
ar
X

iv
:m

at
h/

07
02

56
5v

1 
 [

m
at

h.
D

G
] 

 1
9 

Fe
b 

20
07

MINIMAL SURFACES IN THE THREE-SPHERE

BY DOUBLING THE CLIFFORD TORUS

NIKOLAOS KAPOULEAS AND SEONG-DEOG YANG

Abstract. We construct embedded closed minimal surfaces in the round three-sphere S3(1),
resembling two parallel copies of the Clifford torus, joined by m

2 small catenoidal bridges
symmetrically arranged along a square lattice of points on the torus.

1. Introduction

Historical background and the general idea.
An interesting general construction for minimal surfaces is motivated by examples of min-

imal surfaces which resemble two copies of a minimal surface joined together with many
catenoidal bridges. Karcher, Pinkall, and Sterling have constructed [13] minimal surfaces
resembling roughly an equatorial sphere in S

3(1) which has been “doubled”, and the two
sheets have been connected by necks arranged at the vertices of a Platonic solid, with the
corresponding symmetry imposed. The examples constructed this way are finitely many,
because the Platonic solids are finitely many and the size of the neck is determined by the
neck configuration (their number and positions). Pitts and Rubinstein have discussed [18]
constructions for families of minimal surfaces, where the size of the catenoidal bridges used
can be arbitrarily small and the genus then tends to infinity, while the surfaces tend to a
limit varifold. These constructions are highly symmetrical. Some of the constructions have
a limit varifold which is a minimal surface counted with multiplicity two.

We call such constructions “doubling constructions” as suggested in [12]. The ingredients
for such a construction would be a minimal surface Σ in a Riemannian three-manifold, two
nearby copies of Σ, Σ1 and Σ2, and a set of points L ⊂ Σ. Σ1 and Σ2 can be thought of
as the graphs of two functions φ1 and φ2 on Σ. φ1 and φ2 are assumed to be small and
with small derivatives. The minimal surface constructed would consist of a region MΣ which
approximates Σ1 and Σ2 minus small discs, and a collection of regions which approximate
small truncated catenoids. The discs removed are centered at the points on Σ1 and Σ2

corresponding to the points of L. The catenoidal regions serve as bridges connecting to MΣ

at the boundaries of the removed discs. We call directions perpendicular to Σ “vertical”, and
directions along Σ “horizontal”. The axes of the catenoidal regions would be approximately
vertical.

Since a Riemannian manifold at small scale is approximately Euclidean, we can use hori-
zontal and vertical (approximate) translations to find balancing obstructions to the existence
of such surfaces. More precisely we can consider the force F exerted by the region close to Σ1

to a catenoidal bridge, and the force Fc exerted through the waist of the bridge to the part
of the catenoidal bridge closer to Σ1, by the other part. The vertical component of Fc is ap-
proximately equal to the length of its waist. (Balancing for minimal surfaces is based simply
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on the first variation formula [16, 20]. For a general discussion see [12].) If F is intercepted
at a suitable curve which can be approximated by a curve on Σ1 enclosing a domain Ω ⊂ Σ1,
then the vertical component F can be approximated by the integral of the mean curvature
of Σ1 on Ω. Because of the smallness assumptions for φ1, we can ignore the nonlinear terms
and the derivatives, and then the mean curvature is approximated by (|A|2 + Ric(ν, ν))φ1,
and the vertical component of F by the area of Ω times the value of (|A|2 + Ric(ν, ν))φ1 at
the corresponding point of L.

The above heuristic argument suggests that a necessary condition for a doubling construc-
tion is that the mean curvature of the parallel surfaces to Σ points away from Σ, which in
general amounts to

(1.1) |A|2 +Ric(ν, ν) > 0 on Σ.

This condition then ensures that the vertical components of F and Fc point in opposite
directions. Moreover, vertical component balancing considerations as above, relate the size
of φ1 and φ2 with the size of the catenoidal bridge and the area of Ω. Since the matching of
the catenoidal bridge to Σ1 and Σ2 gives further relations between φ1, φ2, and the size of the
bridge, and the area of Ω can be guessed from L, it would appear that L determines completely
the construction. Horizontal force considerations should further restrict the possible neck
configurations L and the sizes of the catenoidal bridges.

Developing in detail such a general construction is beyond the scope of this paper. Instead
we present a particular doubling construction where Σ = T, the Clifford torus in the unit
three-sphere, and the neck configuration L is a square lattice of points on T. Because of
the high symmetry involved the construction simplifies significantly, in particular we do not
need to consider horizontal forces. This construction has been outlined in [12]. The method
used is a gluing Partial Differential Equations method. The particular kind of methods used
relates most closely to the methods developed in [4, 19], especially as they evolved and were
systematized in [8]. We refer the reader to [12] for a general discussion.

Another motivation for the construction in this paper is that it is nontrivial to obtain new
examples of minimal surfaces in the round three-sphere, and the list of known examples is
limited [13–15, 17]. Moreover, desingularization methods can be used to combine the new
surfaces produced here, to construct a more varied class of further examples [12, Theorem
G]. The desingularization constructions will appear elsewhere.

Outline of the construction.
It is convenient that there is a simple coordinate system which is well adjusted to our

purposes. We study this coordinate system in appendix A. We call the corresponding coor-
dinates (x, y, z). The surface {z = 0} in S

3(1) is the Clifford torus T on which the doubling
construction is based. The surfaces parallel to T are the surfaces of constant z.

In section 2 we construct the initial surfaces M . The construction is based on a square
lattice L ⊂ T (see 2.2) which consists of m2 points. The construction of the minimal surfaces
in the main theorem works when m is large. The surfaces constructed have genus m2 + 1
because they amount to two tori connected bym2 handles. The size of the catenoidal bridges τ
can not be predicted precisely, but up to a factor which is uniformly controlled independently

of m is given by τ := m−1e−m2/4π (see 2.4). This formula can be guessed from balancing
considerations as outlined above (or see [12]). It allows us to prove that we can choose τ so
that the construction works (see 4.3 and the proof of the main theorem 4.4).

The construction of M is carried out in parallel with a similar construction of a surface

M̂ which would give a doubling of the plane in three-dimensional Euclidean space. By the
2



maximum principle, M̂ can not be perturbed to minimality, in contrast with M which by
the main theorem of the paper 4.4 can (for a certain τ). This is consistent with 1.1, since
|A|2+Ric(ν, ν) = 4 > 0 on T, while |A|2+Ric(ν, ν) = 0 on the plane and the mean curvature
vanishes on its parallel surfaces which are planes themselves. Actually the conormal on

a perturbed M̂ on the vertical planes of reflectional symmetry (that is on ∂D̂, see 2.1) is
horizontal, so the force F in the discussion above vanishes providing an alternative proof

that M̂ can not be corrected.
As it is often the case in such constructions [3–12, 21, 22], it is convenient to define two

more metrics on the initial surfaces M , h and χ, besides the induced metric g. h and χ
are conformal to g. h allows us to write the linearized equation with uniformly bounded
coefficients. Moreover, it allows us to understand the spectrum and the approximate kernel.
In the usual terminology M modulo the symmetries has two standard regions, which when
viewed with respect to h tend to a planar square and a unit sphere. The square corresponds
to a fundamental domain of T and the unit sphere to the catenoidal bridge. There is only
one (modulo the symmetries) transition region Λ connecting the standard regions. (Λ, χ)
is approximately isometric to a standard cylinder of length m2/4π up to lower order terms.
The geometric quantities of M are discussed in 2.13. These estimates are important because
they allow us to ensure that we can perturb to minimality with an appropriately small
perturbation. Finally in 2.20 we quantify the limiting behavior of the standard regions in the
h metric as m→ ∞.

In section 3 we develop the linear theory needed. All we need from this section is 3.26 and
3.25. In 3.25 we simply extract from the information we have on the mean curvature from
2.13 the relevant estimate we can use according to the linear theory. In 3.26 we provide a
solution modulo the substitute kernel for the linear problem with appropriate decay estimates.
The construction leading to 3.26 follows the general methodology of [8]. It is simpler than
usual however, because of the small number of standard and transition regions, and the one-
dimensionality of the substitute kernel, which can serve also as extended substitute kernel
(see [12] for a general discussion). The one-dimensionality of the approximate and (hence)
the substitute kernel follows from the fact that the symmetries kill the first harmonics of
the Laplacian on the spherical standard region corresponding to the catenoidal bridge, and
therefore the only eigenfunctions allowed in the kernel in the limiting configuration asm→ ∞,
are the constants on the square (see 3.13). It turns out that the substitute kernel is enough
for arranging the decay we need (see 3.20 and 3.21), and hence there is no need for extra
“extended substitute kernel”.

Finally in section 4 we prove the main theorem. To do so we first provide in 4.1 an estimate
of the nonlinear terms consistent with the decay estimates we have. This estimate is based
on a general estimate which can be derived from general principles (see B.3) and which we
present in appendix B. Next we calculate in detail the forces in the spirit of the discussion
earlier (see 4.3), and use that information to ensure that there is some initial surface M
which can be perturbed to minimality. This is consistent with the Geometric Principle (see
[8, 12]) because effectively creation of substitute kernel is achieved by repositioning the copies
of T used in the construction at varying distances aτ from T. Finally we state and prove the
main theorem 4.4 by using as usual the Schauder fixed point theorem [2, Theorem 11.1] to
minimize the required estimates. We remark that the minimal surfaces we find are consistent
with the description of the surfaces in Example 12 in [18, page 306].
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Notation and conventions.
In this paper we use weighted Hölder norms. A definition which works for our purposes in

this paper is the following:

(1.2) ‖φ : Ck,β(Ω, g, f)‖ := sup
x∈Ω

‖φ : Ck,β(Ω ∩Bx, g)‖
f(x)

,

where Ω is a domain inside a Riemannian manifold (M,g), f is a weight function on Ω, Bx is
a geodesic ball centered at x and of radius the minimum of 1 and half the injectivity radius
at x.

We will be using extensively cut-off functions and for this reason we adopt the following
notation: We fix a smooth function Ψ : R → [0, 1] with the following properties:
(i). Ψ is nondecreasing.
(ii). Ψ ≡ 1 on [1,∞] and Ψ ≡ 0 on (−∞,−1].
(iii). Ψ− 1

2 is an odd function.
Given then a, b ∈ R with a 6= b, we define a smooth function ψ[a, b] : R → [0, 1] by

(1.3) ψ[a, b] = Ψ ◦ La,b,

where La,b : R → R is the linear function defined by the requirements L(a) = −3 and
L(b) = 3.

Clearly then ψ[a, b] has the following properties:
(i). ψ[a, b] is weakly monotone.
(ii). ψ[a, b] = 1 on a neighborhood of b and ψ[a, b] = 0 on a neighborhood of a.
(iii). ψ[a, b] + ψ[b, a] = 1 on R.

We will denote the span of vectors e1, . . . , ek with coefficients in a field F by 〈e1, . . . , ek〉F.
Acknowledgments. The authors would like to thank Rick Schoen for his constant inter-
est and support and insightful discussions and suggestions. N.K. would like to thank the
Mathematics Department and the MRC at Stanford University for providing a stimulating
mathematical environment and generous financial support during Fall 2006.

2. The initial surfaces

In this section we define and discuss the initial surfaces. The genus and the geometry of
the initial surfaces depend on m ∈ N which we fix now and is assumed to be as large as
needed. The number of catenoidal bridges used to connect the two parallel copies of the
Clifford torus is m2 and the genus of the resulting surface m2+1. These bridges are arranged
with maximal symmetry at the points of a square lattice. To describe the symmetry involved
we have the following (recall Appendix A):

Definition 2.1. We denote by Ĝ the group of diffeomorphisms of DomΦ generated by the

reflections X̂, X̂π/
√
2m, Ŷ, Ŷπ/

√
2m, and Ẑ. We denote by G the group of isometries of S3(1)

generated by the reflections X, Xπ/
√
2m, Y, Yπ/

√
2m, and Z. We also define D ⊂ S

3(1) and

D̂ ⊂ DomΦ by D := Φ(D̂) and

D̂ :=

{
(x, y, z) ∈ DomΦ : |x| ≤ π√

2 m
, |y| ≤ π√

2 m

}
.

The reflections X̂, X̂π/
√
2m, Ŷ, Ŷπ/

√
2m, and Ẑ generating Ĝ are with respect to the planes

{x = 0}, {y = 0}, {x = π√
2 m

}, {y = π√
2 m

}, and the line {x = y, z = 0} respectively. Clearly

X̂√
2π/m, Ŷ

√
2π/m ∈ Ĝ and X√

2π/m,Y
√
2π/m ∈ G. D̂ is a fundamental domain for the action of
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the translations in Ĝ and is invariant under the action of X̂, Ŷ and Ẑ. Similarly (recall A.4)
D is a fundamental domain for the action of the rotations in G and is invariant under the
action of X, Y and Z.

We define square lattices L̂ on the plane {z = 0} and L on T (recall A.4 and A.8) by

(2.2) L̂ := Ĝ(0, 0, 0), L := Φ(L̂) = GΦ(0, 0, 0).

L consists of m2 points which will be the centers of the catenoidal bridges we use.
The size of the catenoidal bridges depends on m and on ζ ∈ R which is a parameter of the

construction. ζ is assumed to satisfy

(2.3) |ζ| ≤ c ,

where c is a constant which will be chosen later. We define then

(2.4) τ := m−1e−m2/4π, τ := eζ τ .

We define now a constant a > 0, a map X̂ : [−a, a]× S
1 → D̂, and a truncated catenoidal

bridge M̂cat of size τ , by the following:

(2.5)
M̂cat := X̂([−a, a]× S

1), X̂(t, θ) := (r(t) cos θ, r(t) sin θ, z(t)),

where r(t) := τ cosh t, z(t) := τ t, r(a) =
1

m
.

Note that the definition of a just given, together with 2.4 and 2.3 (see also 2.8), implies that

(2.6)

∣∣∣∣a+ ζ − m2

4π
− log 2

∣∣∣∣ < τ.

We also define a region of a horizontal plane (corresponding under Φ to a parallel surface to
T) together with a gluing region by

(2.7)

M̂tor :=

{
(x, y, z) ∈ D̂ : z = ϕ(

√
x2 + y2 ),

1

m
≤
√

x2 + y2
}
,

where ϕ(r) :=ϕcat(r) + ψ[m−1, 2m−1](r) (ϕcat(m
−1)− ϕcat(r) ),

where ϕcat(r) :=τ arccosh
r

τ
= τ

(
log r − log τ + log

(
1 +

√
1− τ2

r2

))
.

Notice that ϕ transits smoothly from being ϕcat in a neighborhood of r = 1/m, to being the
constant

(2.8) ϕcat(1/m) = τa

for r ≥ 2/m (note that 2 < π/
√
2). Correspondingly M̂tor extends smoothly M̂cat close to

its inner boundary circle and transits to the plane z = ϕcat(1/m) close to its outer boundary.

We define then smooth embedded surfaces M̂ ⊂ DomΦ and Mcat,Mtor,M ⊂ S
3(1) by

(2.9)
M̂ := Ĝ(M̂cat ∪ M̂tor), Mcat := Φ(M̂cat), Mtor := Φ(M̂tor),

M := Φ(M̂) = G(Mcat ∪Mtor).

Φ|cM
: M̂ →M is clearly a covering map andM is a closed embedded surface of genus m2+1.

We take M to be our initial surface and we will prove in the Main Theorem that for some
value of ζ it can be perturbed to a nearby minimal surface.
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Geometric quantities on the initial surfaces.
We start by discussing some of the metrics we use. We denote by ĝ the standard Euclidean

metric on DomΦ and by g the standard metric on the round sphere S3(1). Since Φ is a covering
map, these metrics induce metrics on the range and the domain of Φ respectively, which we
denote by slight abuse of notation by the same symbols. We also use the same symbols to

denote the metrics induced on M , M̂ and (by using X̂) on the cylinder S1 × [−a, a]. We also

define cylindrical coordinates (r, θ, t) on D̂ and D by

(2.10) (x, y, z) = (r cos θ, r sin θ, τ t).

We define a smooth function ρ on M (or M̂) by requiring it is invariant under the action of

G (or Ĝ) and on D ∩M (or D̂ ∩ M̂) it satisfies

(2.11) ρ =
1

r
+ ψ[m−1, 2m−1](r)

(
2

m
− 1

r

)
.

We define then smooth metrics χ and χ̂ on our surfaces by

(2.12) χ := ρ2 g, χ̂ := ρ2 ĝ.

We denote by ν the unit normal which satisfies 〈ν, ∂z〉 > 0 on M̂tor, A the second funda-
mental form induced by g, by |A|2 its square length, and by H the mean curvature. We use
a hat to denote the corresponding geometric quantities induced by ĝ. Note that z is constant
on Mtor close to ∂D∩ ∂Mtor, and so we will consider it extended to M as a smooth function,
by requesting invariance under the action of G. We have the following:

Lemma 2.13. Assuming that m is large enough in terms of k ∈ N the following hold:
(i). ‖ρ±1 : Ck(M, χ̂, ρ±1)‖ ≤ C(k).
(ii). ‖z : Ck(M, χ̂, |z| + τ)‖ ≤ C(k).

(iii). ‖χ− χ̂ : Ck(M, χ̂, |z|+ τ)‖ ≤ C(k). On M̂cat we have χ̂ = dt2 + dθ2.
(iv). ‖ρ−2H : Ck(M,χ, (τ + ρ−2)(|z| + τ))‖ ≤ C(k).

(v). ‖|A|2 − 2τ2ρ4 : Ck(M,χ, 1 + τρ2)‖ ≤ C(k). Moreover on M̂cat we have |̂A|2 = 2τ2ρ4.

Proof. We first check these estimates on Mtor. Mtor is the graph of ϕ (recall 2.7) and by the
definition of ϕ and 2.8 we have
(a). ‖ϕ− τa : Ck(Mtor,m

2(dx2 + dy2) )‖ ≤ C(k) τ .
By 2.6 we conclude
(b). τa ≤ m2τ .
By 2.11 we conclude that
(c). ‖ρ±1 : Ck(Mtor ,m

2(dx2 + dy2) )‖ ≤ C(k)m±1.
By straightforward calculation we have

ĝ − (dx2 + dy2) =ϕ2
xdx

2 + 2ϕxϕydxdy + ϕ2
ydy

2,

g − ĝ =sin 2ϕ (dx2 − dy2).

(a), (b), and (c) imply then (i), (ii), (iii), and also
(d). ‖g − (dx2 + dy2) : Ck(Mtor, χ, |z|)‖ ≤ C(k).

Using A.7 and calculating further we conclude

‖A− (Γ3
11dx

2 + Γ3
22dy

2) : Ck(Mtor,m
2(dx2 + dy2) )‖ ≤

C ‖(ϕx, ϕy) : C
k+1(Mtor,m

2(dx2 + dy2) )‖,
6



which by (a), (b) and A.7 implies that
(e). ‖A+ dx2 − dy2 : Ck(Mtor ,m

2(dx2 + dy2) )‖ ≤ C(k)τ .
(d) and (e) imply then (iv) and (v).

It remains to check that the estimates hold onMcat. For convenience we adopt the notation
O(f) to denote a function (or tensor field) which satisfies for each disc D ⊂Mcat of radius 1
with respect to the χ̂ metric the inequality

‖O(f) : Ck(D, χ̂)‖ ≤ C(k) ‖f : Ck(D, χ̂)‖.

By a straightforward calculation we have then

X̂t =τ(sinh t cos θ, sinh t sin θ, 1),

X̂θ =τ cosh t(− sin θ, cos θ, 1),

which implies
(f). ĝ = r2(dt2 + dθ2) and g = r2(dt2 + dθ2 +O(z) ).
Using (f) and the definitions, (i), (ii), and (iii) follow. Using A.7 and calculating further we
find that
(g). Â = τ(−dt2 + dθ2), and A = Â+ Ã+O( (τ + r2)z), where

Ã = r2 (cos 2θ (−dt2 + dθ2) + 2 sin 2θ dt dθ ).
Using (f) and (g) it is straightforward to check (iv) and (v) and complete the proof (notice
also that τ2z < C τ r2). �

Standard and transition regions.
We proceed to define carefully the various regions on the initial surface M in the usual

fashion of [3–12]. Modulo the symmetries imposed, there are only two standard regions which
we denote by S[0] (corresponding to the catenoidal bridge) and S[1] (corresponding to the

torus), and only one transition region we denote by Λ. The extended standard regions S̃[0]

and S̃[1] are the standard regions augmented by the transition region.
In order to ensure uniformity with respect to different values of the parameter ζ, we define

and use a variant t of the parameter t by

(2.14) t =
a

a
t,

where a is defined as in 2.5 for the current value of ζ and a is defined in the same way when
ζ = 0 and hence τ = τ (recall 2.4). This way the range of values of t on Mcat is [−a, a] and
it does not depend on ζ or τ . Note also that by 2.6 we have

(2.15) |t− t| ≤ Cc on S̃[0],
∣∣∣ a
a

− 1
∣∣∣ ≤ Ccm−2.

We use a constant b to control the exact size of the standard and transition regions. b will
be determined later so that the linearized equation and its spectrum behave appropriately.
We use subscripts x and y to modify the usual sizes and boundary circles. In particular each

Sx[n] is a neighborhood of S[n], while S̃x[n] is S̃[n] with an appropriate neighborhood of its
boundary excised.
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Definition 2.16. We define the following:

Sx[0] :=M ∩D ∩ {t ∈ [−b− x, b+ x]},(2.17a)

Sx[1] :=M ∩D ∩ {t ≥ a− b− x},(2.17b)

S̃x[0] :=M ∩D ∩ {t ∈ [−a+ b+ x, a− b− x]},(2.17c)

S̃x[1] :=M ∩D ∩ {t ≥ b+ x},(2.17d)

Λx,y :=M ∩D ∩ {t ∈ [b+ x, a− b− y]},(2.17e)

Cx[0] :=M ∩D ∩ {t = b+ x]},(2.17f)

Cx[1] :=M ∩D ∩ {t = a− b− x},(2.17g)

C∂ := ∂D ∩ ∂Mtor(2.17h)

where b > 5 is a constant chosen finally in the proof of 3.21 independently of m, and 0 ≤
x, y < 1

3a− b. When x = y = 0 we drop the subscripts. We also write Λx for Λx,x.

The limiting behavior of the standard regions, and the linearized operator on them, as
m→ ∞, is best understood in the h metric which is defined on our surfaces by

(2.18) h :=
|A|2 +m2

2
g.

We define the map ̟ : D → R
2 by

(2.19) ̟(x, y, z) :=
m√
2
(x, y).

The following lemma describes the limiting behavior as m→ ∞:

Lemma 2.20. If m is large enough in terms of b+ x, then the following hold:
(i). ‖h− ν̂∗g : C5(Sx[0], ν̂

∗g)‖ ≤ C(b+ x) τ , where ν̂∗g is the pullback of the standard metric

of the unit sphere S
2(1) by ν̂ and satisfies ν̂∗g = 1

2 |̂A|2ĝ = τ2r−4ĝ = τ2r−2χ̂. Moreover

ν̂(Sx[0]) = {(x, y, z) ∈ S
2(1) : x2 + y2 ≥ Ř2

x}, where Řx = 1/ cosh[(b+ x)a/a].
(ii). ‖h −̟∗g : C5(Sx[0],̟

∗g)‖ ≤ C(b + x)/m2, where ̟∗g is the pullback of the standard

Euclidean metric on R
2 by ̟ (restricted to Sx[1]). Moreover there is R̃x such that

|R̃x − 2−1/2e−(b+x)a/a| ≤ τ and ̟(Sx[1]) = {(x̃, ỹ) ∈ R
2 : |x̃| ≤ π

2 , |ỹ| ≤ π
2 , x̃

2 + ỹ2 ≥ R̃2
x}.

Proof. Since the catenoid is a minimal surface it follows from standard theory that ν̂∗g =
1
2 |̂A|2ĝ, and the expressions in terms of r follow from 2.13.v and the definitions. This implies
that the length of ν̂(Cx[0]) is 2πτ /r(t) = 2π/ cosh[(b+ x)a/a], which implies that ν̂(Sx[0]) is
as stated. Since

h− ν̂∗g =
1

2
(|A|2 +m2 − 2τ2ρ4) ρ−2χ+ τ2ρ2(χ− χ̂),

we conclude by using 2.13 that

‖h− ν̂∗g : C5(Sx[0], χ̂)‖ ≤ C (m2r2 + τ) ≤ C τ.

This implies the desired estimate and completes the proof of (i).

The second part of (ii) follows easily from the definitions and the observation that R̃x =

(m/
√
2) r(a− (b+ x)a/a). By writing

h−̟∗g =
|A|2 +m2

2
(g − (dx2 + dy2) ) +

|A|2
m2

̟∗g,

8



using 2.13.i to establish the analogue of (c) in the proof of 2.13, estimating g − (dx2 + dy2)
as for (d) in the proof of 2.13, and estimating |A|2 by 2.13.v, we conclude the proof. �

3. The Linearized Equation

Introduction.
In this section we study the linearized equation on M which can be stated in any of the

following equivalent formulations,

(3.1) Lχu = E, or Lu = ρ2E, or Lhu =
2ρ2

|A|2 +m2
E,

where the corresponding linear operators are given by

(3.2)

Lχ := ∆χ + ρ−2(|A|2 + 2), Lh := ∆h + 2
|A|2 + 2

|A|2 +m2
,

L := ∆g + |A|2 + 2 = ρ2Lχ =
|A|2 +m2

2
Lh.

The linearized equation on the transition region.
In this subsection we consider the linearized equation on the transition region Λx,y defined

as in 2.17e, where we assume that x, y ∈ [0, 4]. For simplicity in this subsection we will
denote the neck under consideration by Λ, and its boundary circles Cx[0] and Cy[1] by C and

C respectively. We next define x, x, x : Λ → R to measure the t-coordinate distance from C,
C, and ∂Λ = C ∪ C respectively:

(3.3) b+ x+ x = t, a− b− y − x = t, x := min(x, x).

Note that we can use Φ ◦ X̂ to identify Λ with the cylinder [(b+ x)a/a, a− (b+ y)a/a]× S
1.

We define ℓ to be the t-coordinate length of the cylinder and ℓ to be the t-coordinate length
of the cylinder, so that

(3.4) ℓ = a− 2b− x− y, ℓ = a− (2b+ x+ y)a/a.

Using 2.6 and our assumption that x, y ∈ [0, 4], we estimate

(3.5)

∣∣∣∣ℓ+ 2b+ ζ − m2

4π

∣∣∣∣ < 10.

Our understanding of the linear equations on the transition region is based on the com-
parison with ∆χ, which is based on the following lemma:

Lemma 3.6. The following hold on Λ:
(i). ‖χ− χ̂ : C5(M, χ̂)‖ ≤ Cm2τ .

(ii). ‖ρ−2(|A|2,m2) : C5(Λ, χ, e−3x/2)‖ ≤ C e−3b/2.

Proof. This is a straightforward consequence of 2.13, 2.6, and the various definitions. �

Proposition 3.7. If m is large enough then the lowest eigenvalue of the Dirichlet problem
for Lχ on Λ is > Cℓ−2.

Proof. The proof is similar to the arguments leading to Proposition 2.28 in [8]. It is easy to
prove that for φ ∈ L2(Λ) with L2 derivatives and φ = 0 on ∂Λ we have

∫

Λ
e−3x/2φ2dχ̂ ≤ C

∫

Λ
|∇φ|2bχdχ̂,

9



which together with 3.6 implies∫

Λ
|∇φ|2χdχ−

∫

Λ
ρ−2(|A|2 + 2)φ2dχ ≥ (

2

3
− Ce−3b/2)

∫

Λ
|∇φ|2bχdχ̂.

Using the variational characterization of eigenvalues and assuming b large enough the result
follows since the smallest eigenvalue for ∆bχ is > Cℓ−2. �

Corollary 3.8. (i). The Dirichlet problem for Lχ on Λ for given C2,β Dirichlet data has a
unique solution.
(ii). For E ∈ C0,β(Λ) there is a unique ϕ ∈ C2,β(Λ) such that Lχϕ = E on Λ and ϕ = 0 on

∂Λ. Moreover ‖ϕ : C2,β(Λ, χ)‖ ≤ C(β) ℓ2 ‖E : C0,β(Λ, χ)‖.
Proof. (i) follows trivially and (ii) by using standard linear theory. �

All our constructions have to respect the symmetries imposed, in particular we only con-
sider functions on M which are invariant under the action of G. Λ is not invariant under G
but it is invariant under X and Y. Under the identification of Λ with a cylinder as discussed
above, X corresponds to θ → π−θ, and Y corresponds to θ → −θ. We use the subscript “S” to
specify subspaces of functions on Λ which are invariant under these symmetries. In the next
Proposition and its Corollary, we study the Dirichlet problem when we are allowed to modify
the lowest harmonic on the boundary data in order to have decay estimates appropriate for
our purposes:

Proposition 3.9. Assuming b large enough in terms of given β, γ ∈ (0, 1), there is a linear

map RΛ : C0,β
S

(Λ) → C2,β
S

(Λ) such that the following hold for E ∈ C0,β
S

(Λ) and V := RΛE:
(i). LχV = E on Λ.

(ii). V is constant on C and vanishes on C.

(iii). ‖V : C2,β
S

(Λ, χ, e−γx)‖ ≤ C(β, γ) ‖E : C0,β
S

(Λ, χ, e−γx)‖.
(iv). RΛ depends continuously on τ .

The proposition still holds if the roles of C and C are exchanged in (ii) and x is replaced
by x in (iii). Another possibility is to allow V to be constant on each of C and C in (ii),
while x is replaced by x in (iii).

Proof. The proposition follows by standard theory if Lχ is replaced by ∆bχ. We denote the

corresponding linear map and solution in the ∆χ case by R̃Λ and Ṽ respectively. Using then
3.6 we have

‖Lχ Ṽ : C0,β(Λ, χ̂, e−γx)‖ ≤ C(β, γ) (m2τ + e−3b/2)‖E : C0,β(Λ, χ̂, e−γx)‖,
and the proposition then follows by an iteration where we treat Lχ and RΛ as small pertur-

bations of ∆bχ and R̃Λ and assuming b and m large enough. �

We will only need the next statement with ε1 = 1:

Corollary 3.10. Assuming b large enough in terms of given β, γ ∈ (0, 1) and ε1 > 0, there
is a linear map

R∂ : {u ∈ C2,β
S

(C) :

∫

C
udθ = 0} → C2,β

S
(Λ)

such that the following hold for u in the domain of R∂ and V := R∂u:
(i). LχV = 0 on Λ.

(ii). V − u is constant on C and V vanishes on C.

(iii). |V − u| ≤ ε1 ‖u : C2,β
S

(C, dθ2)‖.
10



(iv). ‖V : C2,β
S

(Λ, χ, e−γx)‖ ≤ C(β, γ) ‖u : C2,β
S

(C, dθ2)‖.
(v). R∂ depends continuously on τ .

The Proposition still holds if the roles of C and C are exchanged and x is replaced by x.

Proof. By standard theory there is a linear map

R̃∂ : {u ∈ C2,β
S

(C) :

∫

C
udθ = 0} → C2,β

S
(Λ)

such that for u in the domain and Ṽ = R̃∂u the following hold:

(a). ∆bχṼ = 0 on Λ.

(b). Ṽ = u on C and Ṽ vanishes on C.

(c). ‖Ṽ : C2,β
S

(Λ, χ, e−γx)‖ ≤ C(β, γ) ‖u : C2,β
S

(C, dθ2)‖.
The corollary then follows by defining

R∂u := R̃∂u−RΛ LχR̃∂u,

applying the Proposition, and using 3.6. �

Corollary 3.11. If u ∈ C2,β
S

(Λ) satisfies Lχu = 0 on Λ, then

‖u : C2,β
S

(Λ, χ)‖ ≤ C(β) ‖u : C2,β
S

(∂Λ, χ)‖.

Proof. Because of 3.10 and 3.8 it is enough to prove the Corollary when u is constant on each

boundary circle. Let Ṽ be the solution of

∆bχṼ = 0 on Λ, Ṽ = 1 on C, Ṽ = 0 on C.

By 3.6 we can write LχṼ = E1 + E2 where ‖E1 : C2,β
S

(Λ, χ, e−γx)‖ ≤ C e−3b/2 and ‖E2 :

C2,β
S

(Λ, χ, e−γx)‖ ≤ C e−3b/2/ℓ. By applying twice 3.9 and assuming b large enough we

obtain V ∈ C2,β
S

such that LχV = 0 on Λ, V is constant on each boundary circle of Λ,

‖V : C2,β
S

(Λ, χ)‖ ≤ C(β), |V − 1| ≤ 1/9 on C, and |V | ≤ 1/9 on C. By exchanging C with C

we obtain V instead of V . By considering linear combinations of V and V we complete the
proof. �

The approximate kernel.
We proceed now to discuss the approximate kernel of Lh on the extended standard regions,

cf. [8, Prop. 2.22]. By approximate kernel we mean the span of eigenfunctions whose
eigenvalues are close to 0. Since we have to take into account the symmetries imposed, note

that the stabilizer of S̃[0] with respect to the action of G is generated by the reflections X,

Y, and Z, and the stabilizer of S̃[1] by X and Y. Therefore we have to restrict our attention
to functions on the extended standard regions which are invariant under the action of these

subgroups. Moreover the functions on S̃[1] should extend smoothly to GS̃[1].

Definition 3.12. We call functions which satisfy the above conditions appropriately symmet-
ric and we use the subscript “sym” to denote subspaces of appropriately symmetric functions.

We understand the approximate kernel in the next proposition by comparing it to the kernel
of the operator ∆+2 on the round sphere S2(1), and ∆ on the square [−π

2 ,
π
2 ]× [−π

2 ,
π
2 ] with

Neumann boundary conditions on the boundary. Because of the symmetries the former is
trivial and the latter one-dimensional:

11



Proposition 3.13. Assuming b large enough in absolute terms, and τ small enough (equiv-
alently m large enough) in terms of a given ε > 0, the following hold:

(i). Lh acting on appropriately symmetric functions on S̃[0] with vanishing Dirichlet condi-
tions, has no eigenvalues in [−1, 1] and the corresponding approximate kernel is trivial.

(ii). Lh acting on appropriately symmetric functions on S̃[1] has exactly one eigenvalue λ0
in [−ε, ε], and no other eigenvalues in [−1/2, 1/2], and therefore the corresponding approxi-
mate kernel is one-dimensional. Moreover the approximate kernel is spanned by a function

f0 ∈ C∞
sym(S̃[1]) which depends continuously on ζ and satisfies

‖f0 − 1 : C2,β(S5[1])‖ < ε, ‖f0 : C2,β(S̃[1], χ)‖ < C.

Proof. The proof is based on the results of [4, Appendix B] which are based on basic facts
about eigenvalues and eigenfunctions [1]. Before using those results we remark the following:
First, the first inequality in [4, B.1.6] should read

‖Fif‖∞ ≤ 2‖f‖∞
instead. Second, the spaces of functions can be constrained to satisfy appropriate symmetries,
as indeed was the case in some of the constructions in [4], and will be the case here. Third,
the only use of the Sobolev inequality [4, B.1.5] is to establish supremum bounds for the
eigenfunctions. These in our case can be alternatively established by using the uniformity
of geometry of S5[n] to obtain interior estimates on S1[n], and then using a variant of 3.11
to obtain estimates on the transition regions. More precisely the eigenvalue equation under
consideration is Lhu+ λu = 0, which is equivalent to

(3.14) Lχ,λu = 0 where Lχ,λ = ∆χ +
|A|2 +m2

2ρ2
λ.

Since the modified part of the operator, |A|2+m2

2ρ2
λ, satisfies the same estimates by 3.6 (assume

|λ| < 9) as ρ−2(|A|2 + 2), we can repeat the arguments leading to 3.11 to establish the same
estimate under the modified assumption that Lχ,λu = 0 on Λ.

For (i) we compare with the following:

N [0] = S
2(1)

⋃(
{1,−1} × D̃(R̃0)

)
where D̃(R̃0) = {(x̃, ỹ) ∈ R

2 : x̃2 + ỹ2 ≤ R̃2
0},

where R̃x was defined in 2.20. The action of X, Y, and Z, on N [0] should be consistent with
their action on M (recall A.2) and the maps ν̂ and ̟: We define for (x, y, z) ∈ S

2(1) and

(i, x̃, ỹ) ∈ {1,−1} × D̃(R̃0)

(3.15)

X(x, y, z) =(−x, y, z), X(i, x̃, ỹ) =(i,−x̃, ỹ),

Y(x, y, z) =(x,−y, z), Y(i, x̃, ỹ) =(i, x̃,−ỹ),

Z(x, y, z) =(y, x,−z), Z(i, x̃, ỹ) =(−i, ỹ, x̃).
We consider the Dirichlet problem on N [0] where the operator is ∆ + 2 on S

2(1), and the

standard Laplacian ∆ on {1,−1}× D̃(R̃0). By standard theory then there are no eigenvalues

in [−1, 1] because the symmetries do not allow the first harmonics on S
2(1), and R̃0 is small

enough so that the smallest eigenvalue on the discs is > 2.
For (ii) we compare with the following:

N [1] = Ď
⋃

([−π/2, π/2] × [−π/2, π/2]) ,
where Ď = {(x, y, z) ∈ S

2(1) : x2 + y2 ≤ Ř2
0, z ≥ 0},
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where Ř0 = 1/ cosh(ab/a) (recall 2.20). The action of X and Y on N [1] should be consistent
again with their action on M (recall A.2) and the maps ν̂ and ̟: We define for (x, y, z) ∈ Ď
and (x̃, ỹ) ∈ [−π/2, π/2] × [−π/2, π/2]

(3.16)
X(x, y, z) =(−x, y, z), X(x̃, ỹ) =(−x̃, ỹ),

Y(x, y, z) =(x,−y, z), Y(x̃, ỹ) =(x̃,−ỹ),

As before the operator on Ď ⊂ S
2(1) is ∆ + 2 and on [−π/2, π/2] × [−π/2, π/2] ⊂ R

2

is the standard Laplacian ∆. The boundary conditions are the Dirichlet condition on ∂Ď
and the Neumann condition—more precisely extendibility to R

2 by reflections across the
lines {x̃ = nπ/2} and {x̃ = nπ/2} (n ∈ N)—for the boundary of the square [−π/2, π/2] ×
[−π/2, π/2] ⊂ R

2. The smallness of Ř0 and our knowledge of the eigenvalues on the square
imply the only eigenvalue in [−2/3, 2/3] is 0, with corresponding eigenfunctions the functions
which are constant on the square and vanish on Ď.

To complete the proof we use ν̂, ̟, and the logarithmic cut-off function ψ[2d, d] ◦ x on Λ
to define the maps F1 and F2 required by [4, B.1.4] as usual. d is taken to be large enough
in terms of ε. It is straightforward then to check the required assumptions by using 3.6, and
then the results of [4, Appendix B] apply. We upgrade the L2 estimates for f0 − 1 to C2,β

estimates on S5[1] by using the uniformity of the geometry of S6[1] (see 2.20) and standard
linear theory interior estimates. Applying then the variant of 3.11 we discussed earlier, we
estimate f0 on Λ and complete the proof.

�

The (extended) substitute kernel.
As we have already mentioned in the introduction, the extended substitute kernel in this

case is particularly simple since it is one-dimensional. This reflects the fact that the approx-
imate kernel, and hence the substitute kernel also, are one-dimensional. Moreover decay can
be ensured by using the substitute kernel and so no further extended substitute kernel is re-
quired. Motivated by proposition 3.13 above we define a function w ∈ C∞

sym(M) by requiring
that on M ∩D it satisfies

(3.17) w := ψ[m−1, 2m−1](r).

For future reference we record the following:

Lemma 3.18. Given E ∈ C0
sym(S̃[1]) there is a unique µ ∈ R such that 2ρ2

|A|2+m2 (E + µw) is

L2(S̃[1], h)-orthogonal to f0, where f0 is the eigenfunction in 3.13. Moreover

|µ| ≤ C

∥∥∥∥
2ρ2

|A|2 +m2
E : L2

sym(S̃[1], h)

∥∥∥∥ .

Proof. Using 3.6 and 2.11 we conclude that 1
C ≤ 2ρ2

|A|2+m2 ≤ C on the support of w which

together with 2.20 implies the result. �

To arrange the decay we define v ∈ C∞
sym(S̃[1]) by

(3.19) v := f0 + u,

where u is the solution to Lχu = −Lχf0 + µ′w on S̃[1] with vanishing Dirichlet data on

C[0] ⊂ ∂S̃[1], where µ′ ∈ R is determined by the requirement (recall 3.18) that

E′ :=
2ρ2

|A|2 +m2
(−Lχf0 + µ′w) = λ0f0 + µ′

2ρ2

|A|2 +m2
w

13



is L2(S̃[1], h)-orthogonal to f0. Note that the equation on S̃[1] is equivalent to Lhu = E′,
and hence the orthogonality condition together with 3.18 implies the existence of a unique u.
We record now the properties of v:

Lemma 3.20. v satisfies the following:

(i). Lχv = µvw on S̃[1] for some µv ∈ R, and therefore Lχv = 0 on Λ.

(ii). v = 0 on C[0] ⊂ ∂S̃[1].

(iii). ‖v : C2,β(S̃[1], χ)‖ ≤ C.
(iv). |µv| ≤ Cε.
(v). ‖v − 1 : C2,β(C1[1], χ) ‖ ≤ C(b)ε, where ε is as in 3.13.

Proof. (i) and (ii) follow from the definitions. Using 3.13 and 3.18 we have that
∥∥∥∥λ0f0 + µ′

2ρ2

|A|2 +m2
w : L2(S̃, h)

∥∥∥∥ ≤ Cε,

which together with interior C2,β estimates on S5[1] allows us to conclude (iii), (iv), and
(v). �

Solving the linearized equation semi-locally.
In this subsection we solve and estimate the linear equation on the extended standard

regions. We can assume the inhomogeneous term E to vanish on Λ1, because in the proof
of 3.26 we use 3.9 to solve for the part of the inhomogeneous term which is supported there.

In the case of S̃[1] we have nontrivial approximate kernel and therefore we have to adjust
the inhomogeneous term appropriately by using w. w can also be used so that appropriate
exponential decay can be arranged for the solution:

Lemma 3.21. There is a linear map

ReS[1] : {E ∈ C0,β
sym(S̃[1]) : E is supported on S1[1]} → C2,β

sym(S̃[1])× R,

such that the following hold for E in the domain of ReS[1] above and (ϕ, µ) = ReS[1](E):

(i). Lχϕ = E + µw on S̃[1].

(ii). ϕ vanishes on C[0] ⊂ ∂S̃[1] and satisfies appropriate Neumann boundary conditions on

C∂ ⊂ ∂S̃[1] (recall 2.17h).

(iii). |µ|+ ‖ϕ : C2,β
sym(S̃[1], χ)‖ ≤ C(b, β) ‖E : C0,β

sym(S1[1], χ)‖.
(iv). ‖ϕ : C2,β

sym(Λ, χ, e−γx)‖ ≤ C(b, β, γ) ‖E : C0,β
sym(S1[1], χ)‖.

(v). ReS[1] depends continuously on ζ.

Proof. We fix b to be large enough so that 3.13, 3.18, and 3.10 with ε1 = 1 apply. By
applying 3.18 and using that E is supported on S1[1] we have µ1 such that |µ1| ≤ C(b) ‖E :

C0,β
sym(S1[1], χ)‖ and 2ρ2

|A|2+m2 (E + µ1w) is L2(S̃[1], h)-orthogonal to f0. There is a unique

solution ϕ1 ∈ C2,β
sym(S̃[1]) which is L2(S̃[1], h)-orthogonal to f0, vanishes on C[0] ⊂ ∂S̃[1],

and satisfies Lχϕ1 = E + µ1w on S̃[1]. Using interior estimates on S2[1] for ϕ1 and applying
3.10 on Λ0,1 with u = v − avg v on C1[1] ⊂ ∂Λ0,1, and once more with u = ϕ1 − avgϕ1 on
C1[1] ⊂ ∂Λ0,1, we determine µ2 such that by taking ϕ := ϕ1 + µ2v, and µ := µ1 + µ2µv and
using 3.8 and the available estimates from 3.10 and 3.20 we complete the proof. �

The corresponding statement for S̃[0] is simpler, reflecting the triviality of the approximate
kernel there and that we do not need exponential decay either:
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Lemma 3.22. There is a linear map

ReS[0]
: {E ∈ C0,β

sym(S̃[0]) : E is supported on S1[0]} → C2,β
sym(S̃[0]),

such that the following hold for E in the domain of ReS[0]
above and ϕ = ReS[0]

(E):

(i). Lχϕ = E on S̃[0].

(ii). ϕ vanishes on ∂S̃[0].

(iii). ‖ϕ : C2,β
sym(S̃[0], χ)‖ ≤ C(b, β) ‖E : C0,β

sym(S1[0], χ)‖.
(iv). ReS[0] depends continuously on ζ.

Proof. By 3.13 there are no small eigenvalues and so we can solve and obtain L2(h) estimates
which together with interior estimates on S2[0] and 3.11 imply the result. �

Solving the linearized equation globally.
In order to solve the linearized equation 3.1 globally on M and provide estimates for the

solutions, we paste together the semi-local solutions provided by 3.9, 3.21, and 3.22 to obtain
a global solution in the proof of 3.26. Before we state the Proposition we define appropriate
norms:

Definition 3.23. For k ∈ N and β, γ ∈ (0, 1) we define a norm ‖ . ‖k,β,γ on Ck,β
sym(M) by

‖φ‖k,β,γ := ‖φ : Ck,β
sym(M,χ, f̃ )‖,

where the weight function f̃ is defined by requesting that it is invariant under the action of

G, f̃ = 1 on S[1], f̃ = e−γx on Λ, and f̃ = e(a−2b)γ = e−γx
∣∣
C[0]

on S[0] (recall 3.4).

Note that f̃ is continuous and its minimum as well the maximum of ρf̃ are attained on
S[0], and therefore using 2.6 we have

(3.24) τ
8

9
γ+ 1

9 ≤ f̃ and ρf̃ ≤ τ
8

9
γ−1 on M.

Before we proceed to state and prove the main Proposition of this section, we give an
estimate of the inhomogeneous term E = ρ−2H of the main linearized equation in this paper:

Lemma 3.25. If m is large enough in terms of γ we have on M the estimate

‖ρ−2H‖2,β,γ ≤ Cτ.

Proof. Using 2.6, 2.7, 2.8, 2.11, and 3.24, we easily check that |z| + τ ≤ m2 τ , m2 τ2 ≤ f̃ τ ,

and ρ−2m2τ ≤ Cf̃τ . These imply that (τ + ρ−2)(|z| + τ) ≤ Cf̃τ , which by 2.13 implies the
result. �

Proposition 3.26. There is a linear map RM : C0,β
sym(M) → C2,β

sym(M) × R such that for

E ∈ C0,β
sym(M) and (ϕ, µ) = RME the following hold:

(i). Lχϕ = E + µw on M .
(ii). |µ|+ ‖ϕ‖2,β,γ ≤ C(b, β, γ) ‖E‖0,β,γ .
(iii). RM depends continuously on ζ.

Proof. We decompose E = ES[0] + ES[1] + EΛ by requesting that ES[0], ES[1], and EΛ, are
invariant under G and satisfy

ES[0] :=E ψ[1, 0] ◦ x,
ES[1] :=E ψ[1, 0] ◦ x,
EΛ :=E ψ[0, 1] ◦ x,
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on Λ, ES[0] := E, ES[1] := 0, EΛ := 0 on S[0], and ES[0] := 0, ES[1] := E, EΛ := 0 on S[1].

Using 3.9 we define VΛ ∈ C2,β
sym(M) by VΛ = 0 on S[0] ∪ S[1] and VΛ = ψ[0, 1] ◦ xRΛEΛ on

Λ. LχVΛ−EΛ is supported on Λ \Λ1, and can be decomposed as LχVΛ−EΛ = E+E where

E is supported on {x ≤ 1} and E is supported on {x ≤ 1}.
Using 3.21 and 3.22 we define VS[0] ∈ C2,β

sym(M) and VS[1] ∈ C2,β
sym(M) by requesting the

following: VS[1] = 0 on S[1] and VS[1] = ψ[0, 1] ◦ x V ′
S[1] on S̃[1], where

(V ′
S[1], µ1) = ReS[1]

(ES[1] − E).

VS[0] = 0 on S[1] and VS[0] = ψ[0, 1] ◦ xReS[0]
(ES[0] − E) on S̃[0]. We define then ϕ1 :=

VΛ + VS[0] + VS[1] and E1 by Lχϕ1 +E1 = E + µ1w. We iterate with E1 instead of E and so

on. We define then ϕ :=
∑∞

n=1 ϕn and µ :=
∑∞

n=1 µn and complete the proof by using the

estimates and results of 3.9, 3.21, and 3.22, where 3.21 is applied with γ′ = γ+1
2 in place of

γ. �

4. The main results

The nonlinear terms.
If φ ∈ C1

sym(M) is appropriately small, we denote by Mφ the perturbation of M by φ,

defined as Iφ(M) in the notation of Appendix B, where I : M → S
3(1) is the inclusion map

of M . Clearly then Mφ is invariant under the action of G on the sphere S
3(1). Using then

rescaling and Proposition B.3 we prove a global estimate of the nonlinear terms for the mean
curvature of Mφ as follows:

Lemma 4.1. If φ ∈ C2,β
sym(M) satisfies ‖φ‖2,β,γ < τ1−

3γ

4 , then Mφ is well defined as above
and satisfies

‖ρ−2Hφ − ρ−2H − Lχφ‖0,β,γ ≤ τ
3γ

4
−1‖φ‖22,β,γ ,

where Hφ is the mean curvature of Mφ (pulled back to M by Iφ), and H is the mean curvature
of M .

Proof. Let D be a disc of radius 1 and center at some point p ∈ M with respect to the χ
metric. If we magnify the metric of the sphere S

3(1) by a factor ρ(p) it is easy to arrange
for the hypothesis B.1 to be satisfied so that we can apply B.3 with some universal c1 to
conclude

‖(ρ(p))−1(Hφ −H − Lφ) : C0,β(D,χ)‖ ≤ 1

ǫ(c1)
‖ρ(p)φ : C2,β(D,χ)‖2,

where the factors ρ(p) correspond to the scaling of the quantities involved. By the multi-
plicative properties of the Holder norms we conclude

‖ρ−2(Hφ −H − Lφ) : C0,β(D,χ)‖ ≤ ρ(p)

ǫ(c1)
‖φ : C2,β(D,χ)‖2.

By 3.23 we conclude

1

f̃(p)
‖ρ−2(Hφ −H − Lφ) : C0,β(D,χ)‖ ≤ ρ(p)f̃(p)

ǫ(c1)
‖φ‖22,β,γ .

This implies the result by using 3.24. �
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The vertical force and balancing.
If φ ∈ C1

sym(M), Mφ, and Hφ are as in the previous subsection we define F by

(4.2) F :=

∫

Mφ∩D+

Hφ

〈
ν, ~K

〉
dg =

∫

Mφ∩∂D+

〈
~η, ~K

〉
dg,

where D+ := D ∩ {z ≥ 0}, ν the unit normal chosen so that 〈ν, ∂z〉 > 0 on M̂tor, ~K is the
Killing field defined in A.9, and η the outward conormal to ∂(Mφ∩D+) =Mφ∩∂D+ tangent
to Mφ. Note that the second equality in 4.2 follows from the first variation formula [16, 20].
We have then the following, where we could be using ‖φ‖1,0,γ instead of ‖φ‖2,β,γ as well:

Lemma 4.3. If ‖φ‖2,β,γ < τ1−
γ

4 , then there is a universal constant C such that
∣∣∣∣
m2

8τπ2
F + ζ

∣∣∣∣ ≤ C (1 +
1

τ
‖φ‖2,β,γ).

Proof. Let d := π/
√
2m and decompose

∂(Mφ ∩ D+) =Mφ ∩ ∂D+ = ∂+1 ∪ ∂−1 ∪ ∂+2 ∪ ∂−2 ∪ ∂0,
where ∂+1 ⊂ {x = d}, ∂−1 ⊂ {x = −d}, ∂+2 ⊂ {y = d}, ∂−2 ⊂ {y = −d}, and ∂0 ⊂ {z = 0}.
We use the big-O notation to denote terms O(A) which satisfy |O(A)| ≤ CA for some
universal constant C. Using then A.6 and A.10 we calculate that on ∂±1

~η = ±(1 + sin 2z)−1/2∂x,
〈
~η, ~K

〉
= − 1√

2

√
1 + sin 2z cot(z +

π

4
) sin

√
2 d cos

√
2 y,

dg =
√

1− sin 2z + φ2y dy.

Combining the above we obtain
∫

∂±1

〈
~η, ~K

〉
dg = − 1√

2

∫ d

−d
(1− sin 2z +O(|z|2 + |φy|2)) sin

√
2 d cos

√
2 y dy.

Similarly
∫

∂±2

〈
~η, ~K

〉
dg =

1√
2

∫ d

−d
(1 + sin 2z +O(|z|2 + |φy|2)) cos

√
2 x sin

√
2 d dx.

Combining the above and using that on ∂+1 ∪ ∂−1 ∪ ∂+2 ∪ ∂−2 we have z = τa + φ, we
conclude that∫

∂+1∪∂−1∪∂+2∪∂−2

〈
~η, ~K

〉
dg = (8aτ +O(‖φ‖ + a2τ2)) (2d2 +O(d3)),

where ‖φ‖ := ‖φ‖2,β,γ . Similarly
∫

∂0

〈
~η, ~K

〉
dg = −2πτ(1 +O(τ

γ

2
−1‖φ‖)).

Combining and substituting a = m2

4π − ζ +O(1) by 2.6 we conclude

F = −8π2τ

m2
ζ +

1

m2
O(τ + ‖φ‖),

which implies the result. �
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The main theorem.
We have now all the information we need to state and prove the main theorem of the

paper:

Theorem 4.4. There are absolute constants c , C > 0 such that if m is large enough, then
there is ζ1 ∈ [−c , c ] such that on the corresponding initial surface M there is φ ∈ C∞

sym(M)

with ‖φ‖2,β,γ ≤ Cτ (with τ defined as in 2.4) such that Mφ is a genus m2 + 1 embedded
minimal surface in S

3(1) invariant under the action of G.

Proof. We will use a subscript ζ to specify the initial surfaceMζ which is constructed as in the
discussion preceding 2.9. We also define the map Xζ : [−a, a]× S

1 →Mζ by requesting that
Xζ(t, θ) = Φ ◦X(at/a, θ) where the X is the one defined for the given value of the parameter
ζ, that is Xζ is the parametrization corresponding to coordinates (t, θ) for Mcat ⊂ Mζ . As

in the proof of 2.20 it is easy to check that there is t̃ : [a − 2, a − 1] → [a− 3, a] close to the

identity map, such that for (t, θ) ∈ [a− 2, a− 1]× S
1 we have ̟ ◦Xζ(t, θ) = ̟ ◦X0(t̃(t), θ).

We define now a diffeomorphism Fζ : Mζ → M0 by requiring that it is equivariant under
the action of G, it satisfies ̟ ◦ Fζ = ̟ on S1[1] ⊂ Mζ , and that for (t, θ) ∈ [−1, a] × S

1 we
have

Fζ ◦Xζ(t, θ) = X0

(
t+ ψ[a− 2, a− 1](t) (t̃(t)− t) , θ

)
.

We define now a map J : B → B where

B := {u ∈ C2,β
sym(M0) : ‖u‖2,β,γ ≤ τ

γ
2
+1} × [−c , c ]

as follows: We assume (u, ζ) ∈ B given. Let φ ∈ C2,β(Mζ) be defined by φ := u ◦ Fζ + ϕ
where (ϕ, µ) = RMζ

(−ρ2H) as in 3.26. We have then

(a). Lχϕ+ ρ−2H = µw0, or equivalently Lϕ+H = µρ2w0.
(b). By 3.26 and 3.25 we have

|µ|+ ‖φ‖2,β,γ ≤ C(b, β, γ) τ.

Applying 3.26 again and using 4.1 we obtain (v, µ′) := RMζ
(−(ρ−2Hφ − ρ−2H − Lχφ))

which satisfies the following:
(c). Lχv + ρ−2Hφ − ρ−2H − Lχφ = µ′w0.

(d). |µ′|+ ‖v‖2,β,γ ≤ τ
3γ

4
−1‖φ‖22,β,γ .

Combining (a) and (c) with the definition of φ we obtain
(e). Lχ(v − u ◦ Fζ) + ρ−2Hφ = (µ+ µ′)w0.

This motivates us to define

J (u, ζ) =

(
v ◦ (Fζ)

−1,
m2

8τπ2
F + ζ

)
,

where F is defined as in 4.2. By using (b), (d), and 4.3, and by choosing c large enough in
terms of an absolute constant, it is straightforward to check that J (B) ⊂ B. B is clearly

a compact convex subset of C2,β′

sym(M0) × R for β′ ∈ (0, β), and it is easy to check that J is
a continuous map in the induced topology. By Schauder’s fixed point theorem [2, Theorem
11.1] then, there is a fixed point of J . Using (e) then we conclude that for the corresponding
ζ and φ we have

Hφ = (µ + µ′)ρ2w0, F = 0.

Since
〈
ν, ~K

〉
> 0 on the support of w0 in (Mζ)φ the second equation implies that µ + µ′ =

0 and hence (Mζ)φ is a minimal surface. The smoothness of φ follows then by standard
18



regularity theory. The embeddedness of (Mζ)φ follows from the smallness of ‖ϕ‖2,β,γ and the
size (by 2.6) of aτ . �

Appendix A. A coordinate system on S
3(1)

The parametrization Φ.
It is very helpful that there is a coordinate system which is ideally suited to describing

the Clifford torus and its parallel surfaces. We proceed to describe this coordinate system
and the local parametrization which is its inverse. To simplify the notation we identify
R
4 ≃ C

2 ⊃ S
3(1). We define the parametrization Φ, which covers the unit sphere with two

orthogonal circles removed, that is S3(1)\{(z1, z2) ∈ C
2 : z1 = 0 or z2 = 0}, by the following:

(A.1)
Φ : DomΦ → S

3(1) ⊂ R
4 ∼ C

2, where DomΦ := R× R×
(
−π
4
,
π

4

)
,

Φ(x, y, z) = cos(z + π
4 ) e

√
2 yi~e1 + sin(z + π

4 ) e
√
2 xi~e2,

where ~e1 = (1, 0) and ~e2 = (0, 1) form the standard basis of C2.

Symmetries of Φ.
To study the symmetries of the parametrization Φ, we first define for c ∈ R translations

X̂c, Ŷc, and reflections X̂c, Ŷc, X̂ := X̂0, Ŷ := Ŷ0, and Ẑ, of its domain DomΦ, by

(A.2)

X̂c(x, y, z) = (x + c, y, z), Ŷc(x, y, z) = (x, y + c, z),

X̂c(x, y, z) = (2c − x, y, z), Ŷc(x, y, z) = (x, 2c− y, z),

Ẑ(x, y, z) = (y, x,−z).

We also define corresponding rotations Xc, Yc, and reflections Xc, Yc, X := X0, Y := Y0,
and Z of S3(1) ⊂ C

2 by

(A.3)

Xc(z1, z2) = (z1, e
√
2 c i z2), Yc(z1, z2) = ( e

√
2 c i z1, z2),

X(z1, z2) = (z1, z2), Y(z1, z2) = (z1, z2),

Xc := X2c ◦ X, Yc := Y2c ◦ Y,
Z(z1, z2) = (z2, z1).

Note that Xc, Yc and Z are reflections with respect to the 3-planes
〈
~e1, i~e1, e

√
2 c i~e2

〉
R

,
〈
e
√
2 c i~e1, ~e2, i~e2

〉
R

, and the 2-plane {z1 = z2} respectively. Z exchanges the two sides of the

Clifford torus and also interchanges its parallels with its meridians. X√
2 π and Y√

2 π are the
identity map. We record the symmetries of Φ in the following lemma:

Lemma A.4. Φ is a covering map onto S
3(1) \ {(z1, z2) ∈ C

2 : z1 = 0 or z2 = 0}. Moreover
the following hold:

(i). The group of covering transformations is generated by X̂√
2 π and Ŷ√

2 π, in particular

Φ = Φ ◦ X̂√
2 π = Φ ◦ Ŷ√

2 π.

(ii). Xc ◦ Φ = Φ ◦ X̂c, Yc ◦ Φ = Φ ◦ Ŷc, and Z ◦ Φ = Φ ◦ Ẑ.
(iii). Xc ◦ Φ = Φ ◦ X̂c and Yc ◦ Φ = Φ ◦ Ŷc.

Proof. (ii) and (iii) follow from the definitions. (i) follows from (iii) and the observation that
X√

2 π and Y√
2 π are the identity map. �
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The coordinates xyz.
The local inverses of Φ provide us with local coordinate systems. We denote the corre-

sponding coordinates by x, y, z. A straightforward calculation shows that

(A.5)

∂x =
√
2 sin(z + π

4 ) i e
√
2 x i~e2,

∂y =
√
2 cos(z + π

4 ) i e
√
2 y i~e1,

∂z = − sin(z + π
4 ) e

√
2 y i~e1 + cos(z + π

4 ) e
√
2 x i~e2.

By calculating further we obtain

(A.6) Φ∗g = (1 + sin 2z) dx2 + (1− sin 2z) dy2 + dz2,

where g is the induced metric on the unit sphere S
3(1). Moreover the only non-vanishing

Christoffel symbols for the (x, y, z)-coordinate system are given by

(A.7)
Γ1
13 =

cos 2z

1 + sin 2z
, Γ2

23 = − cos 2z

1− sin 2z
,

Γ3
11 = − cos 2z, Γ3

22 = cos 2z.

The level surface with z = 0 is the Clifford torus

(A.8) T := Φ({z = 0}) = {(z1, z2) ∈ S
3(1) ⊂ C

2 : |z1| = |z2| = 1/
√
2 }.

The level surfaces Φ({z = c}) (z ∈ (−π
4 ,

π
4 )) are tori of constant mean curvaure, parallel at

distance c to the Clifford torus T, with ∂z as their unit normal vector field. Note also that
for c ∈ R we have the level surfaces

Φ({x = c}) = {t1~e1 + t2i~e1 + t3 e
√
2 c i~e2 : t1, t2 ∈ R, t3 ∈ R

+} ∩ S
3(1),

Φ({y = c}) = {t1 e
√
2 c i~e1 + t2~e2 + t3i~e2 : t1 ∈ R

+, t2, t3 ∈ R} ∩ S
3(1),

which are equatorial half-two-spheres orthogonal to the parallel tori. These three families of
level surfaces are orthogonal. The intersections of the last two are great semicircles orthogonal
to the tori. Finally a calculation shows that det[Φ,Φx,Φy,Φz] = cos 2z > 0.

Killing fields.
Clearly ∂x and ∂y are Killing fields generating the rotations in the 〈~e2, i~e2〉R and 〈~e1, i~e1〉R

planes respectively. However ∂z is not a Killing field. For this reason we consider the Killing

field ~K which agrees with ∂z at Φ(0, 0, 0) = 2−1/2(~e1 + ~e2) and is defined by

(A.9) ~K
∣∣∣
(z1,z2)

:= −Re z2 ~e1 +Re z1 ~e2.

~K generates the rotations in the 〈~e1, ~e2〉R plane. A straightforward calculation shows that

(A.10) ~K = − 1√
2
cot(z + π/4) sin

√
2x cos

√
2y∂x

+ 1√
2
tan(z + π/4) cos

√
2x sin

√
2y∂y + cos

√
2x cos

√
2y∂z.

Appendix B. The mean curvature of a perturbed surface

We assume given an immersion X : D → U , where D is a disc of radius 1 in the Euclidean
plane R

2, and U is an open cube in R
3 equipped with a metric g whose components are

functions gij : U → R. We assume that the following holds for some c1 > 0:

(B.1) ‖∂X : C2,β(D, g0)‖ ≤ c1, ‖gij : C2,β(U, g0)‖ ≤ c1, g0 ≤ c1X
∗g,
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where ∂X are the partial derivatives of the coordinates of X, and g0 denotes the standard
Euclidean metric on U orD respectively. Note that B.1 can be arranged by first appropriately
magnifying the target (see for example 4.1). We also choose a unit normal ν : D → R

3 for
the immersion X with respect to the g metric. Given a function φ : D → R which is small
enough we define Xφ : D → U by

(B.2) Xφ(p) := expX(p)(φ(p) ν(p)),

where exp is the exponential map with respect to the g metric. We have then the following:

Proposition B.3. There exists a (small) constant ǫ(c1) > 0 such that if X is an immersion
satisfying B.1 and the function φ : D → R satisfies

‖φ : C2,β(D, g0)‖ < ǫ(c1),

then Xφ : D → U is a well-defined immersion by B.2 and satisfies

‖Hφ −H − (∆g + |A|2 +Ric(ν, ν))φ : C0,β(D, g0)‖ ≤ 1

ǫ(c1)
‖φ : C2,β(D, g0)‖2,

where H = trg A is the mean curvature of X, defined as the trace with respect to X∗g of
the second fundamental form A, Hφ is the mean curvature of Xφ, ∆g is the Laplacian with
respect to X∗g, and Ric is the Ricci curvature of (U, g).

Proof. That the linear terms are as stated is well known and follows by a straightforward
calculation we omit. The nonlinear terms are given by expressions of monomials consisting of
contractions of derivatives of X and derivatives of φ. This implies both the existence results
and the estimate on the nonlinearity. �
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