary, in other words, if the graph is ordinary,
the operation is just the local complementation. That is, to choose a vertex
and complement the subgraph induced by its neighbors. But, in the general
case, there are two different types of operators. The first type is the following.
Let v be a vertex of the graph and a ∈ Fq, the finite field of q elements. The
operator is to obtain a graph with labels g′ij = gij + agvigvj . For the second
type of operators, let 0 6= b ∈ Fq and the resulted graph is a graph with labels
g′′vi = bgvi and g′′ij = gij , for i, j unequal to v.

The local complementation operator (binary case) has appeared in com-
binatorial theory, and its properties have studied in the literature, [4, 5, 6].
Recently, a profound relation between local operators on graphs and quantum
stabilizer codes has been found [7, 2], and it has become a natural question to
recognize equivalency classes under these operators. In the present article, we
show that the number of graphs locally equivalent to a given graph is at most

q2n+1, and consequently, the number of classes of local equivalency is q
n
2

2
−o(n).

1 Introduction

A labeled graph is a graph with labeled edges, with labels coming from a (finite)
field. This covers the ordinary (simple) graphs, when one restricts the field to be
the binary field, F2. For simplicity, we discuss the binary case separately to make the
notion more clear. In the binary case, consider the following operator, called local
complementation. Choose a vertex, and replace the graph induced by the neighbors
of this vertex by its complement. Two graphs are called locally equivalent if one can
be obtained from the other by applying some local operations described earlier.

In general, when the field is not binary, there are two independent types of
operators involved. The first one is just the generalized version of the operation in
binary case. Let the graph G be labeled with labels forming a symmetric matrix
G = (gij) with zero diagonal, over Fq where q is a power of a prime number, and
Fq is the field with q elements. Let v be a vertex of this graph, and a ∈ Fq. We
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define the first type of operators in the following way. G∗a v is defined to be a graph
with labels G′ = (g′ij) such that g′ij = gij + a · gvigvj . The second type of operators
is multiplying the edges of some vertex by a non-zero number, b ∈ Fq. In other
words, G ◦b v is the graph with labels G′′ = (g′′ij), where g′′vi = bgvi and g′′ij = gij
for i, j unequal to v. Similar to the previous situation, two graphs are called locally
equivalent if one can obtain one of them by applying the operators ∗ and ◦ on the
other one.

Studying and investigating the local equivalency of graphs has become a natural
problem in quantum computing, and playing a significant role especially in error-
correcting codes, due to the recent work of [1], [3], [7], [2] and [8] . Namely, in the
quantum computing setting, some states, called stabilizer states, have a description
as the common eigenvector of a subgroup of the Pauli group. Using stabilizer states,
we may be able to create more preferable quantum codes, due to the property that
the obtained codes, have relatively shorter description to handle the process. On the
other hands, graph states, an important subset of stabilizer states, are defined based
on graphs with labels in a finite field. Combining the theory of error-correcting
codes and the tools in generalized graph theory, leads us to describe and investigate
the properties of graph states more and more deeply.

Some stabilizer states may have similar properties. In fact, we can obtain one of
the stabilizer states from the other by applying elements of local Clifford group. If
two states are equivalent under local Clifford group, they present similar properties
in quantum computing. The key point is that, any stabilizer state is equivalent
to a graph state under the local Clifford group, and consequently, we may just
consider the graph states. On the other hand, some of the graph states are equivalent
under the local Clifford group. More precisely, shown in [7] and [2], two graph
states are equivalent under the local Clifford group if their associated graphs are
locally equivalent by the local operations described earlier. The properties of locally
equivalent graphs have been deeply studied in the recent works, and an efficient
algorithm to determine whether two graphs are locally equivalent or not is given.
This algorithm for the binary case can be found in [4], and for the general case in
[3].

The purpose of this article is solving a significantly crucial problem in studying
the local operations: enumerating the graphs locally equivalent to a given one, as
well as enumerating the equivalency classes.

1.1 Main results

The main results proven in the present paper are the followings.
First, The number of graphs locally equivalent to a given one is at most (q −

1)(q2 − 1)n, which is bounded above by q2n+1, n being the number of vertices of the
graph.

Second, C(n), the number of classes of local equivalency of graphs with n vertices
satisfies:

q
n2

2
− 5n

2
−1 ≤ C(n) ≤ q

n2

2
−n

2 .
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In other words,

C(n) = q
n2

2
−O(n).

In particular, for the usual (binary) graphs, i.e. when q = 2, the number of graphs
locally equivalent to a graph is at most 3n and the number of classes of local equiv-
alency is

C(n) = 2
n2

2
−O(n).

1.2 Structure of the paper

This paper is organized as follows; In section 2, we introduce the geometrically
known concept of isotropic systems and also a relation between isotropic systems
and graphs. In fact, we correspond to every graph an isotropic system, and say
that graph is a graphic presentation for the isotropic system. Then, we show that
every isotropic system has a graphic presentation. This, somehow, says that the
properties of graphs and isotropic systems are involved.

In section 3, after introducing the definitions of local operators, in theorem
3.1, we translate local equivalency into an algebraic equation, which is significantly
helpful throughout this article. We will then prove that two fundamental graphs for
an isotropic system are (up to a constant) locally equivalent.

Eulerian vectors, which, roughly speaking, are orthogonal vectors to an isotropic
system, are introduced rigorously in section 4. The number of Eulerian vectors for a
given isotropic system, say L, is denoted by ǫ(L), and it is shown that, ǫ(L) ≥ 1 for
every L. The notion of switching property is introduced in this section, and using
its power, the exact number of graphic presentations is given in terms of ǫ(L).

In section 5, we introduce the notion of index of an isotropic system, denoted by
λ(L), and then we estimate it, from above as well as below, by the terms containing
the dimension of the bineighborhood space, introduced and studied in this section.

Section 6 is dedicated to enumerating the number of graphs locally equivalent
to a fixed one. It will be shown that this number is either (q−1)ǫ(L)

λ(L) or its half,
depending on some issues discussed in the section.

Using this result, since we had estimated λ(L), the only remained step is to
approximate ǫ(L), the number of Eulerian vectors. This is done in section 7 using
Tutte-Martin polynomial. Indeed, ǫ(L), number of Eulerian vectors can be written
in term of this polynomial. So, using the known recursive formula of Tutte-Martin
polynomial, we estimate ǫ(L).

In section 8, we put all these parts together to enumerate the classes of local
equivalency.

2 Isotropic systems and graphic presentations

Assume that q is a power of p, which is an odd prime number, and Fq is the finite
field with q elements. Also, let K = F2

q denote a two-dimensional vector space over
Fq, associated with the bilinear form 〈., .〉 satisfying

〈(x, y), (x′, y′)〉 = xy′ − x′y
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for every (x, y), (x′, y′) ∈ K. For a set V of n elements, define KV to be the 2n-
dimensional vector space over Fq, equipped with the bilinear form

〈A,A′〉 =
∑

v∈V

〈A(v), A′(v)〉.

For X,Y ∈ FV
q , let X ×Y be a vector in FV

q such that (X ×Y )(v) = X(v)Y (v).

Also, for v ∈ V and (x, y) ∈ K, let Ev,(x,y) be a vector in KV where its coordinates
are all zero except the v-th one which is equal to (x, y), i.e., Ev,(x,y)(w) = δvw(x, y)

for every w ∈ V . For any vector A ∈ KV , let Av = Ev,A(v).

For simplicity, we present a vector A in KV as A = (X,Y ), where X,Y ∈ FV
q .

Therefore, A(v) = (X(v), Y (v)). Also, for X ∈ FV
q let diag X be an n× n diagonal

matrix where (diag X)vv = X(v), and for the 2n× 2n matrix

D =

(

diag X diag Y

diag X ′ diag Y ′

)

,

define
det D = diagX diagY ′ − diagX ′ diagY,

being an n×n diagonal matrix. Therefore, 〈A,A′〉 = tr(det D) where tr is the usual
trace function. 1

Definition 2.1 An isotropic system L is an n-dimensional subspace of KV where
|V | = n, such that 〈A,B〉 = 0 for every A,B ∈ L. In other words, L is a subspace
which is orthogonal to itself.

Note that, 〈., .〉 is non-degenerate and since L has dimension n, therefore

L = {A ∈ KV : 〈A,B〉 = 0, ∀B ∈ L}.

In fact, if we fix a set of generators {A1 = (X1, Y1), . . . An = (Xn, Yn)} for L and
construct the n× 2n matrix

B =











A1

A2
...
An











=











X1 | Y1

X2 | Y2
...

Xn | Yn











, (1)

then L is an isotropic system if and only if B is a full-rank matrix (and hence
dimL = n) and

B

(

0 I

−I 0

)

BT = 0,

Because, the ij-th entry of this matrix is

XiY
T
j − YiX

T
j = 〈Ai, Aj〉.

1Note that, the usual determinant of D is equal to det(det D), which is the multiplication of
diagonal entries of det D.
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We will shortly prove that every isotropic system can be defined based on graphs.
To start with, we introduce these graph-based isotropic systems. Suppose that
G = (V,E) is a simple labeled graph (without loops and multiple edges), where the
label of each edge comes from Fq. Thus, we can represent the graph by an n × n

matrix G = (gvw), where n is equal to |V |, the number of vertices in the graph, and
for every v,w ∈ V , gvw is equal to the label of the edge vw. So, G is a symmetric
matrix with zero diagonal. Assume that A = (X,Y ) and B = (Z, T ) are in KV

such that diagZ diagY − diagX diagT = cI, where I is the identity matrix and
c ∈ Fq is a non-zero constant. Denote by L the vector space generated by all vectors
g(v)(diagX | diagY )+Bv for v ∈ V , where g(v) denotes the v-th row of G. In fact,
rows of matrix

(I | G) ·D (2)

form a basis for L, where

D =

(

diag Z diag T

diag X diag Y

)

.

In order to prove that L is an isotropic system, first note that (I | G) is a full-
rank matrix. Also, the determinant of D is cn which is non-zero, and hence D is
full-rank as well, and since D is a square matrix, (I | G) · D is full rank too. On
the other hand, we need to show that the rows of (I | G) ·D are orthogonal to each
other, or equivalently,

(I | G) ·D ·

(

0 I

−I 0

)

·
(

(I | G) ·D
)T

= 0.

But, the left hand side is equal to

= (I | G)

(

diag Z diag T

diag X diag Y

)(

0 I

−I 0

)(

diag Z diag X

diag T diag Y

)(

I

G

)

= (I | G)

(

diag Z diag T

diag X diag Y

)(

diag T diag Y

−diag Z −diag X

)(

I

G

)

= (I | G)

(

0 cI

−cI 0

)(

I

G

)

= c(I | G)

(

G

−I

)

= c(G−G) = 0.

Therefore, L is an isotropic system.

Definition 2.2 Suppose that L is an n-dimensional isotropic system for which
there exist a graph G and vectors A = (X,Y ) and B = (Z, T ) in KV such that,
det D(A,B) = cI for some 0 6= c ∈ Fq, where

D(A,B) =

(

diagZ diagT

diagX diagY

)

,
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and (I | G) ·D(A,B) is a basis for L. If such G and A,B exist, we say (G,A,B) is
a graphic presentation of L, and G is a fundamental graph of L.

Theorem 2.1 Every isotropic system L has a graphic presentation.

Proof: We have already shown that every subspace which addmits a graphic pre-
sentation is an isotropic system. Hence, it is sufficient to prove that every isotropic
system has a basis of the form (2).

Consider an arbitrary basis for L and put them in the rows of an n×2n matrix B
to get a matrix of the form (1). Notice that, if we change the v-th column of the first
block of B with v-th column of second block, we come up with a basis for another
isotropic system and it is equivalent to multiplying this matrix with a 2n×2n matrix
D1 which consists of four n×n diagonal matrices (in fact, just two of these matrices
are non-zero). Among all such matrices BD1, choose the one in which the rank of
its first block is the maximum possible, namely r. Now note that, in KV changing
the order of coordinates is equivalent to changing the order of columns of B in the
first and the second blocks. In fact, it is equivalent to multiplying B by a 2n × 2n
permutation matrix from the right hand side, i.e., by a matrix of the form

Π =

(

π 0
0 π

)

, (3)

where π is a permutation matrix over n elements. We find the permutation π such
that in BD1Π the first r columns of the first block are linearly independent. Then,
there exists an invertible matrix U such that

UBD1Π =

(

Ir α | β γ

0 ζ | η θ

)

.

Due to the properties of the matrix D1 and the maximality assumption, we have
ζ = 0 and θ = 0. Since, rows of matrix UBD1Π form a basis for an isotropic system,
and because of the orthogonality assumption, we conclude that η = 0. Therefore,
the rank of whole matrix is r. But this is a basis for an isotropic system of dimension
n. Thus, r = n, and we have

UB = (In | β)Π−1D−1
1 = (π−1 | βπ−1)D−1

1 .

Therefore, πUB = (I | πβπ−1)D−1
1 . The matrix πβπ−1 may have non-zero diagonal

entries, but by multiplying (I | πβπ−1) by a 2n × 2n matrix with four diagonal
blocks, one can obtain a matrix with the identity matrix in the first block, and
the second block the same as before, except that the diagonal entries are all zero.
Considering this multiplication, we end up with πUB = (I | G′)D′, where D′ is the
described 2n× 2n matrix with four diagonal blocks. Note that both matrices π and
U are invertible, so that the rows of πUB are still a basis for L. Let

D′ =

(

diagZ ′ diagT ′

diagX ′ diagY ′

)

.

6



By considering the orthogonality assumption, we conclude that

0 = (I | G′)D′

(

0 I

−I 0

)

D′T (I | G′)T

= (I | G′)

(

diagZ ′ diagT ′

diagX ′ diagY ′

)(

0 I

−I 0

)(

diagZ ′ diagX ′

diagT ′ diagY ′

)(

I

G′T

)

= (I | G′)

(

0 detD′

−detD′ 0

)(

I

G′T

)

= detD′ G′T −G′ detD′.

Therefore, detD′G′T = G′ detD′. It means that the matrix G = G′ detD′ is sym-
metric. Moreover, it has a zero diagonal since G′ does. We have

πUB = (I | G)

(

I 0
0 detD′−1

)

D′

= (I | G)

(

diagZ ′ diagT ′

detD′−1diagX ′ detD′−1diagY ′

)

.

Hence, if we define

D =

(

diagZ ′ diagT ′

detD′−1diagX ′ detD′−1diagY ′

)

,

then πUB = (I | G)D and det D = I. This is a basis of the form (2), and the proof
is completed.

✷

3 Fundamental graphs of isotropic systems

In the previous section we proved that every isotropic system admits a fundamental
graph. But, this fundamental graph is not unique. In order to study these different
fundamental graphs for an isotropic system, we present a couple of definitions.

Definition 3.1 Let G be a graph over the vertex set V . For v ∈ V and a number
r ∈ Fq, define G ∗r v to be a graph (more precisely, a symmetric matrix with zero
diagonal) G′ = (g′uw), such that for every w, g′vw = gvw, and also for every u,w

unequal to v,
g′uw = guw + rgvugvw.

Moreover, for a non-zero number s ∈ Fq, define G◦s v to be a graph G′ = (g′uw),
such that for each u, g′uv = sguv, and also for each u,w unequal to v, g′uw = guw.

Two graphs G and G′ are called locally equivalent if there exists a sequence of
the above operations, acting on G obtains G′.

Notice that, the operations ∗ and ◦ are invertible, so that local equivalency is
really an equivalency relation.

The following theorem is proved in [3], and we do not repeat the proof here.
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Theorem 3.1 Two graphs G and G′ are locally equivalent if and only if there exists
an invertible n × n matrix U and a 2n × 2n matrix D with four diagonal blocks
satisfying detD = I and U(I | G)D = (I | G′).

✷

For a non-zero number c ∈ Fq, let G
′ = cG be the usual product of a matrix G

and a constant c, i.e., g′vw = cgvw for any v,w.

Theorem 3.2 For any two fundamental graphs G and G′ of an isotropic system,
there exists a non-zero c ∈ Fq such that cG and G′ are locally equivalent. Conversely,
if for some non-zero number c, the graphs cG and G′ are locally equivalent, then there
is an isotropic system such that G and G′ are its fundamental graphs.

Proof: Suppose that (G,A,B) and (G′, A′, B′) are two graphic presentations
for the isotropic system L. It means that, the rows of each of the matrices (I |
G)D(A,B) and (I | G′)D(A′, B′) form a basis for L. Therefore, there exists an
invertible matrix U such that

U(I | G)D(A,B) = (I | G′)D(A′, B′).

Hence
U(I | G)D(A,B)D(A′, B′)−1 = (I | G′).

Note that, both detD(A,B) and detD(A′, B′) are (non-zero) constant numbers,
and detD(A′, B′)−1 is also a constant. Thus, there exists a non-zero number c ∈ Fq

such that det
(

D(A,B)D(A′, B′)−1
)

= cI. Now let

D =

(

I 0
0 c−1I

)

D(A,B)D(A′, B′)−1.

detD = I and we have

U(I | G)

(

I 0
0 cI

)

D = (I | G′).

Then, U(I | cG)D = (I | G′) and the first part of the conclusion follows from
theorem 3.1.

Conversely, suppose that cG and G′ are locally equivalent. Therefore, there
exist matrices U and D such that U is invertible, detD = I and U(I | cG)D =
(I | G′). Also, suppose that A and B are two vectors such that D = D(A,B).
Therefore, (G, cA,B) and (G′, A′, B′) are two graphic presentations for the same
isotropic system, where A′, B′ are defined so that D(A′, B′) = I2n. More precisely,
A′(v) = (0, 1) and B′(v) = (1, 0) for each v.

✷

Having this theorem in hand, we can now study the classes of local equivalency
of graphs by investigating different graphic presentations of an isotropic system.
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4 Eulerian vectors and local complementation

We call a vector A ∈ KV complete if A(v) is non-zero for all v ∈ V . Assume that
A ∈ KV is complete. We define Â to be the vector subspace generated by vectors
Av for all v ∈ V , i.e., Â = 〈Av : v ∈ V 〉. In fact, if A = (X,Y ) then Â is the vector
space generated by rows of (diagX, diagY ).

Definition 4.1 Let L be an isotropic system and A ∈ KV be a complete vector.
We call A an Eulerian vector for L if Â ∩ L = 0.

Lemma 4.1 Suppose that L is an isotropic system and (G,A,B) is a graphic pre-
sentation for L. Then A is an Eulerian vector for L.

Proof: By definition of the graphic presentation we know that detD(A,B) is a
non-zero constant. Therefore, A(v) is non-zero for any v. In fact, the v-th entry
of the diagonal of detD(A,B) is 〈B(v), A(v)〉, so that A(v) should be non-zero
and then A is complete. To get a contradiction, suppose that Â ∩ L is non-zero.
Therefore, if A = (X,Y ) then there exists a non-zero vector S ∈ Fn

q such that
S(diagX|diagY ) ∈ L. S is non-zero, hence at least one of its coordinates , say v-th,
is non-zero. By considering the orthogonality condition, we have

0 = 〈S(diagX|diagY ), g(v)(diagX|diagY ) +Bv〉

=
∑

w∈V

S(w)gvw〈(X(w), Y (w)), (X(w), Y (w))〉 + 〈S(diagX|diagY ), Bv〉

= S(v)〈A(v), B(v)〉.

But, S(v) is non-zero and also 〈A(v), B(v)〉 is non-zero since detD(A,B) is so, which
is a contradiction.

✷

Corollary 4.1 Every isotropic system has an Eulerian vector.

Proof: By theorem 2.1, every isotropic system has a graphic presentation (G,A,B)
and by lemma 4.1, A is an Eulerian vector for the isotropic system.

✷

Let L be an isotropic system and A an Eulerian vector for L. Therefore L∩Â = 0.
If A′ is a vector which is equal to A at any coordinate except the v-th one, at which
it is equal to a non-zero multiple of A(v), then Â′ = Â, and therefore A′ is also an
Eulerian vector for L.

This observation gives us the motivation of defining K∗ to be K\{0} under the
equivalency relation (x, y) ∼ (x′, y′) iff (x, y) = r(x′, y′), for some non-zero r, (and
hence | K∗ |= q + 1). Now by the above discussion if we replace each coordinate of
A with something equivalent to it, we obtain another Eulerian vector. The set of
Eulerian vectors of an isotropic system has even more useful properties.

9



4.1 Switching property

Definition 4.2 We say that a subset
∑

⊆ KV of complete vectors has the switching
property if

(i) Similar to Eulerian vectors, for each A ∈
∑

, one can replace each coordinate of
A by its (scalar) multiple and it still remains in this subset.

(ii) In addition, for each A ∈
∑

and v ∈ V , A−Av + rEv,(x,y) is still in
∑

for each
non-zero r ∈ Fq and every (x, y) ∈ K∗ except one (x, y). In other words, in a set
with switching property and a vector A in this set, we can replace a coordinate of A
with exactly q elements of K∗ so that it still remains in

∑

.

We will observe shortly that switching at the vertex v is equivalent to a local
complementation operation on this vertex.

Theorem 4.1 The set of Eulerian vectors of an isotropic system has the switching
property.

Proof: Assume that A is an Eulerian vector for the isotropic system L, and to
lead to a contradiction, suppose that (xi, yi), i = 1, 2, are two different vectors in
K∗ and Ai = A − Av + Ev,(xi,yi), i = 1, 2, are not Eulerian (we know that all of
these vectors A−Av+Ev,(x,y), (x, y) ∈ K∗ can not be Eulerian, since if so, for every
C ∈ L, C(v) = 0 and the dimension of L could not be equal to n). Therefore there
exist non-zero vectors Ci ∈ Âi ∩ L for i = 1, 2. The v-th coordinate of Ci can not
be zero, because otherwise, Ci ∈ Â ∩ L, which is not possible since A is Eulerian.
Therefore, the v-th coordinate of Ci is a non-zero multiple of (xi, yi), i = 1, 2. Now
notice that (x1, y1) and (x2, y2) are different elements of K∗, thus they are linearly
independent and there exist r1, r2 ∈ Fq such that A(v) = r1(x1, y1) + r2(x2, y2).
Therefore r1C1 + r2C2 is a non-zero vector in Â ∩ L, which is a contradiction.

✷

Theorem 4.2 For every isotropic system L and a graphic presentation (G,A,B)
of it, A is an Eulerian vector. Conversely, for every Eulerian vector A, there exists
a graphic presentation (G,A,B). Also, this graphic presentation is unique up to a
(non-zero) constant, i.e., if (G′, A,B′) is another graphic presentation for L then
there exists a non-zero number c ∈ Fq such that G′ = cG and B′ = cB.

Proof: The first part of the theorem was already proved in lemma 4.1. For the
second part, suppose that A = (X,Y ) is an Eulerian vector of the isotropic system
L. By the switching property, for every v ∈ V , there exists some (zv , tv) ∈ K such
that (zv , tv) ≁ A(v) (meaning that (zv , tv) and A(v) are not scalar multiples of each
other) and there is a vector of the form Cv + Ev,(zv ,tv) in L, where Cv is in Â and
Cv(v) = 0. Since (zv, tv) ≁ A(v), we have 〈(zv, tv), A(v)〉 6= 0 and by considering an
scalar multiple (if necessary) of (zv, tv), we may assume that

〈(zv , tv), A(v)〉 = 1. (4)
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We know that Cv ∈ Â and Cv(v) = 0, thus there exists a matrix G = (guw) over
Fq such that gvv = 0 and Cv = g(v)(diagX|diagY ), for every v. Here, by g(v) we
mean the v-th row of G.

Now, Let B = (Z, T ) be the vector in KV with Z(v) = zv and T (v) = tv for
every v ∈ V . Due to the equation (4), we observe that detD(A,B) = I and also
D(A,B) is an invertible matrix. Using this notation, the rows of (I | G)D(A,B) are
all in L. Since, this matrix is a full-rank one, its rows form a basis for L. Therefore,
once we show that G is the matrix for a graph, we will end up with the presentation
(G,A,B) for L.

To show that G is a graph, first note that gvv = 0 by its definition. For proving
that G is symmetric, consider again the orthogonality assumption. We have

0 = (I | G)

(

diagZ diagT

diagX diagY

)(

0 I

−I 0

)(

diagZ diagX

diagT diagY

)(

I

GT

)

= (I | G)

(

diagZ diagT

diagX diagY

)(

diagT diagY

−diagZ −diagX

)(

I

GT

)

= (I | G)

(

0 I

−I 0

)(

I

GT

)

= GT −G.

Therefore, G is a graph, and (G,A,B) is a graphic presentation of L.
For the uniqueness, suppose that (G′, A,B′) is another graphic presentation for

L such that detD(A,B′) = cI. It means that (I | G′)D(A,B′) is also a basis for L.
Let B′ = (Z ′, T ′) and by considering the orthogonality assumption, once again we
have

0 = (I | G)

(

diagZ diagT

diagX diagY

)(

0 I

−I 0

)(

diagZ ′ diagX

diagT ′ diagY

)(

I

G′

)

= (I | G)

(

detD(B′, B) detD(A,B)
−detD(A,B′) 0

)(

I

G′

)

= (I | G)

(

detD(B′, B) +G′

−cI

)

= detD(B′, B) +G′ − cG.

Therefore, detD(B′, B)+G′−cG = 0 and since detD(B′, B) is a diagonal matrix
and the diagonals of G and G′ are both equal to zero, we have detD(B′, B) = 0 and
G′ = cG. Hence, it just remains to show B′ = cB. Because of the equation

0 = detD(B′, B) = diagZ diagT ′ − diagZ ′ diagT,

for any v there exists a cv ∈ Fq such that (Z ′(v), T ′(v)) = cv(Z(v), T (v)). Therefore
D(A,B′)vv = cvD(A,B)vv . On the other hand detD(A,B) = I and detD(A,B′) =
cI, so that cv = c for any v. Hence B′ = cB.
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✷

Using this theorem, if we denote by ǫ(L) the number of Eulerian vectors of the
isotropic system L, we conclude the following corollary.

Corollary 4.2 The number of graphic presentations of an isotropic system is equal
to (q − 1)ǫ(L).

4.2 Switching property in terms of local complementation

The following theorem, explains the relationship between the switching property
and local complementation.

Theorem 4.3 Suppose that (G,A,B) is a graphic presentation for the isotropic
system L, and v ∈ V .

(i) If r ∈ Fq, then (G ∗r v,A + rBv, B + rg(v)2 × A) is also a graphic presentation
of L. Therefore switching A at v is equivalent to a local complementation operator.

(ii) If s ∈ Fq is non-zero, then (G ◦s v,A + (s−1 − 1)Av , B + (s − 1)Bv) is also a
graphic presentation of L.

Proof: We prove first part, and the second part is similar. It is easy to check that
detD(A + rBv, B + rg(v)2 × A) is constant. Hence, it is sufficient to show that all
of the rows of (I | G ∗r v)D(A+ rBv, B+ rg(v)2 ×A) are in L. Let G′ = G ∗r v and
w ∈ V , w 6= v. We have g′(w) = g(w) + rgvwg(v) − rg2vwδw, thus the w-th row of
(I | G′)D(A+ rBv, B + rg(v)2 ×A) is equal to

= g′(w)× (A+ rBv) + (Bw + rg2vwAw)

= (g(w) + rgvwg(v) − rg2vwδw)× (A+ rBv) + (Bw + rg2vwAw)

= g(w) ×A+ rgvwg(v) ×A− rg2vwAw + rgvwBv +Bw + rg2vwAw

=
(

g(w) ×A+Bw

)

+ rgvw
(

g(v) ×A+Bv

)

,

which is in L. Also, for the v-th row, g′(v) = g(v) and

g(v) × (A+ rBv) + (Bv + rg2(v)×Av) = g(v) ×A+Bv

which is an element of L.
✷

5 Index of an isotropic system

We are now in the position of introducing the notion of index for an isotropic system.
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Theorem 5.1 For any isotropic system L, there exists a number λ(L) such that
for any fundamental graph G for L, there are exactly λ(L) pairs (A,B) such that
(G,A,B) is a graphic presentation of L. This number is called the index of the
isotropic system L.

Proof: Suppose that G is a fundamental graph of L, and there exist exactly k

graphic presentations of the form (G,Ai, Bi), i = 1, . . . , k for L. It is sufficient
to show that for any other fundamental graph H for L, there are also k graphic
presentation with H as a fundamental graph. Since, G and H are fundamental
graphs of the same isotropic system, by theorems 3.1 and 3.2, there exist invertible
matrices U and D, such that D consists of four diagonal blocks and detD = cI for
some non-zero c ∈ Fq, and moreover,

U(I | H)D = (I | G). (5)

Since, (G,Ai, Bi) is a graphic presentation of L for i = 1, . . . , k, the rows of
(I | G)D(Ai, Bi) form a basis for L. Now using (5), we conclude that the rows of
U(I | H)D D(Ai, Bi) and hence the rows of (I | H)D D(Ai, Bi) form bases for L.

Notice that detD D(Ai, Bi) is a constant. Therefore, it gives us a graphic presen-
tation of L with fundamental graphH, for i = 1, . . . , k. Also, since the matrices U,D
and D(Ai, Bi) are invertible, the described k presentations are different. Moreover,
for any presentation with fundamental graph H, we can convert it to a presenta-
tion with fundamental graph G. Thus, for any fundamental graph of L, there exist
exactly λ(L) = k graphic presentations with this graph as a fundamental graph.

✷

Theorem 5.2 Assume that L is an isotropic system admitting G as a fundamental
graph. Then λ(L) is equal to the number of matrices of the form D(A,B), with
non-zero constant determinant, and

(I | G)D(A,B)

(

G

−I

)

= 0. (6)

In fact, λ(L) = λ(G), meaning that the index of an isotropic system just depends
on any arbitrary fundamental graph.

Proof: As in the proof of theorem 5.1, suppose that (G,Ai, Bi), i = 1, . . . , k, are
all graphic presentations of L with fundamental graph G. Using the orthogonality
assumption we have

0 = (I | G)D(A1, B1)

(

0 I

−I 0

)

D(Ai, Bi)
T

(

I

G

)

= (I | G)D(A1, B1)

(

0 I

−I 0

)

D(Ai, Bi)
T

(

0 −I

I 0

)(

G

−I

)

.

On the other hand, the matrix
(

0 I

−I 0

)

D(Ai, Bi)
T

(

0 −I

I 0

)
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consists of four diagonal matrices and has non-zero constant determinant, and also,

D(A1, B1)

(

0 I

−I 0

)

D(Ai, Bi)
T

(

0 −I

I 0

)

satisfies all of these properties. Therefore, for each i, where i = 1, . . . , k, we find
a solution of (6). Conversely, since all of the above equations can be inverted, for
each solution D(A,B) we can find one of the graphic presentations (G,Ai, Bi).

✷

Corollary 5.1 For an isotropic system that admits G as a fundamental graph, the
number of its graphic presentations is equal to λ(G) times the number of graphs that
are locally equivalent to cG for some non-zero c ∈ Fq.

5.1 Bineighborhood space and index of a graph

For a graph G, we call a pair vw of vertices an edge, if gvw 6= 0. Suppose that,
C is an even cycle (a cycle with an even number of edges) consisting of vertices
v1, v2, . . . , v2l. Set

ν(C) =
2l
∑

i=1

(−1)igvivi+1g(vi)× g(vi+1).

Definition 5.1 Suppose that G is a graph. The bineighborhood space of G, denoted
by ν(G), is a subspace of FV

q defined by

ν(G) = span{ν(C) : C even cycle} ∪ {g(v) × g(w) : gvw = 0}.

We assume that the graphs we consider are connected, and restate a couple of
theorems, which will be used shortly. These theorems are all proved in [3].

Lemma 5.1 If D(A,B), where A = (X,Y ) and B = (Z, T ), satisfies (6) then Y +Z

is a scalar multiple of (1, 1, . . . , 1). On the other hand, for any such vectors A,B,
the matrix D(A,B) + cI2n satisfies (6) for each c ∈ Fq.

✷

Theorem 5.3 Suppose that D(A,B) satisfies (6) and A = (X,Y ). Then X ∈
ν(G)⊥. On the other hand for any X ∈ ν(G)⊥,

(i) if G has an odd cycle, then there exist a unique Y and a unique T such that
D(A,B) satisfies (6), where A = (X,Y ) and B = (−Y, T ).

(ii) if G does not have an odd cycle, then there exist exactly q pairs of Yi, Ti, i =
1, . . . , q, such that D(Ai, Bi) satisfies (6), where A = (X,Yi) and B = (−Yi, Ti).

✷

Theorem 5.4 If D(A,B) satisfies (6) for some vectors A and B, then it has a
constant determinant.

✷
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Having all of these theorems in hand, we conclude the following statement.

Theorem 5.5

(i) If G has an odd cycle, then for any X ∈ ν(G)⊥ there are exactly q (A,B)’s,
where the first component of A is X, and D(A,B) satisfies (6). Among all of these
q solutions, either all of them or q− 2 of them have non-zero constant determinant.

(ii) If G has no odd cycle, then for any X ∈ ν(G)⊥ there are exactly q2 (A,B)’s
where the first component of A is X and D(A,B) satisfies (6). Among all of these
q2 solutions, at least q(q − 2) of them have non-zero constant determinant.

Proof: Suppose that G has an odd cycle, and fix some X ∈ ν(G)⊥. By lemma 5.1
and theorem 5.3, there are A0 = (X,Y0) and B0 = (−Y0, T ) such that D(A0, B0)
satisfies (6), and any other solution D(A,B) of (6), where the first component of
A is X, is of the form D(A,B) = D(A0, B0) + cI2n, for any c ∈ Fq. Hence, there
are q solutions with this property. Notice that, detD(A,B) = detD(A0, B0) + c2I,
and by theorem 5.4, detD(A0, B0) = d0I is constant. Thus, depending on whether
−d0 ∈ Fq is a perfect square or not, there are either q − 2 or q different values of
c ∈ Fq such that d0 + c2 is non-zero.

The proof of (ii) is exactly the same. The only difference is that in this case
there are q solutions of the form A = (X,Y ), B = (−Y, T ) for (6).

✷

We can now give an estimation on λ(G) for a graph G.

Corollary 5.2 If a graph G has an odd cycle then

(q − 2)qdim ν(G)⊥ ≤ λ(G) ≤ qdimν(G)⊥+1,

and if not

(q − 2)qdim ν(G)⊥+1 ≤ λ(G) ≤ qdimν(G)⊥+2.

6 The number of graphs locally equivalent to a fixed

one

In this section we plan to compute l(G), the number of graphs which are locally
equivalent to the graph G. Once again, we assume that all the graphs we consider
are connected.

Lemma 6.1 l(G) = l(cG) for any non-zero c ∈ Fq.

Proof: It is not hard to see that, for any graph H locally equivalent to G, cH is
locally equivalent to cG.

✷

Lemma 6.2 If c ∈ Fq is a non-zero perfect square, then G and cG are locally
equivalent.
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Proof: Suppose that c = d2, and apply the operation ◦dv on G for all v ∈ V , and
the resulted graph is cG.

✷

Theorem 6.1 The number of graphs locally equivalent to some non-zero scalar mul-
tiple of the graph G is either equal to l(G) or 2l(G).

Proof: Suppse that cG is locally equivalent to G for any non-zero c. Then for
any graph locally equivalent to cG for some c, it is also locally equivalent to G.
Therefore l(G) is the number of graphs that are locally equivalent to cG for some c.

Next, suppose that there exists a non-zero c0 such that c0G is not locally equiv-
alent to G. By lemma 6.2, c0 is not a perfect square. Assume that, H is a graph
that is locally equivalent to cG, for some c. If c is a perfect square, then by lemma
6.2, H is also locally equivalent to G. On the other hand, if c is not a perfect square,
then c0

−1c is a perfect square. Hence c0
−1H is locally equivalent to G. Therefore,

for any such H, it is locally equivalent to either G or c0G. Also, by lemma 6.1,
l(c0G) = l(G). Therefore, in this case, the number of graphs locally equivalent to
cG for some c, is 2l(G).

✷

Using theorem 6.1, we can relate l(G) to the number of graphs that are locally
equivalent to cG for some non-zero c. Since, this number appears in counting the
number of graphic presentations of an isotropic system, we can obtain some useful
information about l(G). For this purpose, fix an isotropic system L admitting G as
a fundamental graph.

Theorem 6.2 The number of graphs locally equivalent to cG for some non-zero
c ∈ Fq is equal to

(q − 1)ǫ(L)

λ(L)
.

Proof: By corollary 4.2, the number of graphic presentations of L is equal to
(q−1)ǫ(L). On the other hand, by corollary 5.1, the number of graphic presentations
is equal to λ(L) times the number of graphs that are locally equivalent to cG, for
some non-zero c. By letting these two values be equal, one obtains the described
conclusion.

✷

The following corollary is a direct consequence of theorems 6.1 and 6.2.

Corollary 6.1 Either l(G) or 2l(G) is equal to

(q − 1)ǫ(L)

λ(L)
.

Using corollaries 5.2 and 6.1, giving a bound for ǫ(L) can lead us to a bound for
l(G).

Remark. In [4],[5] and [6], it has been shown that in the binary case, l(G) = ǫ(L)
λ(L) .

So, corollary 6.1 is valid for binary case, too.
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7 The number of Eulerian vectors

In this section, we include the binary case. To be precise, we assume that q is either 2
or a power of an odd prime number. In addition, we do not assume the connectivity
of graphs. In order to compute ǫ(L), the number of Eulerian vectors of an isotropic
system, we use a well-known polynomial, so called Tutte-Martin polynomial which
is defined for an isotropic system L as follows:

M(L; t) =
∑

C: complete

(t− q) dim(L∩Ĉ),

where the summation is over all complete vectors C ∈ KV . By the definition of
Eulerian vector,

ǫ(L) = M(L; q).

So, in order to compute ǫ(L), it suffices to be able to compute the Tutte-Martin
polynomial. To do that, we give a recursion formula for this polynomial.

Definition 7.1 Let L be an isotropic system, v ∈ V and x ∈ K∗ (or x = 0). Define

Lv
x = {C ∈ L : 〈C(v), x〉 = 0} = {C ∈ L : C(v) ∼ x or C(v) = 0},

and

L|vx = projection of Lv
x on KV−{v}.

Also, let Lv
0 = {C ∈ L : C(v) = 0}, and for C ∈ KV , we set C|v to be the projection

of C on KV−{v}.

Lemma 7.1 L|vx is an isotropic system.

Proof: First notice that, Lv
x is a subspace of L and is self-orthogonal. On the

other hand, the v-th coordinate of each vector in Lv
x is either 0 or equivalent to x.

Then the v-th coordinate of any two vectors in Lv
x are orthogonal, and hence if we

delete the v-th coordinate, all of the vectors remain orthogonal to each other. In
other words, L|vx is again self-orthogonal. Thus, it remains to show dimL|vx = n−1.
We consider two cases:

(i) There exists C0 ∈ L such that 〈C0(v), x〉 6= 0. In this case, we have Lv
x 6= L, and

therefore, dimLv
x = n− 1. Notice that, Ev,x is not orthogonal to C0, therefore Ev,x

is not in Lv
x. Then, the projection of Lv

x on KV−{v} is injective, and dimL|vx is also
n− 1.

(ii) For any C ∈ L, 〈C(v), x〉 = 0. Then Ev,x is in L, and for any C ∈ L, C(v) = 0
or C(v) ∼ x. Thus, Lv

x = L, and L = Lv
0 ⊕ 〈Ev,x〉. It means that, by removing the

v-th coordinate of Lv
0, we end up with L|vx. Therefore, dimL|vx = dimLv

0 = n− 1.
✷

Remark. Let G be a fundamental graph of L and (G,A,B) be a graphic pre-
sentation. Then, M(L; t) just depends on G. In fact, if L′ is another isotropic
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system with a graphic presentation (G,A′, B′), then multiplication by the matrix
D(A,B)−1D(A′, B′) maps L to L′. Also, it maps L ∩ Ĉ to L′ ∩ Ĉ ′, where C ′ =
CD(A,B)−1D(A′, B′). Therefore, M(L′; t) = M(L′; t).

Using this remark, we can talk about the Tutte-Martin polynomial of a graph,
M(G; t). Also, if G and H are two locally equivalent graphs, they are fundamental
graphs of the same isotropic system, and then M(G; t) = M(H; t).

Next, if a vertex v is isolated in G, i.e., v has no neighbor, then Ev,B(v) is in
L and L = Lv

0 ⊕ 〈Ev,B(v)〉. This case is actually studied in the second part, in the
proof of lemma 7.1. In this case, as we already mentioned, for all x, L|vx is the same
and equal to L|v0.

Theorem 7.1

M(L; t) =

{

(q − 1)tM(L|v0; t) if v is isolated in G,

(q − 1)
∑

x∈K∗ M(L|vx; t) otherwise.

Proof: Suppose that v is isolated is G. Then L = Lv
0 ⊕ 〈Ev,B(v)〉, and for any

complete vector C ∈ KV , we have

L ∩ Ĉ =
(

L|v0 ∩ Ĉ|v
)

⊕
(

〈Ev,B(v)〉 ∩ 〈Ev,C(v)〉
)

.

Therefore,

M(L; t) =
∑

C∈KV

(t− q) dim(L∩Ĉ)

=
∑

C∈KV

(t− q) dim
(

L|v0∩Ĉ|v
)

⊕
(

〈Ev,B(v)〉∩〈Ev,C(v)〉
)

=
∑

C∈KV

(t− q) dim (L|v0∩Ĉ|v)(t− q)δ(B(v)∼C(v))

=
∑

C∈KV −{v}

(

(q2 − q) + (q − 1)(t− q)
)

(t− q) dim (L|v0∩Ĉ)

= (q − 1)tM(L|v0; t),

where, all summations are over the complete vectors.
Now, assume that v is not isolated and gvw is non-zero for some w ∈ V . Hence,

there exists a vector C1 ∈ L such that C1(v) ∼ A(v). Also, we already know that
for some C2 ∈ L, we have C2(v) ∼ B(v), and A(v) ≁ B(v). Therefore, the v-th
coordinates of vectors in L cover the whole space K. Thus,

18



M(L; t) =
∑

C∈KV

(t− q)dim(L∩Ĉ)

=
∑

x∈K∗

∑

C,C(v)∼x

(t− q)dim(L∩Ĉ)

=
∑

x∈K∗

∑

C,C(v)∼x

(t− q)dim(Lv
x∩Ĉ)

=
∑

x∈K∗

∑

C,C(v)∼x

(t− q)dim(L|vx∩Ĉ|v)

=
∑

x∈K∗

∑

C∈KV −{v}

(q − 1)(t− q)dim(L|vx∩Ĉ)

=
∑

x∈K∗

(q − 1)M(L|vx; t),

(once again, all summations are over the complete vectors).
✷

Consider a graph G. As usual, by G−{v}, we mean the graph obtained from G

by deleting vertex v.

Lemma 7.2 Let L be an isotropic system with graphic presentation (G,A,B). Then
G− {v} is a fundamental graph of L|v

A(v).

Proof: We already know that the rows of (I | G)D(A,B) form a basis for L.
The v-th coordinate of each row, except the v-th row, is either zero or equivalent to
A(v). Therefore, the rows of (I | G)D(A,B), except the v-th row form a basis for
Lv
A(v). Thus, by deleting the v-th row and the v-th column of G, and also the v-th

coordinates of A and B, we come up with a graphic presentation of L|v
A(v), meaning

that G− {v} is a fundamental graph of L|v
A(v).

✷

Theorem 7.2

(i) If v is an isolated vertex in G, then G− {v} is a fundamental graph of L|v0.

(ii) If w is a neighbor of v in G then q graphs G ∗r v − {v}, r ∈ Fq, together with
G ∗−g−2

vw
w ∗1 v − {v} are fundamental graphs of L|vx for x ∈ K∗.

Proof: Part (i) is a direct consequece of lemma 7.2. To prove (ii), using lemma
7.2, we should show that for each x ∈ K∗, there exists an Eulerian vector related to
one of these graphs, such that its v-th coordinate is x.

Suppose that (G,A,B) is a graphic presentation of L. By theorem 4.3, for any
r ∈ Fq, (G∗r v,A+rBv, B+rg2(v)×A) is also a graphic presentation of L. The v-th
coordinate of the Eulerian vector of this presentation is A(v) + rB(v). Therefore,
G ∗r v − {v} is a fundamental graph of L|v

A(v)+rB(v).
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Now notice that, 〈A(v), B(v)〉 6= 0. Therefore, for r varies in Fq, A(v) + rB(v)
are all different elements of K∗, and there are q of them. The only element of K∗

not obtained in this way is B(v). Consider the fundamental graph G∗sw∗1 v, where
s = −g−2

vw . By theorem 4.3, A+ sBw + (Bv + sg2vwAv) is an Eulerian vector for this
fundamental graph, and the v-th coordinate of this vector is (sg2vw+1)A(v)+B(v) =
B(v). Thus, G ∗s w ∗1 v − {v} is a fundamental graph of L|v

B(v).
✷

Corollary 7.1 If v is isolated in G then

M(G; t) = (q − 1)tM(G− {v}; t),

otherwise, if w is a neighbor of v then

M(G; t) = (q − 1)
[

M(G ∗−g−2
vw

w ∗1 v; t) +
∑

r∈Fq

M(G ∗r v − {v}; t)
]

.

7.1 Estimation of ǫ(G)

The final step to evaluate ǫ(G) is the following one, which is valid due to the fact
that all of the graphs described in the right hand side of the formula in corollary
7.1 have n − 1 vertices. Indeed, one can observe that the number of graphs in the
right hand side is equal to q + 1, and hence,

max
G: |G|=n

|M(G; t)| ≤ (q − 1) ·max{t, q + 1} · max
H: |H|=n−1

|M(H; t)|.

Moreover, when the graph G has only one vertex, i.e., n = 1, we have

|M(G; t)| ≤ (q2 − 1) ·max{|t− q|, 1}.

Putting together these two statements, we conclude the following corollary.

Corollary 7.2 For a graph G with n vertices, the Tutte-Martin polynomial M(G; t)
can be estimated as follows:

|M(G; t)| ≤ (q2 − 1) · [(q − 1) ·max{t, q + 1}](n−1) ·max{|t− q|, 1},

and by setting t = q, we obtain that:

ǫ(G) ≤ (q2 − 1)n.

We can even derive a lower bound for ǫ(G) as well.

min
G:|G|=n

M(G; q) ≥ (q − 1) ·min{t, q + 1} · min
H: |H|=n−1

|M(H; q)|.

On the other hand, when the graph has just one vertex, ǫ(G) ≥ 1, and hence in
general,

ǫ(G) ≥ (q2 − q)n−1.

Thus, the proof of the following theorem is now complete.
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Theorem 7.3 The number of Eulerian vectors for a graph (or equivalently for an
isotropic system) with n vertices satisfies the following property:

(q2 − q)n−1 ≤ ǫ(G) ≤ (q2 − 1)n.

In particular, when the graph is ordinary (binary), i.e., when q = 2, we have:

2n−1 ≤ ǫ(G) ≤ 3n.

✷

8 The number of classes of local equivalency

As mentioned earlier, we use the formula given in corollary 6.1, as well as the
estimations for the number of Eulerian vectors given in the previous section, in
order to give a bound for l(G), the number of graphs locally equivalent to G.

By corollary 6.1, if G is connected, then

l(G) ≤
(q − 1)ǫ(L)

λ(L)
≤ (q − 1)ǫ(L)

Taking into account the estimation of ǫ(L) = ǫ(G) presented in the theorem 7.3,
we come up with an upper bound for l(G), given that the number of graphs with n

vertices is exactly q
n2

2
−n

2 .

Theorem 8.1

(i) The number of graphs locally equivalent to a connected graph is at most (q −
1)(q2 − 1)n which is bounded above by q2n+1, n being the number of vertices of the
graph.

(ii) C(n), the number of classes of local equivalency of connected graphs with n

vertices satisfies:

q
n2

2
− 5n

2
−1 ≤ C(n) ≤ q

n2

2
−n

2 .

In other words,

C(n) = q
n2

2
−O(n).

In particular, for the usual (binary) graphs, i.e., when q = 2, the number of graphs
locally equivalent to a graph is at most 3n and the number of classes of local equiv-
alency is

C(n) = 2
n2

2
−O(n).

✷
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9 Conclusion

We developed a method to compute number of graphs locally equivalent to a given
one. Using this method, we bounded this number for an arbitrary graph. Also,
we found an approximation of the number of equivalency classes. That is, C(n) =

q
n2

2
−O(n). Notice that, number of all graphs is q

n2

2
−n

2 . Therefore, this estimation
says that number of equivalency classes is almost the same as number of all graphs.

We got these results by developing a reach theory of isotropic systems and also
local operation over graphs, and it seems that this theory can be used for other
problems in this area, too.
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