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Abstract

The aim of this paper is to give a complete classification of irreducible finite dimensional
representations of the nonstandard q-deformation U ′

q
(son) (which does not coincide with the

Drinfeld–Jimbo quantum algebra Uq(son)) of the universal enveloping algebra U(son(C)) of
the Lie algebra son(C) when q is not a root of unity. These representations are exhausted
by irreducible representations of the classical type and of the nonclassical type. Theorem on
complete reducibility of finite dimensional representations of U ′

q
(son) is proved.

Mathematical Subject Classification: 17B37, 81R10

1. Introduction

Quantum orthogonal groups, quantum Lorentz groups and the corresponding quantum alge-
bras are of special interest for modern mathematical physics. M. Jimbo [19] and V. Drinfeld [3]
defined q-deformations (quantum algebras) Uq(g) for all simple complex Lie algebras g by means
of Cartan subalgebras and root subspaces (see also [18] and [23]). Reshetikhin, Takhtajan and
Faddeev [32] defined quantum algebras Uq(g) in terms of the quantum R-matrix satisfying the
quantum Yang–Baxter equation. However, these approaches do not give a satisfactory presen-
tation of the quantum algebra Uq(son) from a viewpoint of some problems in quantum physics
and representation theory. When considering representations of the quantum algebras Uq(son+1)
and Uq(son,1) we are interested in reducing them onto the quantum subalgebra Uq(son). This re-
duction would give an analogue of the Gel’fand–Tsetlin basis for these representations. However,
definitions of quantum algebras mentioned above do not allow the inclusions Uq(son+1) ⊃ Uq(son)
and Uq(son,1) ⊃ Uq(son). To be able to exploit such reductions we have to consider q-deformations
of the Lie algebra son+1(C) defined in terms of the generators Ik,k−1 = Ek,k−1 − Ek−1,k (where
Eis is the matrix with entries (Eis)rt = δirδst) rather than by means of Cartan subalgebras and
root elements. To construct such deformations we have to deform trilinear relations for elements
Ik,k−1 instead of Serre’s relations (used in the case of the standard quantized universal enveloping
algebras). As a result, we obtain the associative algebra which will be denoted as U ′

q(son).
This q-deformation was first constructed in [8]. It permits one to construct the reductions of

U ′
q(son,1) and U ′

q(son+1) onto U ′
q(son). The q-deformed algebra U ′

q(son) leads for n = 3 to the
q-deformed algebra U ′

q(so3) defined by D. Fairlie [4]. The cyclically symmetric algebra, similar to
Fairlie’s one, was also considered somewhat earlier by Odesskii [31].

In the classical case, the imbedding SO(n) ⊂ SU(n) (and its infinitesimal analogue) is of
great importance for nuclear physics and in the theory of Riemannian symmetric spaces. It is
well known that in the framework of quantum groups and Drinfeld–Jimbo quantum algebras one
cannot construct the corresponding embedding. The algebra U ′

q(son) allows to define such an
embedding [29], that is, it is possible to define the embedding U ′

q(son) ⊂ Uq(sln), where Uq(sln) is
the Drinfeld-Jimbo quantum algebra.

As a disadvantage of the algebra U ′
q(son) we have to mention the difficulties with Hopf algebra

structure. Nevertheless, U ′
q(son) turns out to be a coideal in Uq(sln) (see [29]) and this fact allows

us to consider tensor products of finite dimensional irreducible representations of U ′
q(son) for many

interesting cases (see [13]).
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The algebra U ′
q(son) and their representations are interesting in many cases. Main directions

of interest are the following:

1. The theory of orthogonal polynomials and special functions (especially, the theory of q-
orthogonal polynomials and basic hypergeometric functions). This direction is not good worked
out. Some ideas of such applications can be found in [22].

2. The algebra U ′
q(son) (especially its particular case U ′

q(so3)) is related to the algebra of
observables in 2+1 quantum gravity on the Riemmanian surfaces (see papers [2, 5, 28]).

3. A quantum analogue of the Riemannian symmetric space SU(n)/SO(n) is constructed by
means of the algebra U ′

q(son). This construction is fulfilled in the paper [29] (see also [24]).

4. A q-analogue of the theory of harmonic polynomials (q-harmonic polynomials on quantum
vector space R

n
q ) is constructed by using the algebra U ′

q(son). In particular, a q-analogue of
different separations of variables for the q-Laplace operator on R

n
q is given by means of this

algebra and its subalgebras. This theory is contained in the papers [17] and [30].

5. The algebra U ′
q(son) also appears in the theory of links in the algebraic topology (see [1]).

6. The algebra U ′
q(son) is connected with Yangians (see [26] and references therein).

7. A new quantum analogue of the Brauer algebra is connected with the algebra U ′
q(son) (see

[27]).

A large class of finite dimensional irreducible representations of the algebra U ′
q(son) were

constructed in [8]. The formulas of action of the generators of U ′
q(son) upon the basis (which

is a q-analogue of the Gel’fand–Tsetlin basis) are given there. A proof of these formulas and
some their corrections were given in [6]. However, finite dimensional irreducible representations
described in [6] and [8] are representations of the classical type. They are q-deformations of the
corresponding irreducible representations of the Lie algebra son, that is, at q → 1 they turn into
representations of son.

The algebra U ′
q(son) has other classes of finite dimensional irreducible representations which

have no classical analogue. These representations are singular at the limit q → 1. They are
described in [15]. The description of these representations for the algebra U ′

q(so3) is given in [9].
A classification of irreducible ∗-representations of real forms of the algebra U ′

q(so3) is given in [33].
The representation theory of U ′

q(son) when q is a root of unity is studied in [16].
In this paper we deal with classification of finite dimensional irreducible representations of

the algebra U ′
q(son) when q is not a root of unity. As mentioned above, there were constructed

irreducible representations of the algebra U ′
q(son) belonging to the classical and to the nonclas-

sical types. However, it was not known that these representations exhaust all irreducible finite
dimensional representations. We started to study this problem in [21]. We show there that these
representations are determined by the so called highest weights (which were defined in [21] and
differ from highest weights in the theory of quantized universal enveloping algebras). However,
we do not know a correspondence between known representations of the classical and nonclassi-
cal types and highest weights. In the present paper we develop an approach to the problem of
classification from other point of view. Namely, we prove that each irreducible finite dimensional
representation of U ′

q(son) belongs to the set of representations of the classical type or to the set of
representations of the nonclassical type, constructed before. For proving this we use our previous
results on structure of the algebra U ′

q(son) (tensor operators, Wigner–Eckart theorem, etc). We
also need the theorem on complete reducibility of finite dimensional representations of U ′

q(son).
This theorem is proved in this paper. Some ideas from the theory of representations of the Lie
algebra son(C) and its real forms are also used.

Note that the problem of classification of irreducible finite dimensional representations of
U ′
q(son) is much more complicated than in the case of Drinfeld–Jimbo quantum algebras since in

U ′
q(son) we do not have an analogue of a Cartan subalgebra and root elements. The set of all

irreducible finite dimensional representations of U ′
q(son) is wider than in the case of Uq(son).
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Everywhere below we assume that q is not a root of unity.

2. The q-deformed algebra U ′
q(son)

The universal enveloping algebra U(son(C)) is generated by the elements Iij = Eij − Eji,
i > j. But in order to generate the algebra U(son(C)), it is enough to take only the elements
I21, I32, · · · , In,n−1. It is a minimal set of elements necessary for generating U(son(C)). These
elements satisfy the relations

I2i,i−1Ii+1,i − 2Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI
2
i,i−1 = −Ii+1,i,

Ii,i−1I
2
i+1,i − 2Ii+1,iIi,i−1Ii+1,i + I2i+1,iIi,i−1 = −Ii,i−1,

Ii,i−1Ij,j−1 − Ij,j−1Ii,i−1 = 0 for |i− j| > 1.

The following theorem is true for U(son(C)) (see [20]): The enveloping algebra U(son(C)) is
isomorphic to the complex associative algebra (with a unit element) generated by the elements I21,
I32, · · · , In,n−1 satisfying the above relations.

We make a q-deformation of these relations by fulfilling the deformation of the integer 2 as
2 → [2]q := (q2 − q−2)/(q − q−1) = q + q−1. As a result, we obtain the relations

I2i,i−1Ii+1,i − (q + q−1)Ii,i−1Ii+1,iIi,i−1 + Ii+1,iI
2
i,i−1 = −Ii+1,i, (1)

Ii,i−1I
2
i+1,i − (q + q−1)Ii+1,iIi,i−1Ii+1,i + I2i+1,iIi,i−1 = −Ii,i−1, (2)

Ii,i−1Ij,j−1 − Ij,j−1Ii,i−1 = 0 for |i− j| > 1. (3)

The q-deformed algebra U ′
q(son) is defined as the complex unital (that is, with a unit element)

associative algebra generated by elements I21, I32, · · · , In,n−1 satisfying relations (1)–(3). It
is a q-deformation of the universal enveloping algebra U(son(C)), different from the Drinfeld–
Jimbo quantized universal enveloping algebra Uq(son). For this algebra the inclusions U ′

q(son) ⊃
U ′
q(son−1) and Uq(sln) ⊃ U ′

q(son) are constructed, where Uq(sln) is the well known Drinfeld–Jimbo
quantum algebra (see Introduction).

An analogue of the skew-symmetric matrices Iij = Eij − Eji, i > j, constituting a basis of
the Lie algebra son(C), can be introduced into U ′

q(son) (see [7] and [30]). For k > l + 1 they are
defined recursively by the formulas

Ikl := [Il+1,l, Ik,l+1]q ≡ q1/2Il+1,lIk,l+1 − q−1/2Ik,l+1Il+1,l,

The elements Ikl, k > l, satisfy the commutation relations

[Ilr, Ikl]q = Ikr, [Ikl, Ikr]q = Ilr, [Ikr, Ilr]q = Ikl for k > l > r, (4)

[Ikl, Isr] = 0 for k > l > s > r and k > s > r > l, (5)

[Ikl, Isr]q = (q − q−1)(IlrIks − IkrIsl) for k > s > l > r. (6)

For q = 1 they coincide with the corresponding commutation relations for the Lie algebra son(C).
The algebra U ′

q(son) can be also defined as a unital associative algebra generated by Ikl,
1 ≤ l < k ≤ n, satisfying the relations (4)–(6). In fact, the relations (4)–(6) can be reduced to
the relations (1)–(3) for I21, I32, · · · , In,n−1.

The Poincaré–Birkhoff–Witt theorem for the algebra U ′
q(son) can be formulated as follows (a

proof of this theorem is given in [16]): The elements

I21
m21I31

m31 · · · In1mn1I32
m32I42

m42 · · · In2mn2 · · · In,n−1
mn,n−1 , mij = 0, 1, 2, · · · ,

form a basis of the algebra U ′
q(son).
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In U ′
q(son) the commutative subalgebra A generated by the elements I21, I43, I65, · · · , In−1,n−2

(or In,n−1) can be separated. So, this subalgebra is generated by ⌊n/2⌋ elements, where ⌊n/2⌋ is
an integral part of the number n/2. However, there exist no root elements in the algebra U ′

q(son)
with respect to this commutative subalgebra. This leads to the fact that properties of U ′

q(son)
are not similar to those of the Drinfeld–Jimbo algebra Uq(son).

3. Irreducible representations of the classical and nonclassical types

In this section we give known facts on irreducible representations of U ′
q(son), which will be used

below. The corresponding references are given in Introduction.
Two types of irreducible finite dimensional representations are known for U ′

q(son):

(a) representations of the classical type;
(b) representations of the nonclassical type.

Known irreducible representations of the classical type are q-deformations of the irreducible
finite dimensional representations of the Lie algebra son. There is a one-to-one correspondence
between these irreducible representations of the algebra U ′

q(son) and irreducible finite dimensional
representations of the Lie algebra son. Moreover, formulas for representations of the classical type
of U ′

q(son) turn into the corresponding formulas for the representations of Lie algebra son at q → 1.
There exists no classical analogue for representations of the nonclassical type: representation

operators T (a), a ∈ U ′
q(son), have singularities at q = 1.

Let us describe known irreducible finite dimensional representations of the algebras U ′
q(son),

n ≥ 3, which belong to the classical type. As in the classical case, they are given by sets mn of
⌊n/2⌋ numbers m1,n,m2,n, ...,m⌊n/2⌋,n (here ⌊n/2⌋ denotes the integral part of n/2) which are all
integral or all half-integral and satisfy the dominance conditions

m1,2k+1 ≥ m2,2k+1 ≥ ... ≥ mk,2k+1 ≥ 0, m1,2k ≥ m2,2k ≥ ... ≥ mk−1,2k ≥ |mk,2k|
for n = 2k + 1 and n = 2k, respectively. These representations are denoted by Tmn . We
take a q-analogue of the Gel’fand–Tsetlin basis in the representation space, which is obtained
by successive reduction of the representation Tmn to the subalgebras U ′

q(son−1), U
′
q(son−2), · · ·,

U ′
q(so3), U

′
q(so2) := U(so2). As in the classical case, its elements are labelled by the Gel’fand–

Tsetlin tableaux

{αn} ≡















mn

mn−1

. . .
m2















≡ {mn, αn−1} ≡ {mn,mn−1, αn−2}, (7)

where, as in the non-deformed case, the components of ms and ms−1 satisfy the ”betweenness”
conditions

m1,2p+1 ≥ m1,2p ≥ m2,2p+1 ≥ m2,2p ≥ ... ≥ mp,2p+1 ≥ mp,2p ≥ −mp,2p+1,

m1,2p ≥ m1,2p−1 ≥ m2,2p ≥ m2,2p−1 ≥ ... ≥ mp−1,2p−1 ≥ |mp,2p|.
Sometimes, the basis elements, defined by a tableau {αn}, are denoted as |αn−1〉 or as |mn−1, αn−2〉,
that is, we shall omit the first row mn in a tableau.

It is convenient to introduce the so-called l-coordinates

lj,2p+1 = mj,2p+1 + p− j + 1, lj,2p = mj,2p + p− j,

for the numbers mi,k. The operator Tmn(I2p+1,2p) of the representation Tmn of U ′
q(son) acts upon

Gel’fand–Tsetlin basis elements, labelled by (7), as

Tmn(I2p+1,2p)|αn〉 =
p
∑

j=1

Aj
2p(αn)

a(lj,2p)
|(αn)

+j
2p 〉 −

p
∑

j=1

Aj
2p((αn)

−j
2p )

a(lj,2p − 1)
|(αn)

−j
2p 〉 (8)
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and the operator Tmn(I2p,2p−1) acts as

Tmn(I2p,2p−1)|αn〉 =
p−1
∑

j=1

Bj
2p−1(αn)

b(lj,2p−1)[lj,2p−1]
|(αn)

+j
2p−1〉

−
p−1
∑

j=1

Bj
2p−1((αn)

−j
2p−1)

b(lj,2p−1 − 1)[lj,2p−1 − 1]
|(αn)

−j
2p−1〉+ iC2p−1(αn)|αn〉. (9)

In these formulas, (αn)
±j
s means the tableau (7) in which j-th component mj,s in ms is replaced

by mj,s ± 1, respectively. The coefficients Aj
2p, B

j
2p−1, C2p−1, a and b in (8) and (9) are given by

the expressions

Aj
2p(αn) =

(

∏p
i=1[li,2p+1 + lj,2p][li,2p+1 − lj,2p − 1]

∏p−1
i=1 [li,2p−1 + lj,2p][li,2p−1 − lj,2p − 1]

∏p
i 6=j [li,2p + lj,2p][li,2p − lj,2p][li,2p + lj,2p + 1][li,2p − lj,2p − 1]

)1/2

,

(10)

Bj
2p−1(αn) =

(

∏p
i=1[li,2p + lj,2p−1][li,2p − lj,2p−1]

∏p−1
i=1 [li,2p−2 + lj,2p−1][li,2p−2 − lj,2p−1]

∏p−1
i 6=j [li,2p−1+lj,2p−1][li,2p−1−lj,2p−1][li,2p−1+lj,2p−1−1][li,2p−1−lj,2p−1−1]

)1/2

,

(11)

C2p−1(αn) =

∏p
s=1[ls,2p]

∏p−1
s=1[ls,2p−2]

∏p−1
s=1[ls,2p−1][ls,2p−1 − 1]

, (12)

a(lj,2p) = {(qlj,2p+1 + q−lj,2p−1)(qlj,2p + q−lj,2p)}1/2, b(lj,2p−1) = ([2lj,2p−1 + 1][2lj,2p−1 − 1])1/2.

Numbers in square brackets in formulas (9)–(12) mean q-numbers defined by

[a] ≡ [a]q :=
qa − q−a

q − q−1
.

It is seen from formula (12) that the coefficient C2p−1 vanishes if mp,2p ≡ lp,2p = 0.
The following assertion is well-known [8]: The representations Tmn are irreducible. The rep-

resentations Tmn and T
m

′
n
are pairwise nonequivalent for mn 6= m′

n.
Irreducible finite dimensional representations of the nonclassical type are given by sets ǫ :=

(ǫ2, ǫ3, · · · , ǫn), ǫi = ±1, and by setsmn consisting of ⌊n/2⌋ half-integral (but not integral) numbers
m1,n,m2,n, · · ·, m⌊n/2⌋,n that satisfy the dominance conditions

m1,n ≥ m2,n ≥ ... ≥ m⌊n/2⌋,n ≥ 1/2. (13)

These representations are denoted by Tǫ,mn.
For a basis in the representation space, we use an analogue of the basis of the previous case.

Its elements are labelled by tableaux (7), where the components of ms and ms−1 satisfy the
”betweenness” conditions

m1,2p+1 ≥ m1,2p ≥ m2,2p+1 ≥ m2,2p ≥ ... ≥ mp,2p+1 ≥ mp,2p ≥ 1/2,

m1,2p ≥ m1,2p−1 ≥ m2,2p ≥ m2,2p−1 ≥ ... ≥ mp−1,2p−1 ≥ mp,2p.

The corresponding basis elements are denoted by the same symbols as in the previous case. The
l-coordinates for mj,s are introduced by the same formulas as before.

The operator Tǫ,mn(I2p+1,2p) of the representation Tǫ,mn of U ′
q(son) acts upon the basis ele-

ments |αn〉 by the formulas

Tǫ,mn(I2p+1,2p)|αn〉 = δmp,2p ,1/2
ǫ2p+1

q1/2 − q−1/2
D2p(αn)|αn〉+
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+

p
∑

j=1

Aj
2p(αn)

a′(lj,2p)
|(αn)

+j
2p 〉 −

p
∑

j=1

Aj
2p((αn)

−j
2p )

a′(lj,2p − 1)
|(αn)

−j
2p 〉, (14)

where the summation in the last sum must be from 1 to p − 1 if mp,2p = 1/2, and the operator
Tmn(I2p,2p−1) acts as

Tǫ,mn(I2p,2p−1)|αn〉 =
p−1
∑

j=1

Bj
2p−1(αn)

b(lj,2p−1)[lj,2p−1]+
|(αn)

+j
2p−1〉−

−
p−1
∑

j=1

Bj
2p−1((αn)

−j
2p−1)

b(lj,2p−1 − 1)[lj,2p−1 − 1]+
|(αn)

−j
2p−1〉+ ǫ2pĈ2p−1(αn)|αn〉, (15)

where
[a]+ = (qa + q−a)/(q − q−1).

As before, (αn)
±j
s means the tableau (7) in which j-th component mj,s in ms is replaced by

mj,s ± 1, respectively. The expressions for Aj
2p, B

j
2p−1 and b are given by the same formulas as in

(8) and (9),
a′(lj,2p) = {(qlj,2p+1 − q−lj,2p−1)(qlj,2p − q−lj,2p)}1/2,

Ĉ2p−1(αn) =

∏p
s=1[ls,2p]+

∏p−1
s=1[ls,2p−2]+

∏p−1
s=1[ls,2p−1]+[ls,2p−1 − 1]+

, D2p(αn) =

∏p
i=1[li,2p+1 − 1

2 ]
∏p−1

i=1 [li,2p−1 − 1
2 ]

∏p−1
i=1 [li,2p +

1
2 ][li,2p − 1

2 ]
.

(16)
The following assertion is true (see [15]): The representations Tǫ,mn are irreducible. The

representations Tǫ,mn and Tǫ′,m′
n

are pairwise nonequivalent for (ǫ,mn) 6= (ǫ′,m′
n). For any

admissible (ǫ,mn) and m′
n the representations Tǫ,mn and T

m
′
n
are pairwise nonequivalent.

Remark. As in the case of irreducible representations of the Lie algebra son, it follows from the
explicit description of irreducible representations Tmn and Tǫ,mn of U ′

q(son) that the restriction of
Tmn onto the subalgebra U ′

q(son−1) decomposes into a direct sum of irreducible representations
of this subalgebra belonging to the classical type and the restriction of Tǫ,mn onto U ′

q(son−1)
decomposes into a direct sum of irreducible representations belonging to the nonclassical type.
Formulas for the representations determine explicitly these decompositions.

4. Vector operators and Wigner–Eckart theorem

In this section we define vector operators for irreducible representations of U ′
q(son) and give

the Wigner–Eckart theorem for them. This information will be used under proving our main
results.

The algebra U ′
q(son) is not a Hopf algebra. For this reason, we cannot define a tensor products

of its representations. However, U ′
q(son) can be embedded into the Hopf algebra Uq(sln) (see [29]

and [30]). Using this embedding, a tensor product of the irreducible representations T1 and T of
U ′
q(son) is determined, where T1 is a vector representation (that is, a representation of the classical

type characterized by the numbers (1, 0, · · · , 0)) and T is an arbitrary irreducible finite dimensional
representation [13]. The decomposition of this tensor product into irreducible constituents is given
by the formulas as in the classical case if the representation T belongs to the classical type (that
is, the decomposition of T1 ⊗ Tmn contains the irreducible representations of the classical type
characterized by m

+j
n , m−j

n , j = 1, 2, · · · , ⌊n/2⌋, and also the representation Tmn if n = 2k + 1
and mk,2k+1 6= 0). For the representations T = Tǫ,mn of the nonclassical type we have

T1 ⊗ Tǫ,mn =
⊕

m
′
n∈Sǫ(mn)

Tǫ,m′
n
,
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where

Sǫ(m2p+1) =

p
⋃

j=1

{T
ǫ,m+j

2p+1

} ∪
p
⋃

j=1

{T
ǫ,m−j

2p+1

} ∪ {Tǫ,m2p+1
}, Sǫ(m2p) =

p
⋃

j=1

{T
ǫ,m+j

2p
} ∪

p
⋃

j=1

{T
ǫ,m−j

2p
}.

As before, m
±j
n is the set of numbers mn with mjn replaced by mjn ± 1, respectively. Note

that each representation T
m

′
n
and each representation Tǫ,m′

n
for which m′

n does not satisfy the
dominance conditions must be omitted. Proofs of these decompositions can be found in [14]. As
in the case of quantized universal enveloping algebras (see [23], Chapter 7), decompositions of the
above tensor products are fulfilled by means of matrices whose entries are called Clebsch–Gordan
coefficients.

Let us define a vector operator (it is a set of n operators) which transforms under the vector
representation of the algebra U ′

q(son). This operator acts on a linear space H on which some
representation T of U ′

q(son) acts. We shall consider only the case when H is a finite dimensional
space. We also suppose that H decomposes into a direct sum of irreducible invariant (with
respect to U ′

q(son)) subspaces, where only irreducible representations of the classical type or only
irreducible representations of the nonclassical type are realized. This assumption is explained by
the fact that a vector operator cannot map a subspace on which an irreducible representation of
the classical type is realized into a subspace on which a representation of the nonclassical type is
realized, or vise versa.

The set Ar, r = 1, 2, · · · , n, of operators on H is called a vector operator for the algebra U ′
q(son)

if
[Aj−1, T (Ij,j−1)]q = Aj , [T (Ij,j−1), Aj ]q = Aj−1,

[T (Ij,j−1), Ak]q = 0, k 6= j, j − 1,

where [X,Y ]q ≡ q1/2XY − q−1/2Y X and T is a fixed representation of U ′
q(son) acting on H.

We represent the space H as a direct sum of irreducible invariant (with respect to U ′
q(son))

subspaces

H =
⊕

ǫ,mn,i

Vǫ,mn,i,

where Vǫ,mn,i is a subspace, on which an irreducible representation of U ′
q(son) characterized by ǫ

and mn is realized, and i separates multiple irreducible representations of U ′
q(son) in the decom-

position. If irreducible representations belong to the classical type, then ǫ must be omitted.
We take a Gel’fand–Tsetlin basis in each subspace Vǫ,mn,i and denote these basis vectors

by |ǫ,mn, i, α〉, where α ≡ αn−1 are the corresponding Gel’fand–Tsetlin tableaux. Then the
subspaces

Vα
ǫ,mn

=
⊕

i

C|ǫ,mn, i, α〉

can be defined.
The Wigner–Eckart theorem for vector operators {Aj} (proved in [14]) states that the matrix

elements of Aj are of the form

〈ǫ′,m′
n, i

′, α′|Aj |ǫ,mn, i, α〉 = C
ǫ′,m′

n,α
′

j;ǫ,mn,α
〈ǫ′,m′

n, i
′‖A‖ǫ,mn, i〉, (17)

where C
ǫ′,m′

n−1,α
′

j;ǫ,mn−1,α
are Clebsch–Gordan coefficients of the tensor product T1 ⊗ Tǫ,mn (these coef-

ficients are given in an explicit form in [14]), and 〈ǫ′,m′
n−1, i

′‖A‖ǫ,mn−1, i〉 are called reduced
matrix elements of the vector operator {Aj}. These reduced matrix elements depend only on
numbers characterizing the representations and on the indices separating multiple representa-
tions, and are independent of basis elements of irreducible invariant subspaces. They are also

7



independent of the number j of the operator Aj. In the above formulas, ǫ must be omitted if we
deal only with representations of the classical type.

Due to the formulas for decompositions of the tensor products T1 ⊗ Tmn and T1 ⊗ Tǫ,mn we
find that matrix elements 〈ǫ′,m′

n, i
′, α′|Aj |ǫ,mn, i, α〉 can be non-vanishing only if ǫ′ = ǫ and also

m′
n = m±s

n or m′
n = mn (since only for these cases the corresponding Clebsch–Gordan coefficients

can be non-vanishing). Due to the above formulas for decompositions of tensor products of
representations, a vector operator cannot map a subspace of an irreducible representation of the
classical type (of the nonclassical type) into subspaces on which irreducible representations of
the nonclassical type (of the classical type) are realized. Therefore, in matrix elements (17) both
indices ǫ and ǫ′ exist or both are absent.

We can define the operators

Amn
mn

: Vα
ǫ,mn

→ Vα
ǫ,mn

, Am
+j
n

mn
: Vα

ǫ,mn
→ Vα′

ǫ,m+j
n
, Am

−j
n

mn
: Vα

ǫ,mn
→ Vα′

ǫ,m−j
n

which have matrix elements coinciding with reduced matrix elements of the tensor operator {Aj}:

〈ǫ,mn, i
′, α|Amn

mn
|ǫ,mn, i, α〉 = 〈ǫ,mn, i

′‖A‖ǫ,mn, i〉,

〈ǫ,m+j
n , i′, α′|Am

+j
n

mn
|ǫ,mn, i, α〉 = 〈ǫ,m+j

n , i′‖A‖ǫ,mn, i〉,

〈ǫ,m−j
n , i′, α′|Am

−j
n

mn
|ǫ,mn, i, α〉 = 〈ǫ,m−j

n , i′‖A‖ǫ,mn, i〉.
(The symbol ǫ must be omitted in these formulas if necessary.) It follows from the Wigner–Eckart
theorem that for any irreducible representation Tǫ,mn contained in the representation T , these
operators satisfy the following relations

Tǫ,mn(a)A
mn
mn

= Amn
mn

Tǫ,mn(a), a ∈ U ′
q(son),

Tǫ,mn(a)A
mn

m
∓j
n

Am
±j
n

mn
= Amn

m
∓j
n

Am
±j
n

mn
Tǫ,mn(a), a ∈ U ′

q(son),

where Amn

m
∓j
n

Am
±j
n

mn
is considered as operators from Vα

ǫ,mn
into Vα

ǫ,mn
.

Proposition 1. Let ξ ∈ H belongs to a subspace Hmn of the irreducible representation Tmn

of U ′
q(son). Then Am

+j
n

mn
ξ and Am

−j
n

mn
ξ belong to some subspaces H

m
+j
n

and H
m

−j
n

of H, on which

the irreducible representations T
m

+j
n

and T
m

−j
n

of U ′
q(son) are realized, respectively. All the vectors

Am
±j
n

mn
(Tmn(a)ξ), a ∈ U ′

q(son), also belong to these subspaces H
m

±j
n
, respectively.

Proof. The assertion follows from the definition of vector operators and from formula (17).

5. Auxiliary propositions

As stated above, the algebra U ′
q(son) has a commutative subalgebra A generated by the elements

I2s,2s−1, s = 1, 2, · · · , r, where r = ⌊n/2⌋ is the integral part of n/2.

Proposition 2. (a) If T is a finite dimensional representation of the algebra U ′
q(son), then

the operators
T (I21), T (I43), · · · , T (I2k,2k−1),

where n = 2k or n = 2k + 1, are simultaneously diagonalizable.
(b) Possible eigenvalues of any of these operators can be only as i[m], m ∈ 1

2Z, i =
√
−1, or

[m]+, m ∈ Z+ 1
2 , where

[m] ≡ [m]q =
qm − q−m

q − q−1
, [m]+ =

qm + q−m

q − q−1
.
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Proof. This proposition is true for the algebra U ′
q(so3). It follows from complete reducibility

of finite dimensional representations of U ′
q(so3) (see [12]) and from the fact that representations

of the classical and of the nonclassical types exhaust all irreducible representations of U ′
q(so3) (see

[11]). Each of the elements I21, I43, · · · , I2k,2k−1 can be included into some subalgebra U ′
q(so3) as

one of its generating elements. Therefore, each of the operators T (I2j,2j−1), j = 1, 2, · · · , k, can
be diagonalized and has eigenvalues indicated in assertion (b) . This means that these opera-
tors are semisimple. Semisimple operators on a finite dimensional space can be simultaneously
diagonalized if they commute with each other. Proposition is proved.

Eigenvalues of the form i[m] are called eigenvalues of the classical type. Eigenvalues of the
form [m]+ are called eigenvalues of the nonclassical type.

Remark. In the formulation of Proposition 2 we could take for the algebra U ′
q(so2k+1) the

operators T (I32), T (I54), · · · , T (I2k+1,2k) instead of T (I21), T (I43), · · · , T (I2k,2k−1).

In Propositions 3–5 below we suppose that the following assumption is fulfilled: Each finite
dimensional representation of U ′

q(son−1) is completely reducible and irreducible finite dimensional
representations of U ′

q(son−1) are exhausted by the irreducible representations of the classical and
nonclassical types described in section 3. Note that for U ′

q(so3) and U ′
q(so4) this assumption is

true (see [10]–[12]).

Proposition 3. The restriction of any irreducible finite dimensional representation T of the
algebra U ′

q(son) onto the subalgebra U ′
q(son−1) is completely reducible representation of U ′

q(son−1)
and decomposes into irreducible representations of this subalgebra which belong only to the classical
type or only to the nonclassical type.

Proof. The restriction of T to the subalgebra U ′
q(son−1) is completely reducible due to the

assumption. Let T↓U ′
q(son−1) =

⊕

iRi, where Ri are irreducible representations of U ′
q(son−1), and

let H =
⊕

i Vi be the corresponding decomposition of the space H of the representation T . The
subspaces Vi are invariant with respect to the operators T (Ij,j−1), j = 2, 3, · · · , n−1, corresponding
to the elements of U ′

q(son−1). Only the operator T (In,n−1) maps vectors of any of the subspaces
Vi to linear combinations of vectors from other subspaces Vi. Since the representation T is
irreducible, then acting repeatedly by T (In,n−1) upon any vector of any subspace Vi we obtain
linear combinations of vectors from all other subspaces Vi. Let some irreducible representation
Ri0 of U ′

q(son−1) in the decomposition of T belongs to the classical type. We state that then
all other representations Ri in the decomposition belong to the classical type. This follows from
the following reasoning. We take the operators T (In,s), s = 1, 2, · · · , n − 1. It follows from the
commutation relations (4)–(6) for the elements Ir,s, r > s, given in section 2, that these operators
constitute a vector operator for the subalgebra U ′

q(son−1) (generated by I21, I32, · · · , In−1,n−2)
acting on the space H. Then due to the Wigner–Eckart theorem, the action of operators T (In,s),
s = 1, 2, · · · , n− 1, on vectors of Vi0 gives linear combinations of vectors of subspaces Vi on which
only irreducible representations of the classical type are realized. Repeated application of T (In,s)
again gives representations of the same type. Therefore, in this case, all representations Ri belong
to the classical type. If Ri0 belongs to the nonclassical type, then (by the same reasoning) all
representations Ri belong to the nonclassical type. The proposition is proved.

Let us write down the decomposition T↓U ′
q(son−1) =

⊕

iRi from the above proof in the form

T↓U ′
q(son−1) =

⊕

mn−1
dmn−1

Tmn−1
if the decomposition contains representations of the classical

type, where Tmn−1
are irreducible representations of U ′

q(son−1) from section 3 and dmn−1
are

multiplicities of these representations. If the decomposition contains irreducible representations
of the nonclassical type, then we write T↓U ′

q(son−1) =
⊕

ǫ,mn−1
dǫ,mn−1

Tǫ,mn−1
, where Tǫ,mn−1

are
irreducible representations of the nonclassical type.

Proposition 4. The action of the operator T (In,n−1) upon a vector of a subspace, on which
the representation Tmn−1

(the representation Tǫ,mn−1
) of U ′

q(son−1) is realized, gives a linear com-
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bination of vectors belonging only to subspaces of the irreducible representations of U ′
q(son−1)

contained in the decomposition into irreducible components of the tensor product T1 ⊗ Tmn−1
(of

the tensor product T1 ⊗ Tǫ,mn−1
), where T1 is the vector representation of U ′

q(son−1).

Proof. The operators T (In,s), s = 1, 2, · · · , n−1, constitute a vector operator for the subalgebra
U ′
q(son−1). Now the proposition follows from the Wigner–Eckart theorem.

Proposition 5. Let T be a finite dimensional irreducible representation of U ′
q(son). Then all

operators T (I2i,2i−1) from Proposition 2 have eigenvalues only of the classical type or only of the
nonclassical type.

Proof. The proposition is true for the algebra U ′
q(so4). Namely, eigenvalues of T (I21) and

T (I43) of an irreducible representation T of U ′
q(so4) are of the classical type if T is a representation

of the classical type and of the nonclassical type if T is a representation of the nonclassical type
(see [10]). We restrict the representation T of U ′

q(son) successively to U ′
q(son−1), U

′
q(son−2), · · ·,

U ′
q(so4) and decompose it into irreducible constituents. (Moreover, the chain of these subalgebras

can be taken in such a way that the last subalgebra U ′
q(so4) contains any two fixed neighbouring

operators from Proposition 2(a).) Applying on the first step Proposition 3 we obtain in the
decomposition of T irreducible representations of U ′

q(son−1) all belonging to the classical type or
all belonging to the nonclassical type. Due to the assumption before Proposition 3 and Remark at
the end of section 3, on each next step we obtain only irreducible representations of the classical
type or only irreducible representations of the nonclassical type, described in section 3. Thus,
restriction of T onto any subalgebra U ′

q(so4) decomposes into irreducible representations of U ′
q(so4)

all belonging to the classical type or all belonging to the nonclassical type. Our proposition follows
from this assertion. Proposition is proved.

An irreducible representation T of U ′
q(son) for which all the operators T (I2i,2i−1), i = 1, 2, · · ·,

⌊n/2⌋, have eigenvalues of the classical type (of the nonclassical type) is called a representation
of the classical type (of the nonclassical type). The algebra U ′

q(son) does not have irreducible
finite dimensional representations of other types. In section 3, irreducible representations of the
classical and of the nonclassical type are given. But we do not know yet that they exhaust all
irreducible representations of these types. Our aim is to prove that the irreducible representations
of section 3 exhaust all irreducible finite dimensional representations of U ′

q(son).

6. Reduced matrix elements for the classical type representations

The theorem on classification of irreducible finite dimensional representations of the algebra
U ′
q(son) will be proved by means of mathematical induction. Namely, we make an assumption on

irreducible finite dimensional representations of the subalgebra U ′
q(son−1) (which is true for the

subalgebra U ′
q(so4)) and then prove that this assumption is true for the algebra U ′

q(son).

Assumption. Each finite dimensional representation of U ′
q(son−1) is completely reducible

and irreducible finite dimensional representations of U ′
q(son−1) are exhausted by irreducible rep-

resentations of the classical and nonclassical types described in section 3.

This assumption is true for the algebras U ′
q(so3) and U ′

q(so4) (see [10] and [11]).
As we know from the previous section, irreducible finite dimensional representations T of

U ′
q(son) are divided into two classes – irreducible representations of the classical type and irre-

ducible representations of the nonclassical type. For deriving the theorem on classification of
irreducible representations belonging to the classical type we need the results on reduced matrix
elements of the tensor operator T (In,r), k = 1, 2, · · · , n− 1, for the subalgebra U ′

q(son−1).
Let T be an irreducible finite dimensional representation of U ′

q(son) belonging to the classical
type. According to our assumption and Proposition 3, this representation decomposes under the
restriction onto the subalgebra U ′

q(son−1) as a direct sum of irreducible representations of the
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classical type from section 3. For the space H of the representation T we have

H =
⊕

mn−1,i

Vmn−1,i,

where Vmn−1,i is a linear subspace, on which the irreducible representation Tmn−1
of U ′

q(son−1)
from section 3 is realized, and i separates multiple irreducible representations of U ′

q(son−1) in the
decomposition. Let

Vmn−1
=
⊕

i

Vmn−1,i.

We take a Gel’fand–Tsetlin basis in each subspace Vmn−1,i and denote these basis vectors by
|mn−1, i, α〉, where α ≡ αn−2 are the corresponding Gel’fand–Tsetlin tableaux. Then the sub-
spaces

Vα
mn−1

=
⊕

i

C|mn−1, i, α〉

can be defined. We know from Proposition 4 that the operator T (In,n−1) maps the vector
|mn−1, i, α〉 into a linear combination of vectors of the subspaces Vmn−1

and V
m

±s
n−1

, s = 1, 2, · · · , k,
where n−1 = 2k or n−1 = 2k+1. Since the operator T (In,n−1) commutes with all the operators
T (Is,s−1), s = 2, 3, · · · , n− 2 (that is, with operators corresponding to elements of the subalgebra
U ′
q(son−2)), it maps the subspace Vα

mn−1
into a sum of subspaces Vα

m
′
n−1

with the same α.

Due to Proposition 4 and Wigner–Eckart theorem (see formula (17)), the action of the operator
T (In,n−1) on the subspace Vα

mn−1
can be represented in the form

T (I2p+2,2p+1) ↓Vα
m2p+1

=

p
∑

j=1

(

p
∏

r=1

[lj,2p+1 + lr,2p][lj,2p+1 − lr,2p]

)1/2

ρj(m2p+1)+

+

p
∑

j=1

(

p
∏

r=1

[lj,2p+1 + lr,2p − 1][lj,2p+1 − lr,2p − 1]

)1/2

τj(m2p+1) +

(

p
∏

r=1

[lr,2p]

)

σ(m2p+1) (18)

if n = 2p+ 2 and in the form

T (I2p+1,2p) ↓Vα
m2p

=

p
∑

j=1

(

p−1
∏

r=1

[lj,2p + lr,2p−1][lj,2p − lr,2p−1 + 1]

)1/2

ρ′j(m2p)+

+

p
∑

j=1

(

p−1
∏

r=1

[lj,2p + lr,2p−1 − 1][lj,2p − lr,2p−1]

)1/2

τ ′j(m2p) (19)

if n = 2p + 1, where ρj(m2p+1), ρ
′
j(m2p), τj(m2p+1), τ

′
j(m2p) and σ(m2p+1) are the operators

such that
ρj(m2p+1) : Vα

m2p+1
→ Vα

m
+j
2p+1

, ρ′j(m2p) : Vα
m2p

→ Vα
m

+j
2p

,

τj(m2p+1) : Vα
m2p+1

→ Vα
m

−j
2p+1

, τ ′j(m2p) : Vα
m2p

→ Vα
m

−j
2p

,

σ(m2p+1) : Vα
m2p+1

→ Vα
m2p+1

(they are the operators A
m

±j
n−1

mn−1
and A

mn−1

mn−1
from section 4). The last summand in (18) must be

omitted if lp,2p+1 = 1 (in this case the representation Tm2p+1
does not occur in the tensor product

T1⊗Tm2p+1
). The coefficients in (18) and (19) are the corresponding Clebsch–Gordan coefficients of

the algebra U ′(son−1) taken from [14]. As we know from the Wigner–Eckart theorem, ρj(m2p+1),
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ρ′j(m2p), τj(m2p+1), τ
′
j(m2p) and σ(m2p+1) are independent of α. A dependence on α is contained

in the Clebsch–Gordan coefficients.
Let us first consider the case of the algebra U ′

q(so2p+2). We act by both parts of the relation

I2p+1,2pI
2
2p+2,2p+1 − (q + q−1)I2p+2,2p+1I2p+1,2pI2p+2,2p+1 + I22p+2,2p+1I2p+1,2p = −I2p+1,2p,

taken for the representation T , upon vectors of the subspace Vα
m2p+1

with fixed m2p+1 and α, and
take into account formula (18). Comparing terms with the same resulting subspaces Vα

m
′
2p+1

, we

obtain for ρj(m2p+1), τj(m2p+1) and σ(m2p+1) the relations

[li,2p+1 − lj,2p+1 + 1]ρj(m
+i
2p+1)ρi(m2p+1)− [li,2p+1 − lj,2p+1 − 1]ρi(m

+j
2p+1)ρj(m2p+1) = 0, (20)

[li,2p+1 + lj,2p+1]τi(m
+j
2p+1)ρj(m2p+1)− [li,2p+1 + lj,2p+1 − 2]ρj(m

−i
2p+1)τi(m2p+1) = 0, (21)

[li,2p+1 − lj,2p+1 + 1]τi(m
−j
2p+1)τj(m2p+1)− [li,2p+1 − lj,2p+1 − 1]τj(m

−i
2p+1)τi(m2p+1) = 0, (22)

[lj,2p+1 + 1]σ(m+j
2p+1)ρj(m2p+1)− [lj,2p+1 − 1]ρj(m2p+1)σ(m2p+1) = 0, (23)

[lj,2p+1]τj(m2p+1)σ(m2p+1)− [lj,2p+1 − 2]σ(m−j
2p+1)τj(m2p+1) = 0, (24)

p
∑

i=1

(

−[2li,2p+1 + 1]

p
∏

r=1

r 6=k

([li,2p+1]
2 − [lr,2p]

2)τi(m
+i
2p+1)ρi(m2p+1)+

+[2li,2p+1−3]

p
∏

r=1

r 6=k

([li,2p+1−1]2−[lr,2p]
2)ρi(m

−i
2p+1)τi(m2p+1)

)

+

p
∏

r=1

r 6=k

[lr,2p]
2 ·σ2(m2p+1) = −E, (25)

where i 6= j, E is the unit operator on Vα
m2p+1

and k is a fixed number from the set {1, 2, · · · , p}.
Note that the last term on the left hand side of (25) must be omitted if lp,2p+1 = 1.

The irreducible representations Tm2p+1
of U ′

q(so2p+1) under restriction to U ′
q(so2p) decompose

into irreducible representations Tm2p
of this subalgebra such that the numbers m2p satisfy the

inequalities determined by the Gel’fand–Tsetlin tableaux (see section 3). Under this, each of the
numbers lr,2p runs over a certain set of values. Assuming that no of lr,2p, r 6= p, is a constant
for the representation Tm2p+1

, we equate in (25) terms with the same dependence on [lr,2p]
2,

r = 1, 2, · · · , p, and obtain the relations

p
∑

i=1

(−1)p
(

[2li,2p+1 + 1]τi(m
+i
2p+1)ρi(m2p+1)− [2li,2p+1 − 3]ρi(m

−i
2p+1)τi(m2p+1)

)

= −σ2(m2p+1),

(26)
p
∑

i=1

(

[2li,2p+1 + 1][li,2p+1]
2(p−ν−1)τi(m

+i
2p+1)ρi(m2p+1)−

−[2li,2p+1 − 3][li,2p+1 − 1]2(p−ν−1)ρi(m
−i
2p+1)τi(m2p+1)

)

= 0, ν = 1, 2, · · · , p− 2, (27)

p
∑

i=1

(

[2li,2p+1 + 1][li,2p+1]
2p−2τi(m

+i
2p+1)ρi(m2p+1)−

−[2li,2p+1 − 3][li,2p+1 − 1]2p−2ρi(m
−i
2p+1)τi(m2p+1)

)

= E. (28)

If s parameters lr,2p, r 6= p, are constant for the representation Tm2p+1
, then the corresponding

ρr(m2p+1) and τr(m2p+1) vanish and the number of the relations (27) and (28) is decreased by s.
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In a similar way it is proved that ρ′i(m2p) and τ ′i(m2p) from formula (19) satisfy the relations

[li,2p − lj,2p + 1]ρ′j(m
+i
2p )ρ

′
i(m2p)− [li,2p − lj,2p − 1]ρ′i(m

+j
2p )ρ

′
j(m2p) = 0, i 6= j, (29)

[li,2p + lj,2p + 1]τ ′i(m
+j
2p )ρ

′
j(m2p)− [li,2p + lj,2p − 1]ρ′j(m

−i
2p )τ

′
i(m2p) = 0, i 6= j, (30)

[li,2p − lj,2p + 1]τ ′i(m
−j
2p )τ

′
j(m2p)− [li,2p − lj,2p − 1]τ ′j(m

−i
2p )τ

′
i(m2p) = 0, i 6= j, (31)

∑

i

(

− [2li,2p + 2]

[li,2p][li,2p + 1]

p−1
∏

r=1

(

[li,2p][li,2p + 1]− [lr,2p−1][lr,2p−1 − 1]
)

τ ′i(m
+i
2p )ρ

′
i(m2p)+

+
[2li,2p − 2]

[li,2p][li,2p − 1]

p−1
∏

r=1

(

[li,2p][li,2p − 1]− [lr,2p−1][lr,2p−1 − 1]
)

ρ′i(m
−i
2p )τ

′
i(m2p)

)

= −E, (32)

and the last equality leads to the system of equations

p
∑

i=1

(

[2li,2p + 2]([li,2p][li,2p + 1])p−ν−2τ ′i(m
+i
2p )ρ

′
i(m2p)−

−[2li,2p − 2]([li,2p][li,2p − 1])p−ν−2ρ′i(m
−i
2p )τ

′
i(m2p)

)

= 0, ν = 1, 2, · · · , p− 1, (33)

p
∑

i=1

(

[2li,2p + 2]([li,2p][li,2p + 1])p−2τ ′i(m
+i
2p )ρ

′
i(m2p)−

−[2li,2p − 2]([li,2p][li,2p − 1])p−2ρ′i(m
−i
2p )τ

′
i(m2p)

)

= E. (34)

It follows from the last relations of section 4 that for any a ∈ U ′
q(so2p+1) the operators

ρi(m2p+1), τi(m2p+1) and σ(m2p+1) satisfy the relations

Tm2p+1
(a)σ(m2p+1) = σ(m2p+1)Tm2p+1

(a), (35)

ρi(m
−i
2p+1)τi(m2p+1)Tm2p+1

(a) = Tm2p+1
(a)ρi(m

−i
2p+1)τi(m2p+1). (36)

Similar relations are satisfied by ρ′i(m2p) and τ ′i(m2p).
Remark. Relations (20)–(25) and relations (29)–(32) are consequences of the relation (2) with

i = n− 1. Other relations from (1)–(3) containing In,n−1 are satisfied by the operators (18) and
(19). It is a consequence of the fact that In,n−1 is a component of the vector operator.

Proposition 6. Let ξ ∈ H belong to a subspace Hm2p+1
, on which the irreducible represen-

tation Tm2p+1
of U ′

q(so2p+1) is realized. Then ρj(m2p+1)ξ ∈ H
m

+j
2p+1

and τj(m2p+1)ξ ∈ H
m

−j
2p+1

,

where H
m

±j
2p+1

are subspaces of H, on which the irreducible representations T
m

±j
2p+1

of U ′
q(so2p+1)

are realized, respectively. All the vectors ρj(m2p+1)(Tm2p+1
(a)ξ), a ∈ U ′

q(so2p+1), and all the
vectors τj(m2p+1)(Tm2p+1

(a)ξ), a ∈ U ′
q(so2p+1), belong to these subspaces H

m
+j
2p+1

and H
m

−j
2p+1

,

respectively.

This proposition is a corollary of Proposition 1.

Theorem 1. If the above assumption is true, then the restriction of an irreducible represen-
tation T of U ′

q(son) to the subalgebra U ′
q(son−1) contains each irreducible representation of this

subalgebra not more than once.

Proof. We prove the theorem for the algebra U ′
q(so2p+2). For the algebra U ′

q(so2p+1) a proof
is the same. Let us consider the decomposition

T↓U ′
q(so2p+1) =

⊕

m2p+1

dm2p+1
Tm2p+1

, (37)
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where dm2p+1
denotes a multiplicity of the representation Tm2p+1

in the decomposition. The
decomposition H =

⊕

m2p+1,α
Vα
m2p+1

corresponds to the decomposition (37), where, as in section
4, α numerates elements of the Gel’fand–Tsetlin basis for the representation Tm2p+1

. Let T
m

′
2p+1

≡
Tm

max
2p+1

be a maximal irreducible representation of U ′
q(so2p+1) in the decomposition (37), that is,

such that ρj(m
′
2p+1) = 0, j = 1, 2, · · · , p. Due to the relations (20)–(22) the operators ρi and ρj ,

as well as the operators ρi and τj , i 6= j, and the operators τi and τj, commute (up to a constant)
with each other. For this reason, each of the parameters li,2p+1, i = 1, 2, · · · , p, in the set of the
representations Tm2p+1

from the decomposition (37) runs over some set of numbers independent
of values of other parameters lj,2p+1, j 6= i.

We take one of the subspaces Vα
m

′
2p+1

, where m′
2p+1 ≡ mmax

2p+1. Its dimension is equal to the

multiplicity d
m

′
2p+1

of the representation T
m

′
2p+1

in the decomposition (37). Then σ(m′
2p+1) is

an operator on Vα
m

′
2p+1

. Clearly, σ(m′
2p+1) has at least one eigenvector ξ0 in Vα

m
′
2p+1

. According

to (35) all the vectors T
m

′
2p+1

(a)ξ0, a ∈ U ′
q(so2p+1), are eigenvectors of σ(m′

2p+1). The vectors

T
m

′
2p+1

(a)ξ0, a ∈ U ′
q(so2p+1), constitute a subspace V ir

m
′
2p+1

, where the irreducible representation

T
m

′
2p+1

of U ′
q(so2p+1) is realized. Let ξj = τj(m

′
2p+1)ξ0, j = 1, 2, · · · , p. Then ξj ∈ Vα

m
′−j
2p+1

and,

due to (21), ρi(m
′−j
2p+1) = 0 for i 6= j. It follows from (24) that ξj is an eigenvector of the

operator σ(m′−j
2p+1). Due to Proposition 6, the vector T

m
′
2p+1

(a)ξ0 is mapped by the operator

τj(m
′
2p+1) into the subspace V ir

m
′−j
2p+1

. Hence, the operator τj(m
′
2p+1) maps V ir

m
′
2p+1

into {0} or

into the subspace V ir
m

′−j
2p+1

, on which the irreducible representation T
m

′−j
2p+1

is realized.

Under a restriction to U ′
q(so2p), the representation T

m
′
2p+1

decomposes into a sum of irreducible
representations Tm2p

, m2p = (m1,2p, · · · ,mp,2p). With the numbers mi,2p we associate numbers
li,2p (see section 3). Suppose that no of lr,2p is a constant for the representation T

m
′
2p+1

. We apply

both sides of the relations (26)–(28) to the vector ξ0 and obtain p equations with p unknown
ρi(m

′−i
2p+1)τi(m

′
2p+1)ξ0, i = 1, 2, · · · , p. (Note that ρj(m

′
2p+1) = 0, j = 1, 2, · · · , p.) Since l1,2p+1 >

l2,2p+1 > · · · > lp,2p+1 and q is not a root of unity, the form of coefficients in (26)–(28) shows
that the determinant of this system is not equal to 0. (In fact, this determinant is proportional
to the Vandermond determinant for [li,2p+1]

2, i = 1, 2, · · · , p.) Solving this system we obtain
its (unique) solution. Since the right hand side of (25) is −E, this means that the vectors
ρi(m

′−i
2p+1)τi(m

′
2p+1)ξ0, i = 1, 2, · · · , p, are multiple to the vector ξ0. Since τi(m

′
2p+1)ξ0 = ξi the

vector ρi(m
′−i
2p+1)ξi is a multiple to the vector ξ0. Therefore, due to (36) the operator ρi(m

′−i
2p+1)

maps the subspace V ir
m

′−i
2p+1

into {0} or into V ir
m

′
2p+1

. If some of the parameters lr,2p are constant,

then the number of equations (26)–(28) is smaller than p. As it is easy to see, in this case the
system of equations also has a unique solution and the conclusion remains true.

Let ξj,i = τj(m
′−i
2p+1)ξi, i = 1, 2, · · · , p. As above, it is shown that the subspace V ir

m
′−j,−i
2p+1

spanned by the vectors T
m

′−j,−i
2p+1

ξj,i is irreducible for U
′(so2p+1) and consists of eigenvectors of the

operator σ(m′−j,−i
2p+1 ). It is mapped by the operator ρj(m

′−j,−i
2p+1 ) into {0} or into V ir

m
′−i
2p+1

. Moreover,

due to (21), up to a constant we have

τj(m
′−i
2p+1)ξi = ξj,i = τi(m

′−j
2p+1)ξj = ξi,j. (38)

Hence, the subspaces constructed by means of the vectors ξj,i and ξi,j coincide. Note that if

m′−i
2p+1, m

′−j
2p+1 and m′−j,−i

2p+1 satisfy the dominance conditions, then the constant in (38) is not
vanishing.

We continue this reasoning further applying successively the operators τj and ρj with appro-
priate values of the numbers m2p+1. Due to the relations (20)–(22) the operators ρi and ρj , as
well as the operators ρi and τj, i 6= j, and the operators τi and τj, commute (up to a constant)
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with each other. Therefore, as a result of such continuation, we obtain the set of subspaces
V ir
m2p+1

of the representation space H, on which nonequivalent irreducible representations of the
subalgebra U ′

q(so2p+1) are realized and which consist of eigenvectors of the operators σ(m2p+1).
These subspaces are mapped by the operators ρi and τi into subspaces of this set. We consider
the subspace H′ of the space H which is a direct sum of these subspaces V ir

m2p+1
. It follows from

the expression (18) for T (I2p+2,2p+1) that this operator leaves H′ invariant. Due to irreducibility
of the representation T we have H′ = H. This complete a proof for the algebra U ′

q(so2p+2). As is
noted above, for U ′

q(so2p+1) a proof is the same. The only difference is that instead of relations
(20)–(28) we have to use relations (29)–(34). Theorem is proved.

The fact that any irreducible representation T of U ′
q(son) contains each irreducible repre-

sentation of the subalgebra U ′
q(son−1) not more than once means that the operators ρj(m2p+1),

τj(m2p+1), σj(m2p+1), ρ
′
j(m2p) and τ ′j(m2p) in (18) and (19) are numerical functions. Thus, the

formula (18) can be represented in the form

T (I2p+2,2p+1)|m2p+1, α〉 =
∑

j

(

p
∏

r=1

([lj,2p+1]
2 − [lr,2p]

2)

)1/2

ρj(m2p+1)|m+j
2p+1, α〉

+
∑

j

(

p
∏

r=1

([lj,2p+1 − 1]2 − [lr,2p]
2

)1/2

τj(m2p+1)|m−j
2p+1, α〉 +

(

p
∏

r=1

[lr,2p]

)

σ(m2p+1)|m+j
2p+1, α〉

(39)
and the formula (19) in the form

T (I2p+1,2p)|m2p, α〉 =
∑

j

(

p−1
∏

r=1

([lj,2p + 1/2]2 − [lr,2p−1 − 1/2]2)

)1/2

ρ′j(m2p)|m+j
2p , α〉+

+
∑

j

(

p−1
∏

r=1

([lj,2p − 1/2]2 − [lr,2p−1 − 1/2]2)

)1/2

τ ′j(m2p)|m−j
2p , α〉, (40)

where ρj(m2p+1), τj(m2p+1), σj(m2p+1), ρ
′
j(m2p) and τ ′j(m2p+1) are appropriate numerical func-

tions.

Remark. We have seen under proving Theorem 1 that in the set of the representations Tm2p+1

from the decomposition (37) each of the parameters mi,2p+1, i = 1, 2, · · · , p, runs over some set of
numbers independent of values of other parameters mj,2p+1, j 6= i. It is easy to show by means
of formula (39) that in an irreducible representation T of U ′

q(so2p+2) each mi,2p+1, i = 1, 2, · · · , p,
takes all values from the set mmin

i,2p+1,m
min
i,2p+1 + 1, · · · ,mmax

i,2p+1 without any omitting. A similar
assertion is true for irreducible finite dimensional representations of U ′

q(so2p+1).

Let us find an explicit form of the functions ρj , τj, σ, ρ
′
j and τ ′j from (39) and (40). We

first consider the case of U ′
q(so2p+2). From (23) we obtain the relation [lj,2p+1 + 1]σ(m+j

2p+1) =
[lj,2p+1−1]σ(m2p+1). This means that

∏p
j=1[lj,2p+1][lj,2p+1−1]·σ(m2p+1) is independent of lj,2p+1,

j = 1, 2, · · · , p, that is

σ(m2p+1) =

p
∏

j=1

([lj,2p+1][lj,2p+1 − 1])−1 · σ, (41)

where σ is a constant. (Note that if lp,2p+1 = 1, then σ(m2p+1) ≡ 0.)
We derive from (20)–(22) the relation

[li,2p+1 − lj,2p+1 + 1][li,2p+1 + lj,2p+1 + 1]ρj(m
+i
2p+1)τj(m

+i+j
2p+1) =
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= [li,2p+1 − lj,2p+1 − 1][li,2p+1 + lj,2p+1 − 1]ρj(m2p+1)τj(m
+j
2p+1), (42)

which shows (after multiplication of both sides by [li,2p+1]
2 − [lj,2p+1]

2) that the expression

([li,2p+1]
2 − [lj,2p+1]

2)([li,2p+1 − 1]2 − [lj,2p+1]
2)ρj(m2p+1)τj(m

+j
2p+1) (43)

is independent of li,2p+1. Therefore, the expression

βj(lj,2p+1) = ρj(m2p+1)τj(m
+j
2p+1)[lj,2p+1]

2[2lj,2p+1 − 1][2lj,2p+1 + 1]×

×
∏

r 6=j

([lr,2p+1]
2 − [lj,2p+1]

2)([lr,2p+1 − 1]2 − [lj,2p+1]
2) (44)

depends only on lj,2p+1.
In order to find βj(lj,2p+1) we rewrite the relations (26)–(28) for βi(li,2p+1):

p
∑

i=1

1

[2li,2p+1 − 1]

(

βi(li,2p+1)

[li,2p+1]2ci(li,2p+1)
− βi(li,2p+1 − 1)

[li,2p+1 − 1]2ci(li,2p+1 − 1)

)

=

= (−1)p+1 σ2

∏p
r=1[lr,2p+1]2[lr,2p+1 − 1]2

, (45)

p
∑

i=1

1

[2li,2p+1 − 1]

(

[li,2p+1]
2νβi(li,2p+1)

ci(li,2p+1)
− [li,2p+1 − 1]2νβi(li,2p+1 − 1)

ci(li,2p+1 − 1)

)

= 0, (46)

ν = 0, 1, 2, · · · , p − 3,

p
∑

i=1

1

[2li,2p+1 − 1]

(

[li,2p+1]
2p−4βi(li,2p+1)

ci(li,2p+1)
− [li,2p+1 − 1]2p−4βi(li,2p+1 − 1)

ci(li,2p+1 − 1)

)

= 1, (47)

where
ci(li,2p+1) =

∏

r 6=i

([lr,2p+1]
2 − [li,2p+1]

2)([lr,2p+1 − 1]2 − [li,2p+1]
2).

For each fixed σ, this system of equations has a unique solution βi(li,2p+1), i = 1, 2, · · · , p,
since the determinant of this system is non-vanishing. In order to give this solution we take into
account the constants

lr+1,2p+2 = lmin
r,2p+1 − 1, r = 1, 2, · · · , p,

where lmin
r,2p+1, r = 1, 2, · · · , p, are minimal values of lr,2p+1 in the decomposition (37), and represent

σ (without loss of a generality) in the form

σ = i

p+1
∏

r=1

[lr,2p+2], (48)

where l1,2p+2 is a number which is determined by σ.
From the definition of numbers lr,2p+2, r = 2, 3, · · · , p+ 1, and from Remark after Theorem 1

it follows that
l2,2p+2 > l3,2p+2 > · · · > lp+1,2p+2.

Proposition 7. Solutions of the system (45)–(47) are given by the expressions

βi(li,2p+1) =

p+1
∏

r=1

([li,2p+1]
2 − [lr,2p+2]

2) =

p+1
∑

j=0

(−1)jep−j+1([l1,2p+2]
2, · · · , [lp+1,2p+2]

2)[li,2p+1]
2j ,

(49)
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where er(x1, · · · xp+1) are elementary symmetric polynomials in x1, · · · , xp+1.

Proof. In order to prove this proposition we use the relations

s
∑

i=1

zmi
∏s

r=1,r 6=i(zi − zr)
=

{

1 if m = s− 1,
0 if 0 ≤ m ≤ s− 2,

(50)

s
∑

i=1

1

zi
∏s

r=1,r 6=i(zi − zr)
=

(−1)s−1

z1 · · · zs
(51)

(see, for example, [25]). We put in these relations s = 2p and use the notations zi = xi, zi+p = yi,
i = 1, 2, · · · , p. Then they can be written as

p
∑

i=1

1

xi−yi

(

xmi
∏

r 6=i(xr−xi)(yr−xi)
− ymi
∏

r 6=i(xr−yi)(yr−yi)

)

=

{

1 if m = 2p − 1,
0 if 0 ≤ m ≤ 2p− 2,

(52)

p
∑

i=1

1

xi − yi

(

1

xi
∏

r 6=i(xr − xi)(yr − xi)
− 1

yi
∏

r 6=i(xr − yi)(yr − yi)

)

=
−1

x1 · · · xpy1 · · · yp
. (53)

We put into the relations (45)–(47) lj,2p+1 = lmin
j,2p+1, j = 1, 2, · · · , p, where lmin

j,2p+1 is a minimal

value of lj,2p+1 in the decomposition (37). Taking into account that βj(l
min
j,2p+1 − 1) = 0, j =

1, 2, · · · , p, we see that (45)–(47) turn into a system of p equations for βj(l
min
j,2p+1), j = 1, 2, · · · , p.

We substitute into this system the expressions (49) for βi(l
min
i,2p+1) and then cancel p−1 multipliers

from the expression for βi(l
min
i,2p+1) with the corresponding parts of the expressions for ci(l

min
i,2p+1)

which are in the denominators. As a result, we obtain a system of relations which contains only
the multiplier ([l1,2p+2]

2 − [lmin
i,2p+1]

2) from βi(l
min
i,2p+1). Our expressions for βi(l

min
i,2p+1) are correct if

these relations are true. It is easy to see that they are reduced to the relations (50) and (51) at
s = p if to set zi = [lmin

i,2p+1]
2, i = 1, 2, · · · , p.

Further we prove a correctness of the expressions (49) for βi(li,2p+1) by induction. Namely, we
first put lj,2p+1 = lmin

j,2p+1, j 6= 1, and successively conduct a proof for β1(l
min
1,2p+1 + 1), β1(l

min
1,2p+1 +

2), · · ·, β1(lmax
1,2p+1−1). Then we put lj,2p+1 = lmin

j,2p+1, j 6= 1, 2, and conduct a proof for β2(l
min
2,2p+1+

1), β2(l
min
2,2p+1 + 2), · · ·, β2(lmax

2,2p+1 − 1) under any value of l1,2p+1. We continue this procedure up
to βp(lp,2p+1). On each step this proof is conducted by using the relations (52) and (53). Namely,
we put in these relations xi = [li,2p+1]

2 and yi = [li,2p+1 − 1]2, then multiply each of them by the
corresponding symmetric polynomial from (49), and sum up them term-wise in order to obtain the
relation (45), then the relations (46) for ν = 0, 1, 2, · · · , p − 3, and at last the relation (47). This
proves that βj(lj,2p+1), j = 1, 2, · · · , p, for given values of lj,2p+1 satisfy the relations (45)–(47).
Note that βi(l

max
i,2p+1) = 0 since in this case ρi(m

max
2p+1) = 0. Proposition is proved.

Thus, we have found the expressions for βj(lj,2p+1), j = 1, 2, · · · , p, depending on l1,2p+2, and

the corresponding values of σ. In order to separate ρj(m2p+1) and τj(m
+j
2p+1) in expression (44)

for βj(lj,2p+1) we note that these functions are not determined uniquely by the representation.

Ambiguity in a choice of ρj(m2p+1) and τj(m
+j
2p+1) is related to a choice of basis elements. Namely,

in the basis

|m2p+1, α〉′ =
p
∏

r=1

ωr(lr,2p+1) · |m2p+1, α〉,

where ωr(lr,2p+1) is a numerical multiplier depending only on lr,2p+1, we obtain somewhat different
formulas for the operator T (I2p+2,2p+1). Actually, if to pass to the basis {|m2p+1, α〉′} in formula
(39), then the coefficient σ(m2p+1) remains without any change, and ρj(m2p+1) and τj(m2p+1)
are transformed into

ρ̂j(m2p+1) =
ωj(lj,2p+1)

ωj(lj,2p+1 + 1)
ρj(m2p+1), τ̂j(m2p+1) =

ωj(lj,2p+1)

ωj(lj,2p+1 − 1)
τj(m2p+1).
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Moreover, we have
ρ̂j(m2p+1)τ̂j(m

+j
2p+1) = ρj(m2p+1)τj(m

+j
2p+1).

It is clear that the multiplier ω(lj,2p+1) can be chosen in such a way that ρ̂j(m2p+1) = −τ̂j(m
+j
2p+1),

that is,
ωj(lj,2p+1)

ωj(lj,2p+1 + 1)
ρj(m2p+1) = −ωj(lj,2p+1 + 1)

ωj(lj,2p+1)
τj(m

+j
2p+1).

We obtain from here that
(

ωj(lj,2p+1)

ωj(lj,2p+1 + 1)

)2

= −
τj(m

+j
2p+1)

ρj(m2p+1)
.

Taking this relation for lj,2p+1 = lmin
j,2p+1, l

min
j,2p+1 + 1, lmin

j,2p+1 + 2, · · · we find that

ωj(lj,2p+1) = c







lj,2p+1−1
∏

l=lmin
j,2p+1

ρj(m2p+1)

τj(m
+j
2p+1)







1/2

,

where c is a constant. Thus, we may consider that from the very beginning we have a basis for
which

ρj(m2p+1) = −τj(m
+j
2p+1). (54)

Then it follows from (44), (49) and (54) that

ρj(m2p+1) =

(

[lj,2p+1]
−2[2lj,2p+1 − 1]−1

∏p+1
r=1([lr,2p+2]

2 − [lj,2p+1]
2)

[lj,2p+1 + 1]
∏

r 6=j([lr,2p+1]2 − [lj,2p+1]2)([lr,2p+1 − 1]2 − [lj,2p+1]2)

)1/2

(55)

where lr+1,2p+2 = lmin
r,2p+1− 1, r = 1, 2, · · · p, and l1,2p+2 is a parameter which together with lr,2p+2,

r = 2, 3, · · · , p + 1, must determine irreducible representations. In the next section we shall find
a domain of the parameters lr,2p+2, r = 1, 2, · · · , p+ 1.

Substituting the expressions (54) and (55) for ρj(m2p+1) and τj(m2p+1) into (39), we obtain

T (I2p+2,2p+1)|m2p+1, α〉 =
p
∑

j=1

Bj
2p+1(m2p+1)

b(lj,2p+1)[lj,2p+1]
|m+j

2p+1, α〉−

−
p
∑

j=1

Bj
2p+1(m

−j
2p+1)

b(lj,2p+1 − 1)[lj,2p+1 − 1]
|m−j

2p+1, α〉+ iC2p+1(m2p+1)|m2p+1, α〉, (56)

where b(lj,2p+1) = ([2lj,2p+1 + 1][2lj,2p+1 − 1])1/2 and

Bj
2p+1(m2p+1) =

(

∏p+1
i=1 [li,2p+2 + lj,2p+1][li,2p+2 − lj,2p+1]

∏p
i=1[li,2p + lj,2p+1][li,2p − lj,2p+1]

∏p
i 6=j[li,2p+1+lj,2p+1][li,2p+1−lj,2p+1][li,2p+1+lj,2p+1−1][li,2p+1−lj,2p+1−1]

)1/2

,

C2p+1(m2p+1) =

∏p+1
s=1[ls,2p+2]

∏p
s=1[ls,2p]

∏p
s=1[ls,2p+1][ls,2p+1 − 1]

.

This formula coincides with (9) if to replace p+ 1 by p. We have to determine admissible values
of the parameters li,2p+2, i = 1, 2, · · · , p+ 1.

Now we consider the case of U ′
q(so2p+1). We have to find possible expressions for ρ′j(m2p) and

τ ′j(m2p) in (40).
We derive from (29)–(31) the relation

[li,2p + lj,2p][li,2p − lj,2p − 1][li,2p + lj,2p + 1][li,2p − lj,2p]ρ
′
j(m2p)τ

′
j(m

+j
2p ) =
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= [li,2p + lj,2p][li,2p − lj,2p − 1][li,2p + lj,2p − 1][li,2p − lj,2p − 2]ρ′j(m
−i
2p )τ

′
j(m

−i+j
2p ),

which shows that the expression

([li,2p][li,2p − 1]− [lj,2p][lj,2p + 1])([li,2p + 1][li,2p]− [lj,2p][lj,2p + 1])ρ′j(m2p)τ
′
j(m

+j
2p )

is independent of li,2p. Therefore, the expression

β′
j(lj,2p) = ρ′j(m2p)τ

′
j(m

+j
2p )(q

lj,2p + q−lj,2p)(qlj,2p+1 + q−lj,2p−1)

×
∏

r 6=j

([lr,2p][lr,2p − 1]− [lj,2p][lj,2p + 1])([lr,2p + 1][lr,2p]− [lj,2p][lj,2p + 1])

depends only on lj,2p. Then we rewrite the relations (33) and (34) for β′
j(lj,2p) and in the same

way as in Proposition 7, using the equalities (50) and (52), derive the following proposition.

Proposition 8. Solutions of the system of equations for β′
j(lj,2p) are given by the expressions

β′
j(lj,2p) =

p
∏

r=1

([lj,2p][lj,2p + 1]− [lr,2p+1][lr,2p+1 − 1]) =

p
∏

r=1

[lr,2p+1 + lj,2p][lr,2p+1 − lj,2p − 1] =

=

p
∑

j=0

(−1)p−jep−j([l1,2p+1][l1,2p+1 − 1], · · · , [lp,2p+1][lp,2p+1 − 1])([lj,2p][lj,2p + 1])j ,

where li,2p+1 = lmax
i,2p +1, i = 1, 2, · · · , p, and er(x1, · · · , xp) are elementary symmetric polynomials

in x1, · · · , xp .

Separating ρ′j(m2p) and τ ′j(m
+j
2p ) from β′

j(lj,2p) as in the previous case, for the operator
T (I2p+1,2p) of an irreducible representation T of U ′

q(so2p+1) we obtain

T (I2p+1,2p)|m2p, α〉 =
p
∑

j=1

Aj
2p(m2p)

a(lj,2p)
|m+j

2p , α〉 −
p
∑

j=1

Aj
2p(m

−j
2p )

a(lj,2p − 1)
|m−j

2p , α〉, (57)

where a(lj,2p) = {(qlj,2p+1 + q−lj,2p−1)(qlj,2p + q−lj,2p)}1/2 and

Aj
2p(m2p) =

(

∏p
i=1[li,2p+1 + lj,2p][li,2p+1 − lj,2p − 1]

∏p−1
i=1 [li,2p−1 + lj,2p][li,2p−1 − lj,2p − 1]

∏p
i 6=j[li,2p + lj,2p][li,2p − lj,2p][li,2p + lj,2p + 1][li,2p − lj,2p − 1]

)1/2

.

Thus, we derived an explicit form of the operator T (In,n−1) of an irreducible representation of
U ′
q(son). In order to obtain a classification of irreducible representations of the classical type we

have (by using (56) and (57)) to derive a domain of the parameters l1n, l2n, · · · , lpn, p = ⌊n/2⌋.

7. Reduced matrix elements for the nonclassical type representations

We assume that Assumption of section 6 is acting.

Proposition 9. Let T be an irreducible finite dimensional representation of U ′
q(son) belong-

ing to the nonclassical type. Then the decomposition of T↓U ′
q(son−1) into irreducible constituents

contains irreducible representations Tǫ,mn−1
with the same ǫ.

Proof. The proposition follows from Proposition 4 and from the fact that the decomposition of
the tensor products T1⊗Tǫ,mn−1

(where T1 is a vector representation) into irreducible constituents
contains irreducible representations of the nonclassical type with ǫ coinciding with ǫ in Tǫ,mn−1

.
Proposition is proved.

19



Let T be such as in Proposition 9 and let H be a space on which T acts. Let

H =
⊕

mn−1,i

Vǫ,mn−1,i, (58)

where Vǫ,mn−1,i is a linear subspace, on which an irreducible representation Tǫ,mn−1
of U ′

q(son−1)
is realized, and i separates multiple irreducible representations in the decomposition. We also
introduce the subspaces

Vǫ,mn−1
=
⊕

i

Vǫ,mn−1,i,

We take a Gel’fand–Tsetlin basis in each subspace Vǫ,mn−1,i and denote the basis vectors by
|ǫ,mn−1, i, α〉, where α ≡ αn−2 are the corresponding Gel’fand–Tsetlin tableaux. Let

Vα
ǫ,mn−1

=
⊕

i

C|ǫ,mn−1, i, α〉. (59)

We know from Proposition 4 that the operator T (In,n−1) transforms the vector |ǫ,mn−1, i, α〉
into a linear combination of vectors of the subspaces Vǫ,mn−1

and Vǫ,m±s
n−1

, s = 1, 2, · · · , k, where
k = ⌊12(n − 1)⌋. Since the operator T (In,n−1) commutes with all the operators T (Is,s−1), s =
2, 3, · · · , n− 2 (that is, with operators corresponding to elements of the subalgebra U ′

q(son−2)), it
maps subspaces Vα

ǫ,mn−1
into a sum of subspaces Vα

ǫ,m′
n−1

with the same α.

Due to Wigner–Eckart theorem (see formula (17)), the action of the operator T (In,n−1) on
the subspace Vα

ǫ,mn−1
can be represented in the form

T (I2p+2,2p+1)↓Vα
ǫ,m2p+1

=

p
∑

j=1

(

p
∏

r=1

[lj,2p+1 + lr,2p][lj,2p+1 − lr,2p]

)1/2

ρj(ǫ,m2p+1)+

+

p
∑

j=1

(

p
∏

r=1

[lj,2p+1 + lr,2p − 1][lj,2p+1 − lr,2p − 1]

)1/2

τj(ǫ,m2p+1) +

(

p
∏

r=1

[lr,2p]+

)

σ(ǫ,m2p+1),

(60)
if n = 2p+ 2 and in the form

T (I2p+1,2p)↓Vα
ǫ,m2p

=

p
∑

j=1

(

p−1
∏

r=1

[lj,2p + lr,2p−1][lj,2p − lr,2p−1 + 1]

)1/2

ρ′j(ǫ,m2p)+

+

p
∑

j=1

(

p−1
∏

r=1

[lj,2p + lr,2p−1 − 1][lj,2p − lr,2p−1]

)1/2

τ ′j(ǫ,m2p) (61)

if n = 2p + 1, where ρj(ǫ,m2p+1), ρ
′
j(ǫ,m2p), τj(ǫ,m2p+1), τ

′
j(ǫ,m2p) and σ(ǫ,m2p+1) are the

operators such that

ρj(ǫ,m2p+1) : Vα
ǫ,m2p+1

→ Vα
ǫ,m+j

2p+1

, ρ′j(ǫ,m2p) : Vα
ǫ,m2p

→ Vα
ǫ,m+j

2p

,

τj(ǫ,m2p+1) : Vα
ǫ,m2p+1

→ Vα
ǫ,m−j

2p+1

,

τ ′j(ǫ,m2p) : Vα
ǫ,m2p

→ Vα
ǫ,m−j

2p

, if j 6= p or mp,2p ≥ 3
2 ,

τ ′p(ǫ,m2p) : Vα
ǫ,m2p

→ Vα
ǫ,m2p

, if mp,2p =
1
2 ,

σ(ǫ,m2p+1) : Vα
ǫ,m2p+1

→ Vα
ǫ,m2p+1

.
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The coefficients in (60) and (61) are the corresponding Clebsch–Gordan coefficients of the algebra
U ′(son−1) taken from [14]. As we know from the Wigner–Eckart theorem, ρj(ǫ,m2p+1), ρ

′
j(ǫ,m2p),

τj(ǫ,m2p+1), τ
′
j(ǫ,m2p) and σ(ǫ,m2p+1) are independent of α. A dependence on α is contained

in the Clebsch–Gordan coefficients.
We first consider the case of the algebra U ′

q(so2p+2). We act by both parts of the relation

I2p+1,2pI
2
2p+2,2p+1 − (q + q−1)I2p+2,2p+1I2p+1,2pI2p+2,2p+1 + I22p+2,2p+1I2p+1,2p = −I2p+1,2p

upon vectors of the subspace Vα
ǫ,m2p+1

with fixed ǫ, m2p+1, α and take into account formula (60).
As a result, we obtain for ρj(ǫ,m2p+1), τj(ǫ,m2p+1) and σ(ǫ,m2p+1) the relations

[li,2p+1 − lj,2p+1 + 1]ρj(ǫ,m
+i
2p+1)ρi(ǫ,m2p+1)− [li,2p+1 − lj,2p+1 − 1]ρi(ǫ,m

+j
2p+1)ρj(ǫ,m2p+1) = 0,

(62)
[li,2p+1+ lj,2p+1]τi(ǫ,m

+j
2p+1)ρj(ǫ,m2p+1)− [li,2p+1+ lj,2p+1− 2]ρj(ǫ,m

−i
2p+1)τi(ǫ,m2p+1) = 0, (63)

[li,2p+1−lj,2p+1+1]τi(ǫ,m
−j
2p+1)τj(ǫ,m2p+1)−[li,2p+1−lj,2p+1−1]τj(ǫ,m

−i
2p+1)τi(ǫ,m2p+1) = 0, (64)

[lj,2p+1 + 1]+σ(ǫ,m
+j
2p+1)ρj(ǫ,m2p+1)− [lj,2p+1 − 1]+ρj(ǫ,m2p+1)σ(ǫ,m2p+1) = 0, (65)

[lj,2p+1]+τj(ǫ,m2p+1)σ(ǫ,m2p+1)− [lj,2p+1 − 2]+σ(ǫ,m
−j
2p+1)τj(ǫ,m2p+1) = 0, (66)

p
∑

i=1

(

−[2li,2p+1 + 1]

p
∏

r=1

r 6=k

([li,2p+1]
2
+ − [lr,2p]

2
+) τi(ǫ,m

+i
2p+1)ρi(ǫ,m2p+1)+

+[2li,2p+1−3]

p
∏

r=1

r 6=k

([li,2p+1−1]2+−[lr,2p]
2
+) ρi(ǫ,m

−i
2p+1)τi(ǫ,m2p+1)

)

−
p
∏

r=1

r 6=k

[lr,2p]
2
+·σ2(ǫ,m2p+1) = −E,

(67)
where i 6= j, E is the unit operator on Vα

ǫ,m2p+1
and k is a fixed number from the set {1, 2, · · · , p}.

The irreducible representations Tǫ,m2p+1
of U ′

q(so2p+1) under restriction to U ′
q(so2p) decompose

into irreducible representations Tǫ,m2p
of this subalgebra such that the numbers m2p satisfy the

inequalities determined by the Gel’fand–Tsetlin tableaux. Under this, each of the numbers lr,2p
runs over a certain set of values. Assuming that no of lr,2p, r 6= p, is a constant for the repre-
sentation Tǫ,m2p+1

, we equate in (67) terms with the same dependence on [lr,2p]
2
+ and obtain the

relations
p
∑

i=1

(

[2li,2p+1 + 1]τi(ǫ,m
+i
2p+1)ρi(ǫ,m2p+1)−

−[2li,2p+1 − 3]ρi(ǫ,m
−i
2p+1)τi(ǫ,m2p+1)

)

= (−1)pσ2(ǫ,m2p+1), (68)

p
∑

i=1

(

[2li,2p+1 + 1][li,2p+1]
2(p−ν−1)
+ τi(ǫ,m

+i
2p+1)ρi(ǫ,m2p+1)−

−[2li,2p+1 − 3][li,2p+1 − 1]
2(p−ν−1)
+ ρi(ǫ,m

−i
2p+1)τi(ǫ,m2p+1)

)

= 0, ν = 1, 2, · · · , p − 2, (69)

p
∑

i=1

(

[2li,2p+1 + 1][li,2p+1]
2p−2
+ τi(ǫ,m

+i
2p+1)ρi(ǫ,m2p+1)−

−[2li,2p+1 − 3][li,2p+1 − 1]2p−2
+ ρi(ǫ,m

−i
2p+1)τi(ǫ,m2p+1)

)

= E. (70)

If k parameters lr,2p, r 6= p, are constant for the representation Tǫ,m2p+1
, then a number of the

relations (68)–(70) is decreased by k.
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In a similar way it is proved that ρ′i(ǫ,m2p) and τ ′i(ǫ,m2p) from formula (61) satisfy the
relations

[li,2p − lj,2p + 1]ρ′j(ǫ,m
+i
2p )ρ

′
i(ǫ,m2p)− [li,2p − lj,2p − 1]ρ′i(ǫ,m

+j
2p )ρ

′
j(ǫ,m2p) = 0, i 6= j, (71)

[li,2p + lj,2p + 1]τ ′i(ǫ,m
+j
2p )ρ

′
j(ǫ,m2p)− [li,2p + lj,2p − 1]ρ′j(ǫ,m

−i
2p )τ

′
i(ǫ,m2p) = 0, i 6= j, (72)

[li,2p − lj,2p + 1]τ ′i(ǫ,m
−j
2p )τ

′
j(ǫ,m2p)− [li,2p − lj,2p − 1]τ ′j(ǫ,m

−i
2p )τ

′
i(ǫ,m2p) = 0, i 6= j, (73)

p
∑

i=1

(

− [2li,2p + 2]

[li,2p]+[li,2p + 1]+

p−1
∏

r=1

(

[li,2p]+[li,2p + 1]+ − [lr,2p−1]+[lr,2p−1 − 1]+

)

τ ′i(ǫ,m
+i
2p )ρ

′
i(ǫ,m2p)+

+
[2li,2p − 2]

[li,2p]+[li,2p − 1]+

p−1
∏

r=1

(

[li,2p]+[li,2p − 1]+ − [lr,2p−1]+[lr,2p−1 − 1]+

)

ρ′i(ǫ,m
−i
2p )τ

′
i(ǫ,m2p)

)

= −E,

(74)
If lp,2p ≡ mp,2p = 1/2 then ρ′p(ǫ,m

−p
2p )τ

′
p(ǫ,m2p) must be replaced by (τ ′p(ǫ,m2p))

2. Last relation
implies the equalities

p
∑

i=1

(

[2li,2p + 2]([li,2p]+[li,2p + 1]+)
p−ν−2τ ′i(ǫ,m

+i
2p )ρ

′
i(ǫ,m2p)+

−[2li,2p − 2]([li,2p]+[li,2p − 1]+)
p−ν−2ρ′i(ǫ,m

−i
2p )τ

′
i(ǫ,m2p)

)

= 0, ν = 1, 2, · · · , p − 1, (75)

p
∑

i=1

(

[2li,2p + 2]([li,2p]+[li,2p + 1]+)
p−2τ ′i(ǫ,m

+i
2p )ρ

′
i(ǫ,m2p)−

−[2li,2p − 2]([li,2p]+[li,2p − 1]+)
p−2ρ′i(ǫ,m

−i
2p )τ

′
i(ǫ,m2p)

)

= E. (76)

Theorem 2. The restriction of a nonclassical type irreducible representation T of U ′
q(son) to

the subalgebra U ′
q(son−1) contains each irreducible representation of this subalgebra not more than

once.

This theorem is proved (by using relations (62)–(76)) in the same way as Theorem 1 and we
omit this proof.

According to this theorem the operators ρj(ǫ,m2p+1), ρ
′
j(ǫ,m2p), τj(ǫ,m2p+1), τ

′
j(ǫ,m2p) and

σ(ǫ,m2p+1) are numerical functions. We have to find possible expressions for these functions.
First we consider the case of U ′

q(so2p+2). We obtain from (65) that

σ(m2p+1) =

p
∏

j=1

([lj,2p+1]+[lj,2p+1 − 1]+)
−1 · σ, (77)

where σ is a constant. As in the case of the representations of the classical type, from relations
(62)–(64) we derive that the expression

βj(lj,2p+1) = ρj(ǫ,m2p+1)τj(ǫ,m
+j
2p+1)[lj,2p+1]

2
+[2lj,2p+1 − 1][2lj,2p+1 + 1]×

×
∏

r 6=j

([lr,2p+1]
2 − [lj,2p+1]

2)([lr,2p+1 − 1]2 − [lj,2p+1]
2)

depends only on lj,2p+1.
We rewrite the relations (68)–(70) for βj(lj,2p+1) and introduce the notations

lr+1,2p+2 = lmin
r,2p+1 − 1, r = 1, 2, · · · , p.
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Then we represent σ (without loss of a generality) in the form

σ = ǫ2p+2

p+1
∏

r=1

[lr,2p+2]+, (78)

where l1,2p+2 is a number which is determined by σ.

Proposition 10. Solutions of the system of equations for βj(lj,2p+1) are given by the expres-
sions

βi(li,2p+1) =

p+1
∏

r=1

([li,2p+1]
2 − [lr,2p+2]

2) =

p+1
∏

r=1

([li,2p+1]
2
+ − [lr,2p+2]

2
+) =

=

p+1
∑

j=0

(−1)jep−j+1([l1,2p+2]
2
+, · · · , [lp+1,2p+2]

2
+)([lj,2p+1]

2
+)

j ,

where er(x1, · · · xp+1) are elementary symmetric polynomials in x1, · · · , xp+1.

This proposition is proved in the same way as Proposition 7 by using relations (50)–(53).

Separation of ρj(ǫ,m2p+1) and τj(ǫ,m
+j
2p+1) from βj(lj,2p+1) are fulfilled in the same way as in

the case of formula (44) and we obtain the following formula for T (I2p+2,2p+1):

T (I2p+2,2p+1)|ǫ,m2p+1, α〉 =
p
∑

j=1

Bj
2p+1(m2p+1)

b(lj,2p+1)[lj,2p+1]+
|ǫ,m+j

2p+1, α〉−

−
p
∑

j=1

Bj
2p+1((m

−j
2p+1)

b(lj,2p+1 − 1)[lj,2p+1 − 1]+
|ǫ,m−j

2p+1, α〉 + ǫ2pĈ2p+1(m2p+1)|m2p+1, α〉, (79)

where Bj
2p+1(m2p+1) and b(lj,2p+1) are given by the same expressions as in (56) and

Ĉ2p+1(m2p+1) =

∏p+1
s=1[ls,2p+2]+

∏p
s=1[ls,2p]+

∏p
s=1[ls,2p+1]+[ls,2p+1 − 1]+

.

This formula coincides with (15) if to replace p+ 1 by p.
Now we consider the case of U ′

q(so2p+1). We derive from the relations (71)–(73) that

β′
j(lj,2p) = ρ′j(ǫ,m2p)τ

′
j(ǫ,m

+j
2p )(q

lj,2p − q−lj,2p)(qlj,2p+1 − q−lj,2p−1)

×
∏

r 6=j

([lr,2p]+[lr,2p − 1]+ − [lj,2p]+[lj,2p + 1]+)([lr,2p + 1]+[lr,2p]+ − [lj,2p]+[lj,2p + 1]+)

depends only on lj,2p (we used here the relation [x][x−1]− [y][y−1] = [x]+[x−1]+− [y]+[y−1]+).
Then we rewrite the relations (75) and (76) for β′

j(lj,2p) and, using the equalities (50) and (52),
derive the following proposition.

Proposition 11. Solutions of the system of equations for β′
j(lj,2p) are given by the expressions

β′
j(lj,2p) =

p
∏

r=1

([lj,2p]+[lj,2p + 1]+ − [lr,2p+1]+[lr,2p+1 − 1]+),

where li,2p+1 = lmax
i,2p + 1, i = 1, 2, · · · , p.
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We separate ρ′j(m2p) and τ ′j(m
+j
2p ) from β′

j(lj,2p) and obtain for the operator T (I2p+1,2p) of an
irreducible representation T of U ′

q(so2p+1) the expression

T (I2p+1,2p)|ǫ,m2p, α〉 = δmp,2p ,1/2
ǫ2p+1

q1/2 − q−1/2
D2p(αn)|ǫ,m2p, α〉+

+

p
∑

j=1

Aj
2p(m2p)

a′(lj,2p)
|ǫ,m+j

2p α〉 −
p
∑

j=1

Aj
2p(m

−j
2p )

a′(lj,2p − 1)
|ǫ,m−j

2p , α〉,

where ǫ2p+1 takes one of the values ±1, Aj
2p(m2p) is given by the same expression as in the case

of the formula (57), a′(lj,2p) is such as in (14) and

D2p(m2p) =

∏p
i=1[li,2p+1 − 1

2 ]
∏p−1

i=1 [li,2p−1 − 1
2 ]

∏p−1
i=1 [li,2p +

1
2 ][li,2p − 1

2 ]
.

8. Complete reducibility

In this section we prove complete reducibility of finite dimensional representations of U ′
q(son)

if Assumption of section 6 is true. For the algebras U ′
q(so3) and U ′

q(so4) this assumption is fulfilled
(see [10, 12]).

Theorem 3. If Assumption of section 6 is true, then each finite dimensional representation
of U ′

q(son) is completely reducible.

Proof. To prove the theorem it is enough to show that every finite dimensional representation
T of U ′

q(son), containing two irreducible constituents, is completely reducible. We represent the
space H of the representation T in the form H = H1⊕H2 such that H1 and H2 are invariant with
respect to U ′

q(son−1) and on H1 and H/H1 irreducible representations of U ′
q(son) are realized (we

denote them by T1 and T2, respectively). We have to consider three cases:

Case 1: One irreducible constituent of T is of the clasasical type and another of the nonclassical
type.

Case 2: Both irreducible constituents of T are of the classical type.
Case 3: Both irreducible constituents of T are of the nonclassical type.

Proof of case 1. We restrict the representation T onto U ′
q(son−1) and decompose it into a direct

sum of irreducible representations of U ′
q(son−1). Then H is the direct sum H = H1 ⊕H2, where

H1 and H2 are sums of the linear subspaces on which irreducible representations of U ′
q(son−1)

are realized, which belong to the classical type and to the nonclassical type, respectively. Let
ξ1 ∈ H1 transform under an irreducible representation of U ′

q(son−1). Then due to Proposition
4 and statements of section 4 on decomposition of tensor products of irreducible representa-
tions, T (In,n−1)ξ1 ∈ H1. Similarly, if ξ2 ∈ H2 transform under an irreducible representation
of U ′

q(son−1), then by the same reason T (In,n−1)ξ2 ∈ H2. Therefore, H1 and H2 are invariant
(with respect to U ′

q(son)) subspaces of H. This means that the representation T is completely
irreducible.

Proof of case 2. Under restriction of the representation T upon U ′
q(son−1), its irreducible

constituents T1 and T2 decompose into a direct sum of irreducible representations of this subal-
gebra. We denote the corresponding collections of numbers, characterizing these representations
of U ′

q(son−1), by mn−1 and m̃n−1, respectively. The corresponding sets of mn−1 and of m̃n−1

will be denoted by Ω1 and Ω2, respectively. Since for mn−1 ∈ Ω1 each mi,n−1 runs over values
independent of values of mj,n−1, j 6= i, then in Ω1 there exists a single maximal mn−1 denoted
by mmax

n−1. Similarly, in Ω2 there exists a single m̃max
n−1. We divide case 2 into four subcase:
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Subcase 1: There exists no irreducible representation Tmn−1
of U ′

q(son−1) with mn−1 ∈ Ω1

such that m̃max
n−1 = mn−1.

Subcase 2: The representation Tm̃
max
n−1

is equivalent to some irreducible representation Tmn−1
,

mn−1 ∈ Ω1 and m̃max
n−1 6= mmax

n−1.
Subcase 3: m̃max

n−1 = mmax
n−1 and T1 is not equivalent to T2.

Subcase 4: T1 is equivalent to T2.

We conduct a proof for representations of the algebra U ′
q(so2p+2). For the algebra U ′

q(so2p+1)
a proof is similar and we omit it.

Let ξ be a vector of the subspace V irr
m̃

max
2p+1

on which the irreducible representation Tm̃
max
2p+1

of

U ′
q(so2p+1) is realized. A multiplicity of Tm̃

max
2p+1

in the representation T↓U ′
q(so2p+1) is one. Therefore,

ξ is an eigenvector of the operator σ(m̃max
2p+1). We the reasoning of the proof of Theorem 1 acting

successively upon ξ by operators ρi and τj of section 6 (corresponding to the appropriate values of
m̃2p+1). As a result, we obtain an invariant (with respect to U ′

q(so2p+2)) subspace H̃ of H which
is a direct sum of nonequivalent irreducible (with respect to the subalgebra U ′

q(so2p+1)) subspaces

V irr
m̃2p+1

. On H̃ the irreducible representation T2 of U ′
q(so2p+2) is realized. Therefore, T is a direct

sum of its subrepresentations T1 and T2.
In subcase 2, m̃max

2p+1 is not a maximal set of (m1,2p+1, · · · ,mp,2p+1) for the representation T .
Therefore, there exists j, 1 ≤ j ≤ p, such that ρj(m̃

max
2p+1) 6= 0. This operator has one-dimensional

kernel K. We take a vector ξ ∈ K. Thus, ρj(m̃
max
2p+1)ξ = 0. Due to relation (23) ξ is an eigenvector

of the operator σ(m̃max
2p+1), and due to (20) ρi(m̃

max
2p+1)ξ = 0, 1 ≤ i ≤ p. Now a proof is conducted

in the same way as in the previous subcase (by using the reasoning of the proof of Theorem 1).
Since T1 is not equivalent to T2 in subcase 3, we easily derive from the results of section 6 that

for irreducible representations T1 and T2 the corresponding values σ(mmax
2p+1) and σ(m̃max

2p+1) are
different. Therefore, the operator σ(mmax

2p+1) for the whole representation T is diagonalizable. We
take eigenvectors ξ1 and ξ2 belonging to different eigenvalues. Then ρj(m

max
2p+1)ξs = 0, s = 1, 2,

for all values of j. We act upon ξ1 and ξ2 by the operators ρi and τj and then, in the same way
as in the proof of Theorem 1, obtain two linear invariant (with respect to U ′

q(so2p+2)) subspaces
H1 and H2 of H such that H = H1 ⊕H1. This proves the theorem for subcase 3.

For simplicity of notations, in subcase 4 we set

m2p+1 = (m1,2p+1, · · · ,mp,2p+1) ≡ m = (m1, · · · ,mp),

(l1,2p+1, · · · , lp,2p+1) ≡ (l1, · · · , lp).
The operators σ(m), ρj(m) and τj(m) for the representation T of U ′

q(so2p+2) will be denoted by

σ(T )(m), ρ
(T )
j (m) and τ

(T )
j (m), respectively. In subcase 4 these operators are of the form

σ(T )(m)=

(

σ(m) σ̃(m)
0 σ(m)

)

, ρ
(T )
j (m)=

(

ρj(m) ρ̃j(m)
0 ρj(m)

)

, τ
(T )
j (m)=

(

τj(m) τ̃j(m)
0 τj(m)

)

where σ(m), ρj(m), τj(m) σ̃(m), ρ̃j(m), τ̃j(m) are usual functions. Moreover, σ(m), ρj(m) and
τj(m) are functions from section 6, corresponding to the irreducible representation T1. Substitut-

ing these expressions for σ(T )(m) and ρ
(T )
j (m) into (23), we obtain identities for elements σ(m)

and ρj(m), coinciding with (23), and the identities

[lj + 1](σ(m+j)ρ̃j(m) + σ̃(m+j)ρj(m)) = [lj − 1](ρ̃j(m)σ(m) + ρj(m)σ̃(m)). (80)

The function σ(m) corresponds to an irreducible representation of the algebra U ′
q(so2p+2) and is

given by (41) and (48). Using the relation [lj + 1]σ(m+j) = [lj − 1]σ(m), following from (23),
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we derive from (80) that [lj + 1]σ̃(m+j) = [lj − 1]σ̃(m). Thus, similarly to the case of σ(m) in
section 6 we derive

σ̃(m) = σ̃

p
∏

j=1

([lj ][lj − 1])−1, (81)

where σ̃ is a constant. We state that σ̃ = 0. In order to show this we remark that if σ̃(m) = 0
for some m, then σ̃ = 0 and then σ̃(m) = 0 for all m.

In the case when lp+1,2p+2 = 0, the representation T1 ∼ T2 contains representations of
U ′
q(so2p+1) with lp = 1. In this case σ = σ̃ = 0.
Let lp+1,2p+2 > 0. It this case σ 6= 0. From the relation (25), written for the representation T

of U ′
q(so2p+2), we derive that

p
∑

i=1

(

−[2li + 1]

p−1
∏

r=1

([li]
2 − [lr,2p]

2)Fi(m)+

+[2li − 3]

p−1
∏

r=1

([li − 1]2 − [lr,2p]
2)Fi(m

−i)

)

+

p−1
∏

r=1

[lr,2p]
2 · 2σ(m)σ̃(m) = 0, (82)

where
Fi(m) := τi(m

+i)ρ̃i(m) + τ̃i(m
+i)ρi(m).

Let us consider representations Tm of U ′
q(so2p+1) from T↓U ′

q(so2p+1) with m2, · · · ,mp taking
their minimal values. If all ls,2p, s = 1, 2, · · · , p, are not fixed for these representations, we have

[2l1 + 1]F1(m1,m
min
2 , . . . ,mmin

p )− [2l1 − 3]F1(m1 − 1,mmin
2 , . . . ,mmin

p )

+

p
∑

i=2

[2li + 1]Fi(m1,m
min
2 , . . . ,mmin

p ) = (−1)p+12σ(m1,m
min
2 , . . . ,mmin

p )σ̃(m1,m
min
2 , . . . ,mmin

p ),

(83)
[2l1 + 1][l1]

2νF1(m1,m
min
2 , . . . ,mmin

p )− [2l1 − 3][l1 − 1]2νF1(m1 − 1,mmin
2 , . . . ,mmin

p )

+

p
∑

i=2

[2li + 1][li]
2νFi(m1,m

min
2 , . . . ,mmin

p ) = 0, ν = 1, 2, . . . , p − 1. (84)

We sum each equation in (83) and (84) over l1 from lmin
1 = l2,2p+2 + 1 to lmax

1 with weight
coefficients [2l1 − 1] and obtain

p
∑

i=2

Gi = 2(−1)p+1

lmax
1
∑

l1=lmin
1

[2l1 − 1]σ(m1,m
min
2 , . . . ,mmin

p )σ̃(m1,m
min
2 , . . . ,mmin

p ), (85)

p
∑

i=2

[li]
2νGi = 0, ν = 1, 2, . . . , p − 1, (86)

where

Gi =

lmax
1
∑

l1=lmin
1

[2l1 − 1][2li + 1]Fi(m1,m
min
2 , . . . ,mmin

p ).

Since the system of homogeneous equations (86) for Gi, i = 2, 3, . . . , p, has non-vanishing deter-
minant, we get Gi = 0 and, therefore, (85) gives

lmax
1
∑

l1=lmin
1

[2l1 − 1]σ(m1,m
min
2 , . . . ,mmin

p )σ̃(m1,m
min
2 , . . . ,mmin

p ) = 0.
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Taking into account (41) and (81) we get

0 = σσ̃

lmax
1
∑

l1=lmin
1

[2l1 − 1]

[l1]2[l1 − 1]2
= σσ̃

lmax
1
∑

l1=lmin
1

(

1

[l1 − 1]2
− 1

[l1]2

)

= σσ̃

(

1

[l2,2p+2]2
− 1

[lmax
1 ]2

)

.

Since [lmax
1 ]2 6= [l2,2p+2]

2 and σ 6= 0, we obtain σ̄ = 0.
If values of ls,2p are fixed in the considered representations of U ′

q(so2p+1), then the number of
relations which follow from (82) and the number of Gi are decreased by the number of fixed ls,2p.
Thus, as before, we get Gi = 0, i = 2, 3, . . . , p and, therefore, σ̃ = 0.

We have proved that σ̃(m) = 0 for all irreducible representations Tm of U ′
q(so2p+1), contained

in the representation T↓U ′
q(son)

. This means that all operators σ(T )(m) are diagonal and the
further proof of complete reducibility are conducted in the same way as in the previous subcase.

The case 3 is proved in the same way as the case 2 and we omit this proof. The theorem is
proved.

Corollary. If irreducible finite dimensional representations of U ′
q(son−1) are exhausted by

irreducible representations of section 3, then each finite dimensional representation of U ′
q(son) is

completely reducible.

9. Classification theorems

Suppose that Assumption of section 6 is acting.

Proposition 12. If Assumption of section 6 is true, then irreducible finite dimensional
representations T of U ′

q(son) such that the restriction T↓U ′
q(son−1) contains in the decomposition

into irreducible components only representations of the classical type of U ′
q(son−1) are exhausted

by the representations of the classical type from section 3.

Proof. We prove the proposition when n = 2p + 2. For n = 2p+ 1 a proof is similar.
Let T be a representation of U ′

q(so2p+2) from the formulation of the proposition. Then
the functions βj(li,2p+1), defined by the formula (44), are given by (49). It was shown above
that T↓U ′

q(so2p+1) =
⊕

m2p+1
Tm2p+1

and in this decomposition each mr,2p+1 runs over the values

mmin
r,2p+1,m

min
r,2p+1 +1, · · · ,mmax

r,2p+1, where l
min
r,2p+1 = lr+1,2p+2 +1. Due to properties of the functions

ρj, βr(l
min
r,2p+1 + s) 6= 0 for s = 0, 1, · · · , lmax

r,2p+1 − lmin
r,2p+1 − 1 and βr(l

max
r,2p+1) = 0. Then it follows

from (49) that lmax
r,2p+1 = lr,2p+2, r 6= 1. Since βr(l

max
1,2p+1) = 0, we find from (49) that lmax

1,2p+1

coincides with l1,2p+2 or with −l1,2p+2. Therefore, l1,2p+2 is an integer (a half-integer) if li,2p+2,
i = 2, 3, · · · , p + 1, are integers (half-integers). Moreover, l1,2p+2 may be positive or negative.
We see that the formula for the operator T (I2p+2,2p+1) does not change if we replace l1,2p+2 and
lp+1,2p+2 by −l1,2p+2 and −lp+1,2p+2, respectively. Therefore, we may consider that l1,2p+2 is pos-
itive and lp+1,2p+2 takes positive and negative values. Now taking into account admissible values
for li,2p+2, i = 1, 2, · · · , p+1, and formula (56) for T (I2p+2,2p+1) we see that the representation T
coincides with one of the irreducible representations of the classical type from section 3.

In order to prove the proposition for representations of the algebra U ′
q(so2p+1) we use the

formula of Proposition 8 and formula (57) instead of formulas (49) and (56). Proposition is
proved.

Proposition 13. If Assumption of section 6 is true, then irreducible finite dimensional rep-
resentations T of U ′

q(son) such that the restriction T↓U ′
q(son−1) contains in the decomposition into

irreducible components only representations of the nonclassical type of U ′
q(son−1) are exhausted by

the representations of the nonclassical type of section 3.

Proof of this proposition is the same as that of Proposition 12.
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Theorem 4. Irreducible finite dimensional representations of the algebra U ′
q(son) are ex-

hausted by representations of the classical type and of the nonclassical type from section 3.

Proof. For the algebra U ′
q(son−1) ≡ U ′

q(so4), Assumption of section 6 is true (see [10]). Now
the theorem is easily proved by induction taking into account Theorem 3 and Propositions 12 and
13. Theorem is proved.

Corollary. Each finite dimensional representation of U ′
q(son) is completely reducible.

Proof. This assertion follows from Corollary of section 8 and from Theorem 4.
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