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ON THE DETERMINATION OF KAZHDAN-LUSZTIG CELLS

FOR AFFINE WEYL GROUPS WITH UNEQUAL PARAMETERS

JÉRÉMIE GUILHOT

Dediated to the memory of Fokko du Cloux

Abstrat. Let W be a Coxeter group and L be a weight funtion on W .

Following Lusztig, we have a orresponding deomposition of W into left ells

whih have important appliations in representation theory. We study the

ase where W is an a�ne Weyl group of type G̃2. Using expliit omputation

with COXETER and CHEVIE , we show that (1) there are only �nitely many

possible deompositions into left ells and (2) the number of left ells is �nite

in eah ase, thus on�rming some of Lusztig's onjetures in this ase. A

key ingredient of the proof is a general result whih shows that the Kazhdan-

Lusztig polynomials of a�ne Weyl group are invariant under (large enough)

translations.

1. Introdution

This paper is onerned with Kazhdan-Lusztig polynomials and left ells in an

a�ne Weyl group W (with set of simple re�etions S) with respet to a weight

funtion L where, following Lusztig [14℄, a weight funtion on W is a funtion

L : W → Z suh that L(ww′) = L(w) + L(w′) whenever ℓ(ww′) = ℓ(w) + ℓ(w′) (ℓ
is the usual length funtion on W ). We shall only onsider weight funtions suh

that L(w) > 0 for all w 6= 1.
Generalized left, right and two-sided ells of a Coxeter group give rise to left,

right and two-sided modules of the orresponding Heke algebraH with parameters

given by L. In turn, the representation theory of the Heke algebra is very relevant

to the representation theory of redutive groups over p-adi �elds.
The ase where L is onstant on the generators is known as the equal parameter

ase. It was studied by Lusztig in [9, 11, 12, 13℄. The left ells have been expliitly

desribed for type Ãr, r ∈ N (see [10, 16℄), ranks 2, 3 (see [9, 1, 4℄) and types B̃4,

C̃4 and D̃4 (see [18, 17, 3℄).

Muh less is known for unequal parameters. In [14℄, Lusztig has formulated a

number of preise onjetures in that ase. The proof of these onjetures in the

equal parameter ase involved an interpretation of the Kazhdan-Lusztig polynomi-

als in terms of intersetion ohomology whih ensures that all the oe�ients of

these polynomials are non-negative integers. In the general ase, this does not hold

anymore.

The ase where the parameters are oming from a graph automorphism has been

studied by K. Bremke in [2℄, using the previous properties.
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2 Guilhot

One of the many onsequenes of Lusztig's onjetures is that the number of left

ells is �nite in an a�ne Weyl group. One of our aim here is to show the following

theorem.

Theorem 1.1. Let W be an a�ne Weyl group of type G̃2 and L be any weight

funtion on W with L(w) > 0 for w 6= 1. Then the following hold.

(1) There are only �nitely many possible deompositions of W into left ells.

(2) The number of left ells is �nite in eah ase.

For the proof we must show a su�ient number of equalities among Kazhdan-

Lusztig polynomials (see Setion 3 for preise de�nitions). These are provided

by the following theorem whih holds for any a�ne Weyl group W . Let u ∈ W
be a translation (see De�nition 4.1). For x, y ∈ W we write x.y if and only if

ℓ(xy) = ℓ(x) + ℓ(y). We have

Theorem 1.2. Let z, z′ ∈W and N = ℓ(z′)− ℓ(z) ≥ 0. Then for r > N(ℓ(u) + 1)
and for any k ≥ 0, we have

Pz.ur ,z′.ur = Pz.ur+k,z′.ur+k

and if there exists s ∈ S whih satis�es sz.ur < z.ur < z′.ur < sz′.ur
, then

Mz.ur ,z′.ur = Mz.ur+k,z′.ur+k .

While the statement and the proof of Theorem 1.2 do not make any referene

to omputer alulations, we would like to point out that we arrived at the preise

statement through extensive experimentation using Duloux's COXETER program

[5℄.

2. A geometri realization of affine Weyl groups

In this setion, we reall some basi material about a�ne Weyl groups whih

will be needed later on. The exposition follows [7, 2, 19℄ and we refer to these

publiations for more details and proofs. Some of the notions are illustrated in

Figure 1, at the end of the setion.

Let V be an Eulidean spae of �nite dimension r ≥ 1. Let Φ ⊂ V be an

irreduible root system of rank r and Φ̌ ⊂ V ∗
the dual root system. Fix a set of

positive roots Φ+ ⊂ Φ. We denote the oroot orresponding to α by α̌ and we write

〈x, y〉 for the value of y ∈ V ∗
at x ∈ V . Let W0 be the Weyl group of Φ. For α ∈ Φ

and k ∈ Z, we de�ne a hyperplane

Hα,k = {λ ∈ V | 〈λ, α̌〉 = k}.

Let

F = {Hα,k | α ∈ Φ+, k ∈ Z}.

Eah H ∈ F de�nes an orthogonal re�etion σH in V with �xed point set H . Let

Ω be the group of a�ne transformations generated by these re�etions. We regard

Ω as ating on the right on V . An alove is a onneted omponent of the set

V − ∪
H∈F

H.

Ω ats simply transitively on the set X of aloves.

Let S be the set of Ω-orbits in the set of faes (odimension 1 faets) of aloves.

Then S onsists of r + 1 elements whih an be represented as the r + 1 faes of

any given alove.



Kazhdan-Lusztig ells for a�ne Weyl groups with unequal parameters 3

For s ∈ S we de�ne an involution A → sA of X as follows. Given an alove

A, we denote by sA the unique alove distint from A whih shares with A a fae

of type s. The maps A → sA generate a group of permutations of X whih is a

Coxeter group (W,S). In our ase, it is the a�ne Weyl group usually denoted by

W̃0. We regard W as ating on the left on X . It ats simply transitively and it

ommutes with the ation of Ω on X .

We �x parameters cs ∈ N∗
for s ∈ S. Reall that, for s, t ∈ S, the parameters

must only satisfy cs = ct if s and t are onjugate in W . In the ase where W is of

type C̃r+1 with generators s1, . . . , sr+1 and W0 is generated by s1, . . . , sr we an

assume, by the symmetry of the Dynkin diagram, that cs1 ≥ csr+1
. Similarly, if

W is of type Ã1 with generators s1, s2 and W0 is generated by s1, we an assume

that cs1 ≥ cs2 . In [2℄, Bremke showed that if a hyperplane H ∈ F supports faes

of types s, t ∈ S then s and t are onjugate in W . As a onsequene of this result,

we an assoiate an integer cH ∈ N to H ∈ F , where cH = cs if H supports a fae

of type s.
For a 0-dimensional faet v of an alove, let

m(v) =
∑

H∋v,H∈F

cH .

We say that v is a speial point if m(v) is maximal. If cs = 1 for all s ∈ S, then
the notion of speial points is the same as the notion in [7℄ and m(v) = |Φ+| for
any speial point. Note that, following [2, Setion 2℄, and with our onvention for

C̃r+1 and Ã1, 0 ∈ V is a speial point.

Let n ∈ Z. A hyperplane H = Hα,n ∈ F divides V −H into two half-spaes:

{x ∈ V | 〈x, α̌〉 > n}

and

{x ∈ V | 〈x, α̌〉 < n}.

Let v be a speial point. A quarter with vertex v is a onneted omponent of the

set

V −
⋃

H∋v,H∈F

H.

Hyperplanes whih are adjaent to a quarter C are alled walls of C.
Let A0 be the fundamental alove de�ned by

{v ∈ V | 0 < 〈x, α̌〉 < 1 for every positive root α}.

If λ is a 0-dimensional faet of an alove, we denote by Ωλ the stabilizer of λ in

Ω and by Wλ the stabilizer in W of the set of aloves A whih ontain λ in their

losure. Wλ is generated by r elements of S. It is a maximal paraboli subgroup of

W (if λ = 0 ∈ V , the de�nition of Wλ is onsistent with the de�nition of W0 given

before).

We now introdue a new de�nition.

De�nition 2.1. Let z ∈ W and A ∈ X. Let H1, ..., Hn be the set of hyperplanes

whih separate A and zA. For 1 ≤ i ≤ n, let EHi
(zA) be the half-spae de�ned by

Hi whih ontains zA. Let

hA(z) =
n
⋂

i=1

EHi
(zA).
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For z, z′ ∈ W we write z.z′ if and only if ℓ(zz′) = ℓ(z) + ℓ(z′). It is well known
that for any w ∈ W and any A ∈ X , ℓ(w) is the number of hyperplanes whih

separate A and wA. Therefore one an see that z′.z if and only if

{H | H separates A and zA} ∩ {H | H separates zA and z′zA} = ∅,

or in other words

Lemma 2.2. Let z, z′ ∈ W and A ∈ X. We have

z.z′ ⇔ z(z′A) ⊂ hA(z
′).

In Figure 1, we onsider an a�ne Weyl group W of type G̃2

W := 〈s1, s2, s3 | (s1s2)
6 = 1, (s2s3)

3 = 1, (s1s3)
2 = 1〉.

The thik arrows represent the set of positive roots Φ+
, λ is a speial point, the

gray area around λ is the set of aloves ontaining λ in their losure, zA0 is the

image of the fundamental alove A0 under the ation of z = s3s2s1s2s1s2 ∈W and

C is a quarter with vertex 0. Note that the subgroup Wλ is generated by s1 and s2.

λ

A0

hA0
(z)

C

0

zA0

�g 1. G̃2

3. Total ordering and weight funtion

The basi referenes for this setion are [8, 14, 6℄. In [14℄, Lusztig studies the left

ells of a Coxeter group W with respet to a weight funtion L on W . Considering

a more abstrat setting as de�ned by Lusztig in [8℄, where left ells are de�ned

with respet to an abelian group and a total order on it, Gek [6℄ formulates some

onditions for two weight funtions to give rise to the same left ell deomposition

(when W is �nite). In this setion we will �nd some onditions for two weight

funtions to give rise to essentially the same Kazhdan-Lusztig polynomials on a

given subset of W (when W is an a�ne Weyl group).
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We reall the basi setting for the de�nition of Kazhdan-Lusztig polynomials and

left ells. Let W be a Coxeter group with generating set S. Let Γ be an abelian

group (written multipliatively) and A := Z[Γ] be the group algebra of Γ over Z.

Let {vs | s ∈ S} be a subset of Γ suh that vs = vt whenever s, t ∈ S are onjugate

in W . Then we an de�ne the orresponding generi Iwahori-Heke algebraH, with

A-basis {Tw | w ∈W} and multipliation given by the rule

TsTw =

{

Tsw, if ℓ(sw) > ℓ(w),

Tsw + (vs − v−1
s )Tw, if ℓ(sw) < ℓ(w);

where ℓ : W → N denotes the usual length funtion on W with respet to S.

Let a→ ā be the involution of Z[Γ] de�ned by g = g−1
for g ∈ Γ. We an extend

it to a map from H to itself by

∑

w∈W

awTw =
∑

w∈W

āwT
−1
w−1 (aw ∈ Z[Γ]).

Then h→ h̄ is a ring involution.

For w ∈W , de�ne ry,w ∈ A by

Tw =
∑

y∈W

r̄y,wTy.

These r-polynomials satisfy ry,w = 0 unless y ≤ w, ry,y = 1 and the following

reursive formula, for s ∈ S suh that sw < w (where < denotes the Bruhat order

on W )

ry,w =

{

rsy,sw, if sy < y,

rsy,sw + (vs − v−1
s )ry,sw, if sy > y.

Choose a total ordering of Γ. This is spei�ed by a multipliatively losed subset

Γ+ ⊂ Γ−{1} suh that Γ = Γ+ ∪ {1}∪ Γ− (disjoint union) where Γ− = {g−1 | g ∈
Γ+}. Moreover, assume that

{vs | s ∈ S} ⊂ Γ+.

Given a total ordering as above, there exists a unique element Cw ∈ H suh that

Cw = Cw and Cw = Tw +
∑

y∈W,y<w

Py,wTy,

where Py,w ∈ Z[Γ−] for y < w. In fat, the set {Cw | w ∈ W} forms a basis of H

known as the Kazhdan-Lusztig basis. We set Py,y = 1 for any y ∈W .

The following formula gives the relation between the Kazhdan-Lusztig polyno-

mials P and the r-polynomials

(3.1) Px,w =
∑

y;x≤y≤w

rx,yPy,w.

Note that this formula together with the ondition Py,w ∈ Γ− for y < w, uniquely
de�nes the Kazhdan-Lusztig polynomials.

Let w ∈W and s ∈ S, we have the following multipliation formula

CsCw =







Csw +
∑

z; sz<z<w

M
s
z,wCz, if w < sw,

(vs + v−1
s )Cw, if sw < w;
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where M
s
z,w ∈ Z[Γ] satisfy

(3.2) Ms
y,w = M

s
y,w,

(3.3) (
∑

z;y≤z<w;sz<z

Py,zM
s
z,w)− vsPy,w ∈ Z[Γ−].

Given y, w ∈ W and s ∈ S we write y ←L w if Cy appears with a non-zero

oe�ient in CsCw for some s ∈ S. The Kazhdan-Lusztig pre-order ≤L is the

transitive losure of the above relation, i.e y ≤L w if there exists a sequene y =
y0, ..., yn = w in W suh that yi ←L yi+1 for all 0 ≤ i ≤ n − 1. The equivalene

relation assoiated to ≤L will be denoted by ∼L and the orresponding equivalene

lasses are alled left ells of W .

Remark 3.1. Let y ≤ w ∈ W and [y, w] = {z ∈ W | y ≤ z ≤ w}. Looking at the

relations 3.1�3.3, one an see that the set of polynomials

{Px,z, M
s
x,z | x, z ∈ [y, w]}

is determined by the total ordering of Γ and the set of polynomials

{rz1,z2 | z1, z2 ∈ [y, w]}.

We now speialize the above setting to the ase where the parameters of the

Iwahori-Heke algebra are given by a weight funtion. We only onsider weight

funtions suh that L(s) > 0 for all s ∈ S. Let A = Z[v, v−1] where v is an

indeterminate. We have a orresponding Iwahori-Heke algebra H with parameters

{vL(s) | s ∈ S}. As before, H has an A-basis {Tw | w ∈ W} with multipliation

given by the formula

TsTw =

{

Tsw, if ℓ(sw) > ℓ(w),

Tsw + (vL(s) − v−L(s))Tw, if ℓ(sw) < ℓ(w).

Now onsider the abelian group {vn | n ∈ Z} with the total order spei�ed by

{vn | n > 0}. Thus as above, we an de�ne the Kazhdan-Lusztig basis {Cw | w ∈
W} of H. We obtain

(1) a olletion of polynomials ry,w ∈ Z[v, v−1],
(2) a olletion of polynomials Py,w ∈ v−1Z[v−1] for all y < w ∈W ,

(3) a olletion of polynomials M s
y,w ∈ Z[v, v−1] where sy < y < w < sw.

In [6℄, Gek has established a link between these two situations, where you have

an abelian group Γ with a total order spei�ed by Γ+ ⊂ Γ and a hoie of parameters

{vs | s ∈ S} ⊂ Γ+ on the one hand, and a weight funtion L on the other hand.

Denote by ry,w, Py,w and M
s
y,w the polynomials in Z[Γ] arising in the �rst ase

and by ry,w, Py,w and M s
y,w the polynomials in Z[v, v−1] arising in the seond ase.

He de�ned two subsets Γa
+(W ),Γb

+(W ) ⊂ Γ+ as follows. First, let Γa
+(W ) be

the set of all elements γ ∈ Γ+ suh that γ−1
ours with a non zero oe�ient

in a polynomial Py,w for some y < w in W . Next for any y, w in W and s ∈ S
suh that M

s
y,w 6= 0, we write M

s
y,w = n1γ1 + ... + nrγr where 0 6= ni ∈ Z,

γi ∈ Γ and γ−1
i−1γi ∈ Γ+ for 2 ≤ i ≤ r. Let Γb

+(W ) be the set of all elements

γ−1
i−1γi ∈ Γ+ arising in this way, for any y, w, s suh that M

s
y,w 6= 0. Finally set

Γ+(W ) = Γa
+(W ) ∪ Γb

+(W ). Then he proved that
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Proposition 3.2. Assume that we have a ring homomorphism

σ : Z[Γ]→ Z[v, v−1], vs → vL(s)

suh that

(∗) σ(Γ+(W )) ⊆ {vn | n > 0}.

Then σ(Py,w) = Py,w for all y < w in W and σ(Ms
y,w) = M s

y,w for any y, w ∈ W
suh that sy < y < w < sw. Furthermore, the relation ≤L on W de�ned with

respet to the weight funtion L is the same as the one de�ned with respet to

Γ+ ⊂ Γ.

In order to deal with a�ne Weyl groups (in�nite groups), we need a re�nement

of the above result for Bruhat intervals.

Let y, w ∈ W , s ∈ S and I = [y, w]. We now de�ne three subsets Γa
+(I), Γ

b,s
+ (I),

Γc,s
+ ⊂ Γ+. First, let Γ

a
+(I) be the set of all elements γ ∈ Γ+ suh that γ−1

ours

with a non-zero oe�ient in a polynomial Pz1,z2 for some z1 < z2 in I. Next for
any z1, z2 in I suh that M

s
z1,z2

6= 0 we write M
s
z1,z2

= n1γ1 + ... + nrγr where

0 6= ni ∈ Z, γi ∈ Γ and γ−1
i−1γi ∈ Γ+ for 2 ≤ i ≤ r. Let Γb,s

+ (I) be set of all elements

γ−1
i−1γi ∈ Γ+ arising in this way, for any z1, z2 ∈ I suh that M

s
z1,z2

6= 0. Finally

let Γc,s
+ be the set of all elements γ ∈ Γ+ suh that γ−1

ours with a non-zero

oe�ient in a polynomial of the form

∑

z;z1≤z<z2;sz<z

Pz1,zM
s
z,z2
− vsPz1,z2

where z1, z2 ∈ I and sz1 < z1 < z2 < sz2. We set Γs
+(I) = Γa

+(I) ∪ Γb,s
+ (I) ∪ Γc,s

+ .

Proposition 3.3. Let y, w ∈ W , s ∈ S and I = [y, w]. Assume that we have a

ring homomorphism

σ : Z[Γ]→ Z[v, v−1], vs → vL(s)

suh that

(∗) σ(Γs
+(I)) ⊆ {v

n | n > 0}.

Then σ(Pz1,z2) = Pz1,z2 for all z1 < z2 in I and σ(Ms

z1,z2
) = M s

z1,z2
for any

z1, z2 ∈ I suh that sz1 < z1 < z2 < sz2.

Proof. We have σ(p) = σ(p) for all p ∈ Z[Γ]. Moreover, the r-polynomials do not

depend on the order, therefore we have σ(rz1,z2) = rz1,z2 for any z1, z2 ∈ W .

We prove by indution on ℓ(z2)− ℓ(z1) that σ(Pz1,z2) = Pz1,z2 for all z1 ≤ z2 in
I. If ℓ(z2)− ℓ(z1) = 0 it is lear.

Assume that ℓ(z2)− ℓ(z1) > 0. Applying σ to 3.1 using the indution hypothesis

yields

σ(Pz1,z2)− σ(Pz1,z2) =
∑

z1<z≤z2

σ(rz1,z)σ(Pz,z2 )

=
∑

z1<z≤z2

rz1,zPz,z2 .

This relation and ondition (∗) implies that σ(Pz1,z2) = Pz1,z2 .
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Let z1, z2 ∈ I and s ∈ S suh that sz1 < z1 < z2 < sz2. We prove by indution

on ℓ(z2)− ℓ(z1) that σ(M
s
z1,z2

) = M s
z1,z2

.

Sine M
s
z1,z2

= Ms
z1,z2

, we have σ(Ms
z1,z2

) = σ(Ms
z1,z2

). Applying σ to 3.3

(using (∗)) we get

σ(Ms
z1,z2

) +
∑

z;z1<z<z2;sz<z

Pz1,zM
s
z,z2
− vL(s)Pz1,z2 ∈ v−1Z[v−1].

This relation implies that σ(Ms
z1,z2

) = M s
z1,z2

. Moreover we an see that ifM
s
z1,z2

6=
0 then M s

z1,z2
is a ombination of pairwise di�erent powers of v. Thus M s

z1,z2
6=

0. �

If ondition (∗) is satis�ed for all s ∈ S, then we an onlude that x, z ∈ I
satisfy x←L z with respet to the total order Γ+ if and only if they satisfy x←L z
with respet to the weight funtion L.

4. The translations in an affine Weyl group

We look more losely at a speial set of elements in W , namely the translations.

We keep the same notations as in Setion 2.

De�nition 4.1. Let u ∈W . We say that u is a translation if there exists a vetor

~u 6= 0 suh that t~u, the translation by the vetor ~u, is in Ω and

uA0 = A0t~u.

Note that t~u is uniquely determined by u.

Let u ∈ W be a translation. Let B ∈ X and σ ∈ Ω be suh that B = A0σ. We

have

uB = u(A0σ) = A0t~uσ = A0σtσ(~u) = Btσ(~u).

Therefore uB is a translate of B.
Reall that hA(z) for z ∈W and A ∈ X is de�ned in 2.1.

The translations have the following properties.

Lemma 4.2. Let u ∈W be a translation assoiated to t~u ∈ Ω.

(a) Let r1 ≤ r2 ∈ N∗
. We have

hA0
(ur2) ⊂ hA0

(ur1) and hA0
(ur2) = t(r2−r1)~u(hA0

(ur1)).

(b) Let r ∈ N∗
. We have

z.u⇔ z.ur.

Proof. (a) Let α ∈ Φ+
and kα = 〈~u, α̌〉. Sine t~u ∈ Ω, one an see that kα ∈ Z. For

any r ∈ N, we have

rkα < 〈x, α̌〉 < rkα + 1 for all x ∈ urA0.

Note that, if kα = 0, there is no hyperplane of the form Hα,m (m ∈ Z) whih

separates A0 and urA0.

Let ϕ (resp. ϕ+
, ϕ−

) be the subset of Φ+
whih onsists of all positive roots β suh

that kβ 6= 0 (resp. kβ > 0, kβ < 0). For β ∈ ϕ, we de�ne

Hβ =

{

Hβ,rkβ
if β ∈ ϕ+,

Hβ,rkβ+1 if β ∈ ϕ−
.
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Then, one an hek that

(∗) hA0
(ur) =

⋂

β∈ϕ

EHβ (urA0).

Let r1 ≤ r2 ∈ N∗
and β ∈ ϕ. We suppose that β ∈ ϕ+

(the ase β ∈ ϕ−
is similar).

We have

EHβ (ur1) = {x ∈ V | 〈x, β̌〉 > r1kβ}

and

EHβ (ur2) = {x ∈ V | 〈x, β̌〉 > r2kβ}.

Thus

EHβ (ur2) ⊂ EHβ (ur1) and EHβ (ur2) = t(r2−r1)~uEHβ (ur1)

and the result follows using relation (∗).
(b) The statement follows from (a) and Lemma 2.2. �

From now on and until the end of this setion, we �x a translation u ∈ W
assoiated to t~u ∈ Ω. The orbit of ~u under Ω is �nite. Indeed the group of linear

transformations assoiated to the group of a�ne transformations Ω is �nite, it is

isomorphi to Ω0 whih, in turn, is isomorphi to the Weyl group W0 assoiated to

the root system Φ. Let

OrbΩ(~u) = {~u1 = ~u, ..., ~un}.

For i ∈ {1, ..., n} = [1, n], let ui ∈ W be suh that uiA0 = A0t ~ui
, vi be the speial

point t~ui
(0) and A0t~ui

= Avi .

Lemma 4.3. (a) For any i, j ∈ [1, n] we have ℓ(ui) = ℓ(uj).
(b) Let z1, z2 ∈ W , r ∈ N∗

and i ∈ [1, n] be suh that z1.u
r
i .z2. There exists

k,m ∈ [1, n] suh that

z1.u
r
i .z2 = z1.z2.u

r
m = ur

k.z1.z2.

() Let z1, z2 ∈ W , r ≥ 1 and i ∈ [1, n]. We have the following equivalene

z1.u
r
i .z2 ⇔ z1.u

r+1
i .z2.

Proof. (a) Let A ∈ X and A′
be a translate of A (by a translation in Ω). Then

the number of hyperplanes whih separate A and A′
is equal to the number of

hyperplanes whih separate zA and zA′
for any z ∈W .

Let i, j ∈ [1, n], σ ∈ Ω and z ∈ W be suh that ~uiσ = ~uj and zA0 = A0σ.
We have

ℓ(ui) = |{H | H separates A0 and Avi}|

= |{H | H separates z−1A0 and z−1Avi}|

= |{H | H separates z−1A0σ and z−1Aviσ}|.

Sine

z−1A0σ = A0

and

z−1Aviσ = z−1A0t~ui
σ = z−1A0σt~uj

= Avj ,
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we obtain

ℓ(ui) = |{H | H separates z−1A0σ and z−1Aviσ}|

= |{H | H separates A0 and Avj}|

= ℓ(uj)

as desired.

(b) Let σz1 , σz2 ∈ Ω and k,m ∈ [1, n] be suh that

z1A0 = A0σz1 , σ−1
z1

(~ui) = ~uk.

and

z2A0 = A0σz2 , σz2(~ui) = ~um.

We have

z1.u
r
i .z2A0 = A0σz1tr~ui

σz2 = A0trσ−1
z1

(~ui)
σz1σz2 = ur

kz1z2A0,

whih implies that z1.u
r
i .z2 = ur

kz1z2. Now, sine ℓ(ui) = ℓ(uk), we must have

ur
k.z1.z2.

Similarly, one an show that z1.u
r
i .z2 = z1.z2.u

r
m.

() The statement follows from (b) and Lemma 4.2 (b).

�

We now state the main result of this setion.

Theorem 4.4. Let i, j ∈ [1, n] and r1, r2 ∈ N∗
be suh that i 6= j. We have

hA0
(ur1

i ) ∩ hA0
(ur2

j ) = ∅.

Proof. Aording to Lemma 4.2 (a), to prove the theorem, it is enough to show

that, for any i 6= j ∈ [1, n], we have

hA0
(ui) ∩ hA0

(uj) = ∅.

Let

F0 := {H ∈ F | 0 ∈ H, vi /∈ H for all i ∈ [1, n]}.

Consider the onneted omponent of

V −
⋃

H∈F0

H.

Sine there exists σ ∈ Ω0 suh that σ(vi) = vj , there is a hyperplane whih separate
vi and vj and whih ontains 0. Therefore Avi and Avj do not lie in the same

onneted omponent. For i ∈ [1, n], let Ci be the onneted omponent whih

ontains Avi . To prove the theorem, it is enough to show that hA0
(ui) ⊂ Ci for all

i ∈ [1, n].
Let H be a wall of Ci and let EH(Ci) be the half-spae de�ned by H whih

ontains Ci. Sine 0 ∈ H and vi /∈ H , one an see that H ′ = t ~ui
(H) 6= H . Thus

either H separates A0 and Avi or H
′
does.

If H separates A0 and Avi then, as Avi ⊂ Ci, we must have hA0
(ui) ⊂ EH(Ci).

Now, assume that H does not separate A0 and Avi . Let β ∈ Φ+
and m ∈ Z be

suh that H = Hβ,0 and H ′ = Hβ,m. In that ase we have

A0, Avi ∈ EH(Ci) = {x ∈ V | 〈x, β̌〉 > 0}.
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Thus one an see that we must have m > 0. Let EH′ (Avi) be the half-spae de�ned
by H ′

whih ontains Avi . We have

EH′(Avi) = {x ∈ V | 〈x, β̌〉 > m}

and

hA0
(ui) ⊂ EH′ (Avi) ⊂ EH(Ci).

We have shown that for every wall of Ci, hA0
(ui) lies on the same side of this wall

as Ci, thus hA0
(ui) ⊂ Ci as required. �

Corollary 4.5. (of Theorem 4.4)

(a) Let z, z′ ∈ W , r ∈ N∗
, m ∈ N and i, j ∈ [1, n]. We have

z.ur
i = z′.ur+m

j =⇒ i = j and z = z′.um
j .

(b) Let z1, z2, z
′
1, z

′
2 ∈ W , r ∈ N∗

, m ∈ N and i, j ∈ [1, n]. For all k ≥ 0 we

have

z1.u
r
i .z2 = z′1.u

r+m
j .z′2 ⇔ z1.u

r+k
i .z2 = z′1.u

r+k+m
j .z′2.

Proof. (a) We have z.ur
iA0 ∈ hA0

(ur
i ) and z′.ur+m

j = z′.um
j .ur

j ∈ hA0
(ur

j). Sine

z.ur
i = z′.ur+m

j , applying Theorem 4.4 yields i = j. The result follows.

(b) The statement follows from Lemma 4.3 and (a). �

5. Isomorphism of intervals and equalities of Kazhdan-Lusztig

polynomials

Let u ∈ W be a translation assoiated to t~u ∈ Ω and let M = ℓ(u). One an

easily see that M ≥ 2. Let

OrbΩ(~u) = {~u1 = ~u, ..., ~un}.

Finally, for i ∈ [1, n], let ui ∈ W be suh that uiA0 = A0t~ui
. In this setion we

want to prove

Theorem 1.2. Let z, z′ ∈ W , r ∈ N∗
and i, j ∈ [1, n] be suh that z.ur

i and z′.ur
j .

Let N = ℓ(z′)− ℓ(z). Then for r > N(M + 1) and for any k ≥ 0 we have

Pz.ur
i
,z′.ur

j
= Pz.ur+k

i
,z′.ur+k

j

and if there exists s ∈ S whih satis�es sz.ur
i < z.ur

i < z′.ur
j < s.z′.ur

j , then

M
s
z.ur

i ,z
′.ur

j
= M

s

z.ur+k
i

,z′.ur+k
j

.

Our �rst task is to onstrut an isomorphism from the Bruhat interval [z.ur
i , z

′.ur
j ]

to [z.ur+k
i , z′.ur+k

j ] and then to show that the orresponding r-polynomials are

equal.

Lemma 5.1. Let z, y ∈ W , r ∈ N∗
and i ∈ [1, n] be suh that z.ur

i . Let N =
ℓ(z.ur

i )− ℓ(y). Then for r > N we have

y ≤ z.ur
i ⇔ ∃z1, z2 ∈W,n1, n2 ∈ N suh that z1.u

r−N
i .z2 = y

z1 ≤ z.un1

i , z2 ≤ un2

i and n1 + n2 = N .

Furthermore, there exists a unique zy ∈W and m ∈ [1, n] suh that y = zy.u
r−N
m .
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Proof. “⇐′′
is lear.

“⇒′′
We proeed by indution on N .

If N = 0, it's lear.
Let N > 0. There exists y′ ∈ W suh that y ≤ y′ ≤ z.ur

i and

ℓ(z.ur
i )− ℓ(y′) = N − 1 and ℓ(y′)− ℓ(y) = 1.

Applying the indutive assumption yields

∃z′1, z
′
2 ∈ W,n′

1, n
′
2 ∈ N suh that z′1.u

r−N+1
i .z′2 = y′

z′1 ≤ z.u
n′

1

i , z′2 ≤ u
n′

2

i , n′
1 + n′

2 = N − 1 .

Let

y′ = sp...sm+1(sm...sk)
r−N+1sk−1...s1 (p ≥ m ≥ k ≥ 1)

be a redued expression of y′ suh that

z′1 = sp...sm+1, ui = sm...sk and z′2 = sk−1...s1 .

We know that y an be obtained by dropping a simple re�etion s ∈ S in a redued

expression of y′. If there exists l ∈ N suh that

y = sp...ŝl...sk(sm...sk)
r−Nsk−1...s1 (p ≥ l ≥ k)

or

y = sp...sm+1(sm...sk)
r−Nsm...ŝl...s1 (m ≥ l ≥ 1)

(where ŝ means that we have dropped s) the result is straightforward.
Now assume that there exists l1, l2 ∈ N∗

suh that l1 + l2 = r −N and

y = z′1.u
l1
i .ûi.u

l2
i .z

′
2 .

where ûi is obtained by dropping a simple re�etion in sm...sk.
Let j ∈ [1, n] suh that ul1

i .ûi = ûi.u
l1
j . We have y = z′1.ûi.u

l2
j .u

l1
i .z

′
2 whih implies

that ul2
j .u

l1
i . Furthermore, we have

ul2
j .u

l1
i A0 = A0tl2~uj

tl1~ui
= A0tl1~ui

tl2~uj
= ul1

i .u
l2
j A0.

Applying Corollary 4.5, we get i = j. Thus

y = z′1.u
l1
i .ûi.u

l2
i .z

′
2 = z′1.ûi.u

r−N
i .z′2.

Let

z1 = z′1.ûi n1 = n′
1 + 1

z2 = z′2 n2 = n′
2.

Then one an hek that z1 = z′1.ûi ≤ z.un1

i and z2 ≤ un2

i . Thus we get the result

by indution.

Let m ∈ [1, n] be suh that y = z1.u
r−N
i .z2 = z1.z2.u

r−N
m . Let zy = z1.z2.

Assume that there exists w ∈ W and k ∈ [1, n] suh that y = w.ur−N
k . By Corollary

4.5, we have k = m and w = zy, whih onludes the proof. �

Lemma 5.2. Let z, z′ ∈ W , i, j ∈ [1, n] and r1, r2 ∈ N∗
be suh that z.ur1

i and

z′.ur2
j . Let N = ℓ(z′.ur2

j )− ℓ(z.ur1
i ). Then for r2 > N and for any k ≥ 0 we have

z.ur1
i ≤ z′.ur2

j ⇔ z.ur1+k
i ≤ z′.ur2+k

j .
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Proof. Applying the previous lemma and Corollary 4.5 yields the following equiv-

alenes, for any k ≥ 0

z.ur1
i ≤ z′.ur2

j

⇔ ∃z1, z2 ∈W,n1, n2 ∈ N suh that z1.u
r2−N
j .z2 = z.ur1

i

z1 ≤ z′.un1

j , z2 ≤ un2

j and n1 + n2 = N

⇔ ∃z1, z2 ∈W,n1, n2 ∈ N suh that z1.u
r2−N+k
j .z2 = z.ur1+k

i ,

z1 ≤ z′.un1

j , z2 ≤ un2

j and n1 + n2 = N

⇔ zur1+k
i ≤ z′ur2+k

j .

�

Proposition 5.3. Let z, z′ ∈ W , i, j ∈ [1, n] and r ∈ N∗
be suh that z.ur

i and

z′.ur
j . Let N = ℓ(z′.ur

j) − ℓ(z.ur
i ). Then for r > N and for any k ≥ 0, the Bruhat

interval

I1 = [z.ur
i , z

′.ur
j ] = {y ∈ W | z.ur

i ≤ y ≤ z′.ur
j}

is isomorphi to I2 = [z.ur+k
i , z′.ur+k

j ].

Proof. Let y ∈ I1 and Ny = ℓ(z′.ur
j) − ℓ(y). There exists a unique zy ∈ W and

m ∈ N suh that y = zy.u
r−Ny
m .

Let

ϕ : I1 −→ I2
zy.u

r−Ny
m 7−→ zy.u

r+k−Ny
m .

We need to show that ϕ is an isomorphism of Bruhat interval.

Let y′ ≤ y ∈ I1. Let Ny′ = ℓ(z′.ur
j) − ℓ(y′). There exists a unique zy′ ∈ W and

m′ ∈ N suh that y = zy′ .u
r−Ny′

m′ . One an hek that we an apply Lemma 5.2, we

obtain

z.ur
i ≤ y = zy.u

r−Ny
m ≤ y′ = zy′ .u

r−N ′

y

m′ ≤ z′.ur
j

⇐⇒ z.ur+k
i ≤ ϕ(y) = zy.u

r−Ny+k
m ≤ ϕ(y′) = zy′ .u

r−Ny′+k

m′ ≤ z′.ur+k
j .

By Corollary 4.5 we see that ϕ is injetive. One an easly hek that ϕ is surjetive.

The result follows. �

The next step is to show that the orresponding r-polynomials are equal. Let Γ be

an abelian group together with a total order spei�ed by Γ+. Let {vs | s ∈ S} ⊂ Γ+

be the set of parameters and ξs = vs − v−1
s (see Setion 3 for details).

Let y, w ∈ W and s ∈ S suh that sw < w. Reall that the r-polynomials satisfy

ry,w = 0 unless y ≤ w, ry,y = 1 and the reursive relation

ry,w =

{

rsy,sw, if sy < y,

rsy,sw + (vs − v−1
s )ry,sw, if sy > y .

Proposition 5.4. Let z, z′ ∈ W , i, j ∈ [1, n] and r ∈ N∗
be suh that z.ur

i and

z′.ur
j . Let N = ℓ(z′)− ℓ(z). Then for r > NM and for any k ≥ 0 we have

rz.ur
i
,z′.ur

j
= r

z.ur+k
i ,z′.ur+k

j
.
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Proof. We proeed by indution on N .

If i = j or if N < 0 then the result is obvious.

If N = 0, sine

rz.ur
i
,z′.ur

j
= δz.ur

i
,z′.ur

j
and rz.ur+k

i
,z.ur+k

j
= δz.ur+k

i
,z.ur+k

j

the result follows from Corollary 4.5.

Let N ≥ 1 and i 6= j. Note that in this ase r > M .

Let uj = sM ...s1 be a redued expression. There exists 1 ≤ l ≤ M suh that

(z.ur
i s1...sl−1)sl > z.ur

i s1...sl−1. Indeed, if not, then z.ur
i = y.uj for some y ∈ W .

By Corollary 4.5, this implies that i = j, but we assumed that i 6= j. Let l ∈
[1...m] be the smallest element with this property. The minimality of l implies that

ℓ(z.ur
is1...sl−1) = ℓ(z.ur

i )− (l − 1).
One an see that zur

is1...sl−1 ≤ z.ur
i . Let y, w ∈ W and m, q, p ∈ [1, n] be suh

that

zur
i s1...sl−1 = y.ur−l+1

m

y.ur−l+1
m .sl = y.sl.u

r−l+1
p

z′ur
js1...sl = z′.ur−1

j .sM ...sl+1 = w.ur−1
q

By Corollary 4.5 we see that

zur+k
i s1...sl−1 = y.ur+k−l+1

m

y.ur+k−l+1
m .sl = y.sl.u

r+k−l+1
p

z′ur+k
j s1...sl = z′.ur+k−1

j .sM ...sl+1 = w.ur+k−1
q .

Applying the reursive formula for the r-polynomials, we obtain

rz.ur
i
,z.ur

j
= rzur

i
s1...sl−1,z2u

r
j
s1...sl−1

= ry.ur−l+1
m ,z2u

r
j
s1...sl−1

= rysl.u
r−l+1
p ,w.ur−1

q
+ ξslry.ur−l+1

m ,w.ur−1
q

and

rz.ur+k
i

,z.ur+k
j

= rzur+k
i

s1...sl−1,z2u
r+k
j

s1...sl−1

= ry.ur−l+1+k
m ,z2u

r+k
j

s1...sl−1

= rysl.u
r−l+1+k
p ,w.ur−1+k

q
+ ξslry.ur−l+1+k

m ,w.ur−1+k
q

.

Therefore to prove the theorem it is enough to show that

rysl.u
r−l+1
p ,w.ur−1

q
= rysl.u

r−l+1+k
p ,w.ur−1+k

q
,

r
y.ur−l+1

m ,w.ur−1
q

= r
y.ur−l+1+k

m ,w.ur−1+k
q

.

If l = 1 we have

rysl.ur
p,w.ur−1

q
= r(ysl.up).u

r−1
p ,w.ur−1

q
,

ry.ur
m,w.ur−1

q
= r(y.um).ur−1

m ,w.ur−1
q
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and

ℓ(w)− ℓ(yslup) = N − 2,

ℓ(w)− ℓ(yum) = N − 1.

Moreover r − 1 > 0 (we have seen that r > M ≥ 2) and

r − 1 > MN − 1 ≥MN −N = M(N − 1) > M(N − 2).

Therefore in both ases we an apply the indution hypothesis whih yields the

desired equalities.

If l > 1, we have

ryslu
r−l+1
p ,w.ur−1

q
= ryslu

r−l+1
p ,w.ul−2

q .ur−l+1
q

,

r
y.ur−l+1

m ,w.ur−1
q

= r
y.ur−l+1

m ,w.ul−2
q ur−l+1

q

and

ℓ(w.ul−2
q )− ℓ(ysl) = N − 2,

ℓ(w.ul−2
q )− ℓ(y) = N − 1.

Moreover r − l+ 1 > 0 and

r − l+ 1 > r −M > M(N − 1) > M(N − 2)

and one more the indution hypothesis gives the desired equalities. �

We are now ready to prove Theorem 1.2.

Proof. The intervals I1 = [z.ur
i , z

′.ur
j ], I2 = [z.ur+k, z′.ur+k] are isomorphi with

respet to the Bruhat order via ϕ (as de�ned in Proposition 5.3).

Let y1, y2 ∈ I (ℓ(y1) ≤ ℓ(y2)), z1, z2 ∈ W , N1, N2 ∈ N and m1,m2 ∈ [1, n] be suh
that

N1 = ℓ(z′.ur+k)− ℓ(y1) and y1 = z1u
r−N1

m1
,

N2 = ℓ(z′.ur+k)− ℓ(y2) and y2 = z2u
r−N2

m2
.

We have

r −N1 ≥ r −N > N(M + 1)−N = MN ≥M(ℓ(y2)− ℓ(y1)).

Thus, by Proposition 5.4, we obtain

ry1,y2
= r

z1u
r−N1
m1

,z2u
r−N2
m2

= r
z1u

r−N1
m1

,z2u
N1−N2
m2

u
r−N1
m2

= r
z1u

r+k−N1
m1

,z2u
N1−N2
m2

u
r+k−N1
m2

= rϕ(y1),ϕ(y2).

Therefore, by remark 3.1, we get the result. �



16 Guilhot

6. Appliation to G̃2

Our aim is to prove Theorem 1.1.

Throughout this setion, let W be an a�ne Weyl group of type G̃2, with presenta-

tion as follows

W := 〈s1, s2, s3 | (s1s2)
6 = 1, (s2s3)

3 = 1, (s1s3)
2 = 1〉.

The generators s2 and s3 are onjugate in W, thus a weight funtion L on W is

uniquely determined by

L(s1) = a and L(s2) = L(s3) = b a, b ∈ N∗

We shall denote suh a weight funtion by L = La,b.

Let Q, q be independant indeterminates over Z and onsider the abelian group

Γ = {Qiqj | i, j ∈ Z}.

Let v be another indeterminate. We have a ring homomorphism

σa,b : Z[Γ]→ Z[v, v−1], Qiqj → vai+bj .

We will need the following lemma.

Lemma 6.1. Let y < w ∈ W , I = [y, w] and s ∈ S suh that

sy < y < w < sw.

(1) Consider the total order given by

Γ1
+ = {Qiqj | i > 0, j ∈ Z} ∪ {qi | i > 0}.

Suppose that, for c, d ∈ N∗
, we have

Γs
+(I) ⊆ {q

j | j > 0} ∪ {Qiqj | i > 0, ci+ dj ≥ 0}.

Then ondition (∗) in Proposition 3.3 holds for any σa,b suh that a/b >
c/d.
Furthermore, if M

s
y,w 6= 0, then for any weight funtions La,b suh that

a/b > c/d, we have M s
y,w 6= 0.

(2) Let c ≥ d ∈ N∗
. Consider the total order given by

Γ2
+ = {Qiqj | ci+ dj > 0} ∪ {Qdjq−cj | j > 0}.

Suppose that we have, for some e > c/d ∈ Q>0

Γs
+(I) ⊆ {q

j | j > 0} ∪ {Qiqj | i > 0, i+ j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ e} ∪ {Qiqj | −j > i > 0,−j/i ≤ c/d}.

Then ondition (∗) in Proposition 3.3 holds for any σa,b suh that e >
a/b > c/d.
Furthermore, if M

s
y,w 6= 0, then for any weight funtions La,b suh that

e > a/b > c/d, we have M s
y,w 6= 0.

Proof. We prove 1. Let i, j ∈ Z suh that Qiqj ∈ Γs
+(I). We must show that

ai+ bj > 0 provided that a/b > c/d.
If i = 0 then j > 0 and ai+ bj = bj > 0.
If i > 0 and ci+ dj ≥ 0 then

ai+ bj = b(ia/b+ j) > b(ic/d+ j) ≥ 0
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as required.

We prove 2. Let i, j ∈ Z suh that Qiqj ∈ Γs
+(I). We must show that ai+bj > 0

provided that e > a/b > c/d.
If i = 0 then j > 0 and ai+ bj = bj > 0.
If i > 0 and i + j ≥ 0 then

ai+ bj > b(c/d)i+ bj = b(ic/d+ j) > b(i+ j) ≥ 0.

If j > −i > 0 and −j/i ≥ e then

ai+ bj = bj((a/b)(i/j) + 1) > bj(ei/j + 1) ≥ 0.

Finally, if −j > i > 0 and −j/i ≤ c/d then

ai+ bj = ai(1 + (b/a)j/i) > ai(1 + (d/c)(i/j)) ≥ 0

as required.

�

Note that, in the situation of the above lemma, we will always have a > b. But
similar results also hold for b > a.

In order to prove Theorem 1.1, we will proeed as follows.

Using Proposition 3.3, Theorem 1.2 and the previous lemma, we will �nd a olletion

of non-zero M -polynomials. We will then �nd some in�nite sets suh that eah of

these sets is inluded in a left ell for any hoie of parameters and suh that all

the elements of W lie in one of these sets exept for a �nite number. Then, we an

onlude that the number of left ells is �nite for any hoie of parameters and that

there is a �nite number of distint deompositions of W into left ells.

We have developped some programs in GAP3 [15℄ whih, given an interval I,
s ∈ S and a monomial order on Γ, ompute the following data

(1) The Kazhdan-Lusztig polynomials Py,w for all y, w ∈ I,
(2) M

s
y,w for all y, w ∈ I suh that sy < y < w < sw,

(3)

∑

z;z1≤z<z2;sz<z

Pz1,zM
s
z,z2
− vsPz1,z2 for all z1, z2 ∈ I,

so that we an ompute the set Γs
+(I) as desribed in Proposition 3.3.

We work with the geometri representation of W as desribed in Setion 2. Let

u1 = s1s2s1s2s3s1s2s1s2s3 ∈W . One an hek that u1 is a translation. Let

Π = {e, s3, s2s3, s1s2s3, s2s1s2s3,

s3s2s1s2s3, s1s2s1s2s3, s3s1s2s1s2s3, s2s3s1s2s1s2s3,

s1s2s3s1s2s1s2s3, s2s1s2s3s1s2s1s2s3, s3s2s1s2s3s1s2s1s2s3}

W1 = {e, s1, s1s2, s1s2s1, s1s2s1s2, s1s2s1s2s1}

= {w1, w2, w3, w4, w5, w6}

and y = s3s2s1s2s3s1s2s1s2s3.
For wi ∈W1 let σwi

∈ Ω suh that wiA0 = A0σwi
. One an hek that

OrbΩ( ~u1) = {~u1σw1
, ..., ~uσw6

} = {~u1, ..., ~u6}.

For 1 ≤ i ≤ 6, let

Ir1,i = [s3.u
r.wi, y.u

r.wi] = [s3.wi.u
r
i , y.wi.u

r
i ] = [xr

1,i, y
r
1,i],
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Ir2,i = [s3s1s2s1s2s3u
r.wi, y.s1s2s1s2s3u

r.wi]

= [s3s1s2s1s2s3.wi.u
r
i , y.s1s2s1s2s3.wi.u

r
i ]

= [xr
2,i, y

r
2,i].

Let k = 1, 2. Aording to the results in the previous setion, we know that for r
large enough, the intervals Irk,i and Ir+n

k,i are isomorphi for any n ≥ 0 and that the

orresponding r-polynomials are equal. However, using our GAP3 program, we see

that this is true for r ≥ 6.
We want to show that, for r ≥ 6, M s1

xr
k,i

,yr
k,i
6= 0 for any hoie of parameters. By

the previous remark, it is enough to show that M s1
x6
k,i

,y6
k,i

6= 0.

We give some details for the omputation of M s1
x6
1,1,y

6
1,1

.

Let x = x6
1,1, y = y61,1 and I = I61,1.

Consider the total order given by

Γ+ = {Qiqj | i > 0, j ∈ Z} ∪ {qi | i > 0}.

Using our GAP3 program to alulate the set Γs1
+ (I), we �nd M

s1
x,y = 1 and

Γs
+(I) ⊆ {q

j | j > 0} ∪ {Qiqj | 3i+ j ≥ 0}.

Therefore, applying Lemma 6.1, we see that, for any parameter a, b suh that

a/b > 3, we have

M s1
x,y = σa,b(M

s1
x,y) and M

s1
x,y 6= 0 =⇒M s1

x,y 6= 0.

In order to deal with weight funtions La,b suh that a/b < 3, we proeed as follows.
Let

E = {x ∈ Q>0 | x = ±j/i where j < 0, i 6= 0, Qiqj ∈ Γs
+(I)}.

The largest element of E below 3 is 2. Thus we onsider the weight funtions La′,b′

where b′/a′ > 2.
Consider the total order given by

Γ+ = {Qiqj | 2i+ j > 0} ∪ {Qjq−2j | j > 0}.

Computing Γs
+(I) gives M

s1
x,y = 1 and

Γs
+(I) ⊆ {q

j | j > 0} ∪ {Qiqj | i > 0, i+ j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ 3} ∪ {Qiqj | −j > i > 0,−j/i ≤ 2}.

Therefore, for any parameter a, b suh that 3 > a/b > 2, we have

M s1
x,y = σa,b(M

s1
x,y) and M

s1
x,y 6= 0 =⇒M s1

x,y 6= 0.

Again we look at the set

E = {x ∈ Q>0 | x = ±j/i where j < 0, i 6= 0, Qiqj ∈ Γs
+(I)}.

The largest element of E below 2 is 3/2.
Consider the total order given by

Γ+ = {Qiqj | 3i+ 2j > 0} ∪ {Q2jq−3j | j > 0}.

We �nd

Γs
+(I) ⊆ {q

j | j > 0} ∪ {Qiqj | i > 0, i+ j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ 2} ∪ {Qiqj | −j > i > 0,−j/i ≤ 3/2}.

As above, we onlude that M s1
x,y 6= 0 for any parameter a, b suh that 2 > a/b >

3/2.
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We look at the set E (de�ned as above), we �nd that the largest element of E below
3/2 is 4/3.
Consider the total order given by

Γ+ = {Qiqj | 4i+ 3j > 0} ∪ {Q3jq−4j | j > 0}.

We �nd

Γs
+(I) ⊆ {q

j | j > 0} ∪ {Qiqj | i > 0, i+ j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ 3/2} ∪ {Qiqj | −j > i > 0,−j/i ≤ 4/3}

and M s1
x,y 6= 0 for any parameter a, b suh that 3/2 > a/b > 4/3.

We now ontinue the proedure. This leads us to onsider the total order given by

Γ+ = {Qiqj | 5i+ 4j > 0} ∪ {Q4jq−5j | j > 0}.

We �nd

Γs
+(I) ⊆ {q

j | j > 0} ∪ {Qiqj | i > 0, i+ j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ 4/3} ∪ {Qiqj | −j > i > 0,−j/i ≤ 5/4}

and M s1
x,y 6= 0 for any parameter a, b suh that 4/3 > a/b > 5/4.

Finally, onsider the total order given by

Γ+ = {Qiqj | i+ j > 0} ∪ {Qjq−j | j > 0}.

We �nd

Γs
+(I) ⊆ {q

j | j > 0} ∪ {Qiqj | i > 0, i+ j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ 5/4}

and M s1
x,y 6= 0 for any parameters a, b suh that 5/4 > a/b > 1.

We now alulate M s1
x,y for the parameters a, b where a/b ∈ {3, 2, 3/2, 4/3, 5/4, 1},

and we �nd that these are non-zero.

We have treated all the ases where a ≥ b.
We proeed in the same way for the ase a ≤ b.

Doing the same for the other intervals, we an show that for r ≥ 6 and for any

parameters the oe�ients

M s1
xr
1,i

,yr
1,i

and M s1
xr
2,i

,yr
2,i

are non-zero, whih in turn implies that the following sets are inluded in a left ell:

Ci = {z.u
r
1.wi | r ≥ 7, z ∈ Π}, 1 ≤ i ≤ 6.

Now, let u = s2s1s2s1s2s3 and

W2 = {e, s2, s2s1, s2s1s2, s2s1s2s1, s2s1s2s1s2} = {w1, w2, w3, w4, w5, w6}.

For wi ∈W2 let σwi
∈ Ω suh that wiA0 = A0σwi

. One an hek that

OrbΩ( ~u1) = {~u1σw1
, ..., ~uσw6

} = {~u1, ..., ~u6}.

For 1 ≤ i ≤ 6 let

Ir1,i = [s2s3.u
r.wi, y.ur.wi] = [s2s3.wi.u

r
i , y.wi.u

r
i ] = [xr

1,i, y
r
1,i],

Ir2,i = [s3s2s1s2s3u
r.wi, s3s2s1s2s1s2s3u

r+1.wi]

= [s3s2s1s2s3.wi.u
r
i , s3s2s1s2s1s2s3.wiu

r+1
i ]

= [xr
2,i, y

r
2,i].
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Let 1 ≤ i ≤ 6 and k = 1, 2. Using our GAP3 program one an see that, for r ≥ 6,
the intervals Irk,i and Ir+n

k,i are isomorphi for all n ≥ 0 and that the orresponding

r-polynomials are equal. Now, using Lemma 6.1, we an show that for r ≥ 6 and

for any parameter a, b suh that a/b ≤ 2 the polynomials

M s2
xr
1,i

,yr
1,i

and M s2
xr
2,i

,yr
2,i

are non-zero.

Therefore, for these parameters, the following sets are inluded in a left ell:

Bi = {z.u
r.wi | r ≥ 7, z ∈ Π}, 1 ≤ i ≤ 6.

We now have a look to the parameters a, b suh that a/b > 2.
Arguing as before, we �nd that, for r ≥ 6, the polynomials

M s1
s1s2s3urwi,s2s3s2s1s2s1s2s3urwi

, M s2
s2s3urwi,s3ur+1wi

M s1
s1s2s3urwi,s3s2s1s2s3urwi

are non-zero. Therefore, for these parameters, the following sets are inluded in a

left ell:

Bi = {z.u
r.wi | r ≥ 7, z ∈ Π}, 1 ≤ i ≤ 6

Reall that in [2℄ and [19℄ it is shown that the set

WT = {w ∈W | w = z′.w0.z, z
′ ∈W}

is a two-sided ell and that it ontains at most |W0 |= 12 left ells.

Now one an hek that the set WT together with the Bi's and the Ci's ontain all

the elements of W exept for a �nite number. The theorem is proved.

Of ourse, we would like to �nd the exat deomposition ofW in left ells for any

parameters. However, it is di�ult to separate left ells. Computing some more

oe�ients in the ase where a >> b, we �nd a more preise deomposition of W
whih is inluded in the left ells deomposition.

We show this deomposition in Figure 2. We identify w ∈ W with the alove

wA0. The sets whih are inluded in a left ells are formed by the aloves lying in

the same onneted omponent after removing the thik line.

We have

WT =
12
∪
i=1

Ai.

The �gure also show the shape of the sets Bi and Ci.
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