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Ratio of Price to Expectation and
Complete Bernstein Functions

Yukio Hirashita

Abstract

For a game with positive expectation and some negative profit, a unique price exists,
at which the optimal proportion of investment reaches its maximum. For a game
with parallel translated profit, the ratio of this price to its expectation tends to
converge toward less than or equal to 1/2 if its expectation converges to 0+. In this
paper, we will investigate such properties by using the integral representations of a
complete Bernstein function and establish several Abelian and Tauberian theorems.
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Tauberian theorem.

1. Introduction

Consider a coin-flipping game such that profit is 9 dollars or −2 dollars if a tossed
coin yields heads or tails, respectively. For simplicity, we will omit the currency
notation. Let t ∈ [0, 1] be the proportion of investment. Then, the investor
repeatedly invests t of his/her current capital (see [12, 13]). For example, let
c > 0 be the current capital; when the investor plays the game once, his/her
capital will be 9ct/u + c(1 − t) or −2ct/u + c(1 − t) if a tossed coin yields heads
or tails, respectively, where u > 0 is the price of the game such that u/(u +
2) > t. Let the initial capital be 1. After N attempts, if the investor has

capital cN , then the growth rate (geometric mean) is given by c
1/N
N . As the

value Gu(t) := limN→∞

(
expectation of c

1/N
N

)
=
√
(9t/u+ 1− t)(−2t/u+ 1− t)

is a function with respect to t, it reaches its maximum at t = tu = (7/2 − u)u

/((u+ 2)(9− u)). It is noteworthy that the value limN→∞

(
variance of c

1/N
N

)
is 0.

In general, a game (a(x), F (x)) would mean that if the investor invests 1 unit
(which price is u dollars), then he/she receives a(x) dollars (including the invested
money) in accordance with a distribution function F (x), defined on an interval
I ⊆ (−∞, ∞) such that

∫
I d(F (x)) = 1. It is assumed that the profit function a(x)

is measurable and non-constant (a.e.) with respect to F (x). When no confusion
arises, we write dF for d(F (x)) and use the following notation:

(1.1) E :=

∫

I

a(x)dF, ξ := ess inf
x∈I

a(x), Hξ :=

∫

I

1

a(x)− ξ
dF.

In this paper, we always assume that E > 0 and ξ > −∞. If
∫
a(x)=ξ dF > 0, we

define Hξ = ∞ and 1/Hξ = 0. Since a(x) is non-constant, we have ξ < E, Hξ > 0,
1/Hξ <∞, and ξ + 1/Hξ < E.

In order to explain the background of this paper, we will define notations such
as wβ(z) and Gu(t) in this paragraph. However, this paper utilizes neither such
notations nor their related properties, except in the first paragraph of Section 2. We
denote the integral

∫
I
(a(x)−β)/(a(x)z−zβ+β)dF by wβ(z), which is holomorphic

with respect to two complex variables (z, β) (z := t + si, β := u + hi, i :=
√
−1,

{t, s, u, h} ⊂ R) near each point (t0, u0) such that 0 < t0 < u0/(u0 − ξ) and
1
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u0 > max(0, ξ). We denote exp(
∫
I
log (a(x)t/u− t+ 1) dF ) by Gu(t) and term

it as the limit expectation of growth rate for each u > 0 and 0 ≤ t ≤ 1 with
ξt/u − t + 1 > 0. We say that tu is the optimal proportion of investment with
respect to u > 0, if

(1.2) lim ρ→tu
0≤ρ≤1

ξρ/u−ρ+1>0

∫

I

log
a(x)t/u− t+ 1

a(x)ρ/u− ρ+ 1
dF ≤ 0

for each 0 ≤ t ≤ 1 with ξt/u − t + 1 > 0. A game (a(x), F (x)) is said to be
effective if

∫
a(x)>1

a(x)νdF < ∞ for some ν > 0. If a game is effective, Gu(t) is

continuous (see [9, Theorem 4.1]) and the inequality (1.2) implies that Gu(tu) =
sup0≤t≤1, ξt/u−t+1>0Gu(t), which suggests that tu is optimal for maximizing the
limit expectation of growth rate.

For a game with parallel translated profit (a(x) −m, F (x)) (m < E), we use
underlined notations such as a(x) := a(x) − m, E := E − m, ξ := ξ − m, and
Hξ := Hξ.

From [9, Lemma 3.16], if m ∈ (ξ, E), then a unique price umax ∈ (0, E −m)
exists such that tu is strictly increasing in the interval 0 < u < umax and strictly
decreasing in the interval umax < u < E −m. It should be noted that umax is a
function with respect to m ∈ (ξ, E), and it satisfies tumax

= max0<u<E−m tu. In a

sense, umax is considered to be the price in which the broker’s commission income
is maximized.

Under mild restrictions, we will show that limm→E− umax/E = 1/2 (see Theorem
3.19). In such a case, it suggests that the so-called half price sale makes a profit.
For example, in the case of the abovementioned coin-flipping game, we obtain

lim
m→E−

umax

E
= lim

m→(7/2)−

11
√
(m+ 2)(9−m)/2− (m+ 2)(9−m)

(7/2−m)2
=

1

2
,

where −2 < m < 7/2 (see Corollary 3.20).
Defining Ψ(c) := 1/

∫
I
(a(x)+c)−1dF−c (c ∈ (−ξ,∞)), we obtain the following:

LEMMA 1.1. limc→∞ Ψ(c) = E.
PROOF. Assume c > max(1,−2ξ). Then, we have a(x) + c/2 > 0 and 0 <∫

I
c/(a(x) +c)dF ≤

∫
I
2dF = 2. If E <∞, then, by applying Lebesgue’s monotone

convergence and dominated convergence theorems to the equation

1∫
I

1
a(x)+cdF

− c = E +
E2

c− E
−

∫
I

a(x)2

a(x)+cdF(
1− E

c

) ∫
I

c
a(x)+cdF

(c 6= E),

we obtain the conclusion (even if E ≤ 0). Assume E = ∞. Since a(x) is
non-constant with respect to F (x), we observe that

Ψ′(c) =

∫
I

1
(a(x)+c)2 dF −

(∫
I

1
a(x)+cdF

)2

(∫
I

1
a(x)+cdF

)2 > 0,

which implies that Ψ(c) is increasing with respect to c. Putting limc→∞ Ψ(c) =M
(including ∞),

aN (x) :=

{
N, a(x) > N,
a(x), a(x) ≤ N,

and bc,N :=
1∫

I
1

aN (x)+cdF
−c (N > max(1, ξ)).
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Then, the following properties hold:
(1) aN(x) is nondecreasing with respect to N . (2) bc,N is nondecreasing with

respect to N . (3) From the above arguments, we obtain limc→∞ bc,N =
∫
I
aN (x)dF

< ∞, which is nondecreasing with respect to N . (4) By applying Lebesgue’s
(monotone convergence) theorem, we obtain limN→∞ bc,N = Ψ(c), which is increasing
with respect to c. (5) Further, from Lebesgue’s (monotone convergence) theorem,we
obtain limN→∞(limc→∞ bc,N) = limN→∞

∫
I
aN (x)dF =

∫
I
a(x)dF = ∞.

Therefore, ifM <∞, then Ψ(c) ≤M and bc,N ≤M , which contradicts the fact
that limN→∞(limc→∞ bc,N) = ∞. Hence, M = E = ∞, that is, limc→∞ Ψ(c) = E.

�

2. Parallel translated profit

We consider a game with parallel translated profit (a(x) − m, F (x)) to have
sufficiently small positive expectation, if ξ + 1/Hξ < m < E. In this case, it is
easy to observe that E = E − m > 0, ξ = ξ − m < 0 and ξ + 1/Hξ = ξ − m

+1/Hξ < 0. Therefore, from [9, Lemma 4.27], ηm := limu→0+ tu/u exists such that
0 < ηm < −1/ξ = 1/(m − ξ). For each u ∈ (0, E − m) and t ∈ (0, u/(u − ξ)),

we have wu(tu) = 0 where wu(t) =
∫
I
(a(x)−m− u) / ((a(x) −m)t− tu+ u)dF

and tu ∈ (0, u/(u− ξ)). It should be noted that (a(x) −m)tu/u− tu + 1 > 0 and
(a(x) −m)ηm + 1 ≥ 1 − (m − ξ)ηm > 0 for each x ∈ I. The equation wu(tu) = 0

can be written as
∫
I ((a(x) −m)tu/u− tu + 1)

−1
dF = 1. Hence, we have

(2.1)

∫

I

1

(a(x) −m)ηm + 1
dF = 1,

because on the set {x | a(x) ≥ m}, 1/((a(x)−m)tu/u− tu+1) is strictly increasing
with respect to sufficiently small u > 0 (see [9, Lemmas 3.12, 3.15 and 3.16]), and
on the set {x | ξ ≤ a(x) < m}, 1/((a(x)−m)tu/u− tu + 1) converges uniformly to
1/((a(x)−m)ηm + 1) (u→ 0+).

Since Ψ(c) (−ξ < c < ∞) is strictly increasing from ξ + 1/Hξ to E (see the
proof of Lemma 1.1), the equation m = Ψ(c) has a unique solution c = cm for
each ξ + 1/Hξ < m < E. Since the equation m = 1/

∫
I
(a(x) + cm)−1dF −cm is

equivalent to
∫

I

1

(a(x) −m) 1
m+cm

+ 1
dF = 1,

from (2.1), we obtain that ηm = 1/(m+ cm).
LEMMA 2.1. cm is strictly increasing from −ξ to ∞ with respect to m ∈

(ξ + 1/Hξ, E).
PROOF. As Ψ(c) is strictly increasing from ξ + 1/Hξ to E, the relation m =

Ψ(cm) leads to the conclusion. �

LEMMA 2.2. ηm is strictly decreasing from Hξ to 0 with respect to m ∈ (ξ +
1/Hξ, E).

PROOF. Since ηm = 1/(m+ cm), Lemma 2.1 leads to the conclusion. �

LEMMA 2.3. limm→E− mηm = 0.
PROOF. From limm→E− cm = ∞ and Lebesgue’s theorem, we obtain the

equalitymηm = m/(m+cm) =
∫
I
a(x)/(a(x)+cm)dF , which implies the conclusion.

�

LEMMA 2.4. tu = uηm+u (0 < u < E −m).
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PROOF. From the property of ηm+u, we observe that
∫
I
((a(x) − (m+ u))ηm+u + 1)

−1

dF = 1, which can be written as
∫
I
((a(x)−m)(uηm+u)/u− uηm+u + 1)

−1
dF = 1.

This suggests that wu(uηm+u) = 0. Therefore, by the uniqueness of tu, we arrive
at the conclusion. �

LEMMA 2.5. umax can be uniquely determined by the system

(2.2)

{
m+ v = Ψ(c),

v = (m+ c)Ψ′(c),

with two unknown variables v (= umax) and c (= cm+umax
), for each m ∈ (ξ+1/Hξ,

E).
PROOF. From m = Ψ(cm), we obtain m + umax = Ψ(cm+umax

). Since tumax

= max0<u<E−m tu, we find that t′umax
= 0. From tu = uηm+u = u/(m + u +

cm+u), we obtain t
′
u =

(
m+ cm+u − uc′m+u

)
/(m+u+ cm+u)

2. Thus, m+ cm+umax

−umaxc
′
m+umax

= 0. Using Ψ′(cm)c′m = 1, we havem+cm+umax
−umax/Ψ

′(cm+umax
)

= 0, which implies (2.2). On the other hand, from

Ψ′′(c) =

2

((∫
I

1
(a(x)+c)2 dF

)2
−
∫
I

1
a(x)+cdF

∫
I

1
(a(x)+c)3dF

)

(∫
I

1
a(x)+cdF

)3 < 0 (c > −ξ),

Ψ(c) is a strictly concave function due to Schwarz’s inequality. Therefore, a line
y −m = Ψ′(c)(x +m) that is tangent to Ψ(c) and passes through the point (−m,
m) is uniquely determined. This implies the uniqueness of the solution of (2.2). �

EXAMPLE 2.6. The game (x,
∫ x

0
1/(π(t + 1)

√
t)dt) (x ∈ (0,∞)) has the

following properties: ξ = 0, ξ + 1/Hξ = 0 < m < E = ∞, Ψ(c) =
√
c, ηm =

1/(m(m+ 1)), cm = m2, tu = u/((m+ u)(m+ u+ 1)), and umax =
√
m(m+ 1).

EXAMPLE 2.7. The game (x,
∫ x

0
8r
√
rt/(π(t+ r)3)dt) (x ∈ (0,∞), r > 0) has

the following properties: ξ = 0, ξ + 1/Hξ = r/3 < m < E = 3r, Ψ(c) = (c − r)3

/(c2−6cr−3r2+8r
√
cr) −c, ηm = (3r−m)2/(m+r)3, cm = r(r−3m)2/(3r−m)2,

tu = u(3r −m− u)2 /(r +m+ u)3, and umax = (3r −m)(m+ r) /(m+ 9r).
REMARK. Since E = E −m > 0, the assumption E > 0 can be dismissed as

long as we consider a game (a(x) −m, F (x)) with ξ + 1/Hξ < m < E. It is clear
that even if E ≤ 0, ξ + 1/Hξ < E holds, provided ξ = ess infx∈I a(x) > −∞.
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3. Complete Bernstein functions

A C∞ function f : (0, ∞) → R with a continuous extension to [0, ∞) is called
a Bernstein function if f ≥ 0 and (−1)kf (k)(x) ≤ 0 for each k ∈ {1, 2, 3, ...} (see
[5, Definition 1.2.1]).

A function f : (0, ∞) → R is called a complete Bernstein function if there exists
a Bernstein function φ such that f(x) = x2

∫∞

0 e−sxφ(s)ds (see [14, Definition 1.4]).
THEOREM 3.1 [14, Theorem 1.5]. Each of the following five properties of f :

(0, ∞) → R implies the other four :
(1) f is a complete Bernstein function.
(2) f can be represented as f(x) = τx+ b+

∫∞

0 x/(x+ t)σ(dt) with τ, b ≥ 0
and a measure σ on (0, ∞).

(3) f extends analytically on C\(−∞, 0] such that f(z) = f(z) and Im z Im f(z)
≥ 0. (In other words, f preserves the upper and lower half-planes in C).

(4) f is a Bernstein function with representation f(x) = τx+ b
+
∫∞

0
(1− e−sx)β(s)ds, where τ, b ≥ 0, β(s) =

∫∞

0
e−stρ(dt), and∫∞

0
1/ (t(t+ 1)) ρ(dt) <∞. (In fact, ρ(dt) = tσ(dt) of (2).)

(5) x/f(x) is a complete Bernstein function or f ≡ 0.
Note that the triple (τ, b, ρ) given above is uniquely determined by f (see [5,

Theorem 1.2.3]).
LEMMA 3.2. The function Ψ(c) = 1/

∫
I
(a(x) + c)−1dF − c: (−ξ, ∞) → (ξ

+1/Hξ, E) extends analytically on C\(−∞,−ξ] and preserves the upper and lower

half-planes.

PROOF. From Lemma 1.1, we obtain Ψ((−ξ, ∞)) ⊂ (ξ + 1/Hξ, E). Putting c
= u+ yi ∈ C\(−∞,−ξ], {u, y} ⊂ R and s = a(x) + u, then

Ψ(c) =
1∫

I
1

s+yidF
− u− yi =

1∫
I

s
s2+y2 dF − yi

∫
I

1
s2+y2 dF

− u− yi.

If y ≷ 0, then due to Schwarz’s inequality, we observe that

ImΨ(c) =

y

(
∫
I

1
s2+y2 dF

∫
I

s2

s2+y2 dF −
(∫

I
1√

s2+y2

s√
s2+y2

dF

)2
)

(∫
I

s
s2+y2 dF

)2
+ y2

(∫
I

1
s2+y2 dF

)2 ≷ 0.

Set α(v) :=
∫
a(x)≤v+ξ

dF. Then, α(v) is a right continuous nondecreasing

function such that α(v) ≥ 0, α(ξ−) = 0 and α(∞) = 1. Thus, the Stieltjes
transform

∫
I
(a(x) + c)−1dF =

∫∞

0−
(v + c + ξ)−1d(α(v)) is analytic with respect

to t = c + ξ ∈ C\(−∞, 0] (see [15, Corollary VIII.2b.1]). It is easy to verify that
Ψ(c) has no singular point in C\(−∞,−ξ]. �

THEOREM 3.3. Ψ(c)− ξ− 1/Hξ is a complete Bernstein function with respect

to t = c+ ξ > 0.
PROOF. From Theorem 3.1 (3) and Lemma 3.2, we arrive at the conclusion.

�

LEMMA 3.4. limc→∞ Ψ(c)/c = 0.
PROOF. From Ψ(c)/c = 1/(1−

∫
I a(x)/(a(x) + c)dF )− 1 and

lim
c→∞

∫

I

a(x)

a(x) + c
dF = lim

c→∞

∫

a(x)>0

a(x)

a(x) + c
dF+ lim

c→∞

∫

ξ≤a(x)<0

a(x)

a(x) + c
dF = 0,
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we arrive at the conclusion by applying Lebesgue’s monotone convergence and
dominated convergence theorems. �

LEMMA 3.5. Ψ(c) can be written as

(3.1) Ψ(c) = ξ +
1

Hξ
+

∫ ∞

0

c+ ξ

t(t+ c+ ξ)
ρ(dt) (c > −ξ)

with
∫∞

0 t−1ρ(dt) = E − ξ − 1/Hξ and
∫∞

0 1/ (t(t+ 1)) ρ(dt) <∞.
PROOF. From Theorems 3.1 and 3.3, Ψ(c) can be written as

Ψ(c)− ξ − 1/Hξ = τ(c + ξ) + b+

∫ ∞

0

c+ ξ

t(t+ c+ ξ)
ρ(dt) (c > −ξ),

where τ ≥ 0, b ≥ 0, and
∫∞

0
1/ (t(t+ 1)) ρ(dt) <∞. Since

Ψ(c)

c
= τ +

τξ + b+ ξ + 1/Hξ

c
+
c+ ξ

c

∫ ∞

0

1

t(t+ c+ ξ)
ρ(dt),

we have τ = 0 by applying Lemma 3.4 and Lebesgue’s theorem. Since ∂ ((c+ ξ)/(t(t+ c+ ξ)))
/∂c= (t+c+ξ)−2 > 0, (c+ξ)/(t(t+c+ξ)) is increasing with respect to c > −ξ. From
Ψ(−ξ) = ξ+1/Hξ and Lebesgue’s theorem, we obtain b = 0. From limc→∞ Ψ(c) = E

and Lebesgue’s theorem, we obtain that E − ξ − 1/Hξ =
∫∞

0 t−1ρ(dt). �

LEMMA 3.6. The condition E <∞ is equivalent to
∫∞

0 t−1ρ(dt) <∞.

PROOF. Lemma 3.5 shows that
∫∞

0
t−1ρ(dt) = E − ξ − 1/Hξ, which implies

the conclusion because ξ and 1/Hξ are finite. �

LEMMA 3.7. A function f(x) ≥ 0 (x > 0) is a complete Bernstein function if

and only if 1/(x + f(x)) is a Stieltjes transform. In this case, a right continuous

nondecreasing function 0 ≤ G(t) ≤ 1 exists such that 1/(x + f(x)) =
∫∞

0−(x

+t)−1d(G(t)).
PROOF. Let f(x) be a complete Bernstein function. Therefore, in accordance

with Theorem 3.1 (2), x + f(x) is a complete Bernstein function. Further, in
accordance with Theorem 3.1 (5), x/(x + f(x)) is a complete Bernstein function.

Thus, from Theorem 3.1 (2), we have x/(x + f(x)) = τ̃x + b̃ +
∫∞

0
x/(x + t)σ̃(dt)

(x > 0) with τ̃ , b̃ ≥ 0 and a measure σ̃ on (0, ∞). We can obtain τ̃ = 0 as follows.
From Theorem 3.1 (2), we have f(x) = τx+b+

∫∞

0
x/(x+ t)σ(dt) (τ, b ≥ 0). Thus,

1

τ̃x+ b̃+
∫∞

0
x

x+t σ̃(dt)
= 1 + τ +

b

x
+

∫ ∞

0

1

x+ t
σ(dt).

If τ̃ > 0, then the process x→ ∞ leads to 0 = 1+τ , which contradicts the fact that

τ ≥ 0. Therefore, the right continuous nondecreasing function G(t) := b̃ +
∫ t

0
σ̃(dt)

(if x ≥ 0) or 0 (if x < 0) yields the Stieltjes transform

1

x+ f(x)
=
b̃

x
+

∫ ∞

0

1

x+ t
σ̃(dt) =

∫ ∞

0−

1

x+ t
d(G(t)).

If
∫∞

0− d(G(t)) > 1, then lim infx→∞ f(x) = lim infx→∞ x(1/
∫∞

0− x(x+ t)−1d(G(t))
−1) < 0, which contradicts the assumption that f(x) ≥ 0. Thus, we find that
0 ≤ G(t) ≤ 1.

On the other hand, assume that 1/(x+ f(x)) is a Stieltjes transform such that

1/(x + f(x)) = τ̂ +
bb
x +

∫∞

0
(x + t)−1σ̂(dt), where τ̂ and b̂ are constants, and σ̂

is a measure on (0, ∞). Since f(x) ≥ 0, by applying Lebesgue’s theorem, we

obtain limx→∞ 1/(x + f(x)) = 0 = τ̂ . Put G(t) = b̂ +
∫ t

0 σ̂(dt) (if x ≥ 0) or 0 (if
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x < 0). Then, we obtain f(x) = 1/
∫∞

0−
(x + t)−1d(G(t)) − x. As mentioned above,∫∞

0−
d(G(t)) > 1 causes a contradiction. Thus, we have

∫∞

0−
(dG(t)) ≤ 1. Putting

x = u + yi and s = t+ u, as in the proof of Lemma 3.2, we observe that if y ≷ 0,
then

Im f(u+ yi)(3.2)

=

y




(
1−

∫∞

0− dG
) ∫∞

0−
1

s2+y2 dG+
∫∞

0−
1

s2+y2 dG
∫∞

0−
s2

s2+y2 dG

−
(∫∞

0−
1√

s2+y2

s√
s2+y2

dG

)2




(∫∞

0−
s

s2+y2 dG
)2

+ y2
(∫∞

0−
1

s2+y2 dG
)2

≷ 0.

Thus, the analytic function f(u+ yi) on C\(−∞, 0] (see [15, Corollary VIII.2b.1])
preserves the upper and lower half-planes. This implies, in accordance with Theorem
3.1 (3), that f(x) is a complete Bernstein function. �

We characterize the relation between the subset of complete Bernstein functions
such that τ = 0 and all the probability measures on [0, ∞).

THEOREM 3.8. A complete Bernstein function f(x) = τx + b +
∫∞

0
x/(x +

t)σ(dt) can be written as f(x) = 1/
(∫∞

0−
(x+ t)−1d(G(t))

)
− x with a distribution

function 0 ≤ G(t) ≤ 1 with G(∞) = 1 and G(0−) = 0 if and only if τ = 0.
PROOF. From Lemma 3.7, for a complete Bernstein function τx+b +

∫∞

0 x/(x+
t)σ(dt), a right continuous nondecreasing function 0 ≤ G(t) ≤ 1 exists such that
1/
(
x+ τx + b+

∫∞

0
x/(x+ t)σ(dt)

)
=
∫∞

0−
(x+ t)−1d(G(t)). Therefore, we observe

that
∫∞

0−
x/(x + t)d(G(t)) = 1/

(
1 + τ + b/x+

∫∞

0
(x+ t)−1σ(dt)

)
, which implies∫∞

0− d(G(t)) = 1/(1 + τ) as x → ∞. Thus, if τ = 0, then
∫∞

0− d(G(t)) = 1. In this

case, we have f(x) = 1/
(∫∞

0−(x+ t)−1d(G(t))
)
−x. The converse is obtained by

applying Lebesgue’s theorem to the equation 1/
∫∞

0− x/(x+ t)d(G(t))− 1 = τ + b/x

+
∫∞

0
(x+ t)−1σ(dt). �

LEMMA 3.9. limc→∞ Ψ(n)(c) = 0 (n = 1, 2, 3, ...).
PROOF. Using (3.1), we have (see [15, Corollary VIII.2b.2])

Ψ′(c) =

∫ ∞

0

1

(t+ c+ ξ)2
ρ(dt),Ψ′′(c) = −

∫ ∞

0

2

(t+ c+ ξ)3
ρ(dt), ...(3.3)

Ψ(n)(c) = (−1)n−1n!

∫ ∞

0

1

(t+ c+ ξ)n+1
ρ(dt).

By applying Lebesgue’s (monotone convergence) theorem, we conclude that limc→∞ Ψ(n)(c)
= 0 (n = 1, 2, 3, ...). �

LEMMA 3.10. If E <∞, then limc→∞ cnΨ (n)(c) = 0 (n = 1, 2, 3, ...).
PROOF. From Lemma 3.6,

∫∞

0
t−1ρ(dt) <∞. From properties such as

cnΨ(n)(c) = (−1)n−1n!
cn

(c+ ξ)n

∫ ∞

0

t(c+ ξ)n

(t+ c+ ξ)n+1

ρ(dt)

t
,

lim
c→∞

cn

(c+ ξ)n
= 1, lim

c→∞

t(c+ ξ)n

(t+ c+ ξ)n+1
= 0,

∣∣∣∣
t(c+ ξ)n

(t+ c+ ξ)n+1

∣∣∣∣ < 1 (t, c+ ξ > 0),
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we can apply Lebesgue’s (dominated convergence) theorem and obtain limc→∞ cnΨ(n)(c)
= 0 (n = 1, 2, 3, ...). �

LEMMA 3.11. limm→E− umax = limc→∞ cΨ′(c) if one of them exists. In

particular, if E <∞, limm→E− umax = 0.
PROOF. From (2.2), we obtain

(3.4) umax =
(1 +

Ψ(cm+umax
)

cm+umax
)

1 + Ψ′(cm+umax
)
cm+umax

Ψ′(cm+umax
).

From lim infm→E− cm+umax
= lim infm→E− Ψ−1(m+umax) ≥ lim infm→E− Ψ−1(m)

= ∞, we obtain limm→E− cm+umax
= ∞. Therefore, using Lemmas 3.4 and 3.9,

we have limm→E− umax = limc→∞ cΨ′(c), provided one of them exists. The rest of
this lemma is deduced from Lemma 3.10. �

LEMMA 3.12 [10, Lemma 1.1.2]. If limc→(−ξ)+ Ψ′(c) = ∞, limc→(−ξ)+(−1)n−1

Ψ(n)(c) = ∞ (n = 1, 2, 3, ...).
PROOF. From (3.3), we have (−1)n−1Ψ(n)(c) = n!

∫∞

0 (t+ c+ ξ)−n−1ρ(dt) ≥ 0

(c > −ξ, n = 1, 2, 3, ...). Since Ψ(3)(c) ≥ 0, we observe that Ψ′(a) − Ψ′(c)
=
∫ a

c
Ψ(2)(x)dx ≥ Ψ(2)(c)(a− c) for each −ξ < c < a. This implies that Ψ(2)(c) ≤

(Ψ′(a)−Ψ′(c)) /(a−c). Thus, using limc→(−ξ)+ Ψ′(c) = ∞, we have limc→(−ξ)+ Ψ(2)(c)

= −∞. For each n ∈ {3, 4, 5, ...}, we find that (−1)n(Ψ(n−1)(a) − Ψ(n−1)(c))
=
∫ a

c (−1)nΨ(n)(x)dx ≥ (−1)nΨ(n)(c)(a − c), which implies that (−1)n−1Ψ(n)(c)

≥ (−1)n−2Ψ(n−1)(c)/(a − c) +(−1)n−1Ψ(n−1)(a)/(a − c). Therefore, by induction
on n, we arrive at the conclusion. �

LEMMA 3.13. limc→(−ξ)+(c+ ξ)n+1Ψ(n)(c) = 0 (n = 1, 2, 3, ...).

PROOF. From (3.3), we have (c + ξ)n+1Ψ(n)(c) = (−1)n−1n!
∫∞

0 (c + ξ)n+1/(t

+c+ ξ)n+1ρ(dt). Thus, applying Lebesgue’s (monotone convergence) theorem, we
arrive at the conclusion. �

THEOREM 3.14. If Hξ = ∞, then limm→(ξ+1/Hξ)+ umax = 0. If Hξ < ∞,
then limm→(ξ+1/Hξ)+ umax > 0, which can assume any positive value, exists.

PROOF. From (3.3), we have Ψ′(c) > 0 and Ψ′′(c) < 0 for c > −ξ. As shown
in the proof of Lemma 2.5, c′m+umax

= 1/Ψ′(m + umax) > 0. Therefore, λ :=

limm→(ξ+1/Hξ)+ cm+umax
exists such that −ξ ≤ λ < ∞. Since umax = Ψ(cm+umax

)

−m, limm→(ξ+1/Hξ)+ umax = Ψ(λ) −ξ −1/Hξ. From Ψ′′(c) < 0, Ψ′(λ+) > 0
exists (including +∞). From the proof of Lemma 3.11, we observe that umax

=
(
cm+umax

+Ψ(cm+umax
)
)
/
(
1 + 1/Ψ′(cm+umax

)
)
, which induces Ψ(λ)− ξ− 1/Hξ

= (λ+Ψ(λ)) / (1 + 1/Ψ′(λ+)) .
If Hξ = ∞, then Ψ(−ξ) = ξ. For each c > −ξ, put m := (Ψ(c)− cΨ′(c))

/(1 + Ψ′(c)) and v := Ψ(c)−m. Then
{

m+ v = Ψ(c),
v = (m+ c)Ψ′(c).

Moreover, from ∂m/∂c = −(c + Ψ(c))Ψ′′(c)/(1 + Ψ′(c))2 > 0, we obtain ξ < m
< E. Thus, in accordance with (2.2), we can consider v = umax and c = cm+umax

.
Therefore, −ξ ≤ λ ≤ cm+umax

= c for each c > −ξ, which implies that λ = −ξ.
Thus, limm→(ξ+1/Hξ)+ umax = Ψ(−ξ)− ξ = 0.

If Hξ < ∞, then from (λ+Ψ(λ)) / (1 + 1/Ψ′(λ+)) ≥ 1/(Hξ (1 + 1/Ψ′(λ+)))
> 0, limm→(ξ+1/Hξ)+ umax > 0. In Example 2.7, we observe that ξ + 1/Hξ = r/3
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and umax = (3r−m)(m+ r)/(m+9r). Thus, we obtain limm→(r/3)+ umax = 8r/21
(r > 0), which implies the conclusion. �

The following Lemma is similar to [11, Lemma 2.10].
LEMMA 3.15.

∣∣Ψ(n+1)(c)/Ψ(n)(c)
∣∣ < (n+1)/(c+ξ) and Ψ′(c)/ (Ψ(c)− ξ − 1/Hξ)

< 1/(c+ ξ) (c > −ξ, n = 1, 2, 3, ...).
PROOF. From (3.3), we have

∣∣∣Ψ(n+1)(c)
∣∣∣ = (n+ 1)!

∫ ∞

0

1

(t+ c+ ξ)n+2
ρ(dt)

= n!

∫ ∞

0

n+ 1

t+ c+ ξ
× 1

(t+ c+ ξ)n+1
ρ(dt)

<
n+ 1

c+ ξ
× n!

∫ ∞

0

1

(t+ c+ ξ)n+1
ρ(dt)

=
n+ 1

c+ ξ

∣∣∣Ψ(n)(c)
∣∣∣ (n = 1, 2, 3, ...).

Moreover, from (3.1), we observe that

(c+ξ)Ψ′(c) =

∫ ∞

0

c+ ξ

t(t+ c+ ξ)
ρ(dt)−

∫ ∞

0

(c+ ξ)2

t(t+ c+ ξ)2
ρ(dt) < Ψ(c)−ξ−1/Hξ.

�

CORORALLY 3.16. lim infm→E− u′max ≥ −1/2.
PROOF. From Lemma 2.5, we have umax = (m+cm+umax

)Ψ′(cm+umax
), Ψ′(cm+umax

)

c′m+umax
= 1 and m =

(
Ψ(cm+umax

)− cm+umax
Ψ′(cm+umax

)
)
/(1+Ψ′(cm+umax

)). It

follows that

u′max = −1−
1 + Ψ′(cm+umax

)

(m+ cm+umax
)c′m+umax

Ψ′′(cm+umax
)

= −1−
Ψ′(cm+umax

)

(cm+umax
+ ξ)Ψ′′(cm+umax

)
×

(cm+umax
+ ξ)(1 + Ψ′(cm+umax

))2

cm+umax
(1 +

Ψ(cm+umax
)

cm+umax
)

.

On the other hand, from to Lemmas 2.1, 3.4, and 3.9, we have

lim
m→E−

cm+umax
+ ξ

cm+umax

·
(1 + Ψ′(cm+umax

))2

1 +
Ψ(cm+umax

)

cm+umax

= 1.

From Lemma 3.15, we observe that −Ψ′′(c)/Ψ′(c) < 2/(c+ ξ), which implies that
−1−Ψ′(c)/ ((c+ ξ)Ψ′′(c)) > −1/2. Therefore, we conclude that

lim inf
m→E−

u′max = lim inf
c→∞

(
−1− Ψ′(c)

(c+ ξ)Ψ′′(c)

)
≥ −1

2
.

�

LEMMA 3.17. Assume E <∞. Then,

(3.5) lim
m→E−

umax

E
=

1
1

limc→∞

cΨ′(c)
E−Ψ(c)

+ 1
=

1
1

limc→∞

R

∞

0
(c/(c+t))2ρ(dt)

R

∞

0 c/(c+t)ρ(dt)

+ 1

if one of three limits exists.
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PROOF. From (2.2) and (3.4), we have

umax

E
=

1
E−Ψ(cm+umax

)

cm+umax
Ψ′(cm+umax

)(1+Ψ(cm+umax
)/cm+umax)

+
cm+umax

+E

cm+umax
+Ψ(cm+umax

)

.

Thus, from Lemmas 1.1, 2.1, 3.4, and 3.10, we obtain limm→E− umax/E = 1/(1/ limc→∞(cΨ′(c)
/(E −Ψ(c))) + 1). Using (3.1) and (3.3) we observe that

(3.6)
cΨ′(c)

E −Ψ(c)
=

∫∞

0
((c+ ξ)/(t+ c+ ξ))

2
ρ(dt)

(1 + ξ
c )
∫∞

0
(c+ ξ)/(t+ c+ ξ)ρ(dt)

,

which yields the desired equation. �

LEMMA 3.18.

(3.7) − lim
m→E−

u′max = 1 + lim
c→∞

Ψ′(c)

(c+ ξ) Ψ′′(c)
= 1− lim

c→∞

∫∞

0
(c/(c+ t))2ρ(dt)

2
∫∞

0
(c/(c+ t))3ρ(dt)

,

if one of three limits exists. In this case, if E <∞, its value is equal to limm→E− umax

/E.
PROOF. From (3.3), we have Ψ′(c)/((c+ ξ)Ψ′′(c)) = −

∫∞

0
((c+ ξ) /(t + c +

ξ))2ρ(dt) /
(
2
∫∞

0 ((c+ ξ) /(t+ c+ ξ))3ρ(dt)
)
. From the proof of Corollary 3.16, we

have limm→E− u′max = −1− limc→∞ Ψ′(c)/((c+ ξ)Ψ′′(c)) if one of them exists. In
this case, if E <∞, then from limm→E− umax = 0 (Lemma 3.11) and by using the

mean value theorem, we obtain limm→E− umax/E = − limm→E−

∫ E

m u′max(t)dt/E
= − limm→E− u′max, which implies the conclusion. �

THEOREM 3.19. If
∫∞

0
ρ(dt) <∞, limm→E− umax/E = 1/2.

PROOF. Using
∫∞

0
ρ(dt) <∞ and

∫∞

0
1/ (t(t+ 1)) ρ(dt) <∞, we have E <∞

(Lemma 3.6). By applying Lebesgue’s theorem, we observe that limc→∞(
∫∞

0 c/(c+

t)ρ(dt) /
∫∞

0 (c/(c+ t))
2
ρ(dt)) = 1. Thus, from Lemma 3.17, we obtain limm→E− umax

/E = 1/2. �

CORORALLY 3.20. limm→E− umax/E = 1/2 for any finite game {(aj, pj)}
such that

∑n
j=1 ajpj > 0,

∑n
j=1 pj = 1, 0 ≤ pj < 1, and 1 ≤ j ≤ n.

PROOF. The complete Bernstein function

Ψ(c)− ξ − 1

Hξ
=

1∑n
j=1

pj

aj+c

− c− ξ − 1/Hξ (c > −ξ)

is a rational function with respect to c, which is analytic on C\(−∞, −ξ] and
preserves the upper and lower half-planes (Theorems 3.1 and 3.3). Therefore, using
[8, Theorem 2.2 (vi)], we obtain the representation Ψ(c)−ξ−1/Hξ = −∑m

j=1 ej/(c

+dj) + k, where ej > 0, dj > ξ and k is a constant. Since Ψ(−ξ) = ξ + 1/Hξ, k
=
∑m

j=1 ej/(dj −ξ) holds. Defining σ(dt) as the sum of Dirac measures
∑m

j=1 ej/(dj
−ξ)δdj−ξ, we observe that

∫ ∞

0

c+ ξ

t+ c+ ξ
σ(dt) = −

m∑

j=1

ej
c+ dj

+

m∑

j=1

ej
dj − ξ

= Ψ(c)− ξ − 1

Hξ
.

Using Theorem 3.1, we obtain
∫∞

0
ρ(dt) =

∫∞

0
tσ(dt) =

∑m
j=1 ej < ∞, which, in

accordance with Theorem 3.19, implies the conclusion. �

4. Abelian theorems
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In the following paragraphs, we assume that a nonzero measure ρ(dt) originates
from (3.1). For a function f(x) > 0, ωf := lim supx→∞ log f(x)/ log x is termed
the upper order (see [1, Section 2.2.2]). We will show that limm→E− umax/E can
be calculated by the upper order of the function

∫ x

0 ρ(dt).
A measurable function f(x) > 0 is said to be regularly varying of index r,

written as f ∈ Rr, if limx→∞ f(λx)/f(x) = λr for each λ > 0 (see [1, Section
1.4.2]). It is easy to verify that ωf = r if f ∈ Rr. The notation l(x) is used
only for a slowly varying function such that l(x) ∈ R0. We write f(x) ∼ cg(x)
when limx→∞ f(x)/g(x) = c. If c = 0, the relation f(x) ∼ cg(x) suggests that
f(x) = o(g(x)) (see [1, Preface]).

LEMMA 4.1. If
∫ x

0
ρ(dt) ∈ Rr, 0 ≤ r ≤ 2. In this case, if E <∞, 0 ≤ r ≤ 1.

PROOF. We can write
∫ x

0 ρ(dt) = xrl(x) with l(x) ∈ R0. Assuming r < 0,

then limx→∞

∫ x

0 ρ(dt) = limx→∞ xrl(x) = 0 (see [1, Proposition 1.3.6]), which

contradicts the fact that
∫∞

0
ρ(dt) > 0. Assuming r > 2, we have limx→∞

∫ x

0
ρ(dt)

/(x(x+1)) = limx→∞ xr−2l(x) · limx→∞ 1/(1+ 1/x) = ∞. On the other hand, for
each x > 0, we have

∫ x

0 ρ(dt)/(x(x+ 1)) ≤
∫∞

0 (t(t+ 1))−1ρ(dt) <∞ (Lemma 3.5),
which is a contradiction.

If E <∞, then
∫∞

0
t−1ρ(dt) <∞ (Lemma 3.6). Thus, for each x > 0, we have∫ x

0
ρ(dt)/x ≤

∫∞

0
t−1ρ(dt) <∞, which implies that r ≤ 1. �

LEMMA 4.2. Suppose 0 ≤ r < n. Then,
∫ x

0 ρ(dt) ∼ xrl(x) (x → ∞) if and

only if
∫∞

0 (x/(x+ t))nρ(dt) ∼ Γ(n− r)Γ(r + 1)xrl(x)/Γ(n) (x→ ∞).

PROOF. The nondecreasing function U(x) :=
∫ x

0 ρ(dt) satisfies U(0−) = 0.
Since 0 < n − r ≤ n, using [1, Theorem 1.7.4], we obtain that U(x) ∼ xrl(x)
(x→ ∞) is equivalent to

∫ ∞

0

d(U(t))

(x+ t)n
∼ Γ(n− r)Γ(r + 1)

Γ(n)
xr−nl(x) (x→ ∞),

which implies the conclusion. �

LEMMA 4.3. If
∫ x

0 ρ(dt) ∈ Rr and r 6= 2, then limc→∞ Ψ′(c)/ (cΨ′′(c)) =
1/ (r − 2).

PROOF. From Lemma 4.1, we have 0 ≤ r < 2. From Lemma 4.2, we observe
that

lim
x→∞

∫∞

0
(x/(x+ t))2ρ(dt)∫∞

0
(x/(x+ t))3ρ(dt)

=
Γ(3)Γ(2− r)

Γ(2)Γ(3− r)
=

2

2− r
.

Therefore, the relation (3.7) implies the conclusion. �

THEOREM 4.4. If E < ∞ and
∫ x

0
ρ(dt) ∈ Rr, then limm→E− umax/E =

(1− r) / (2− r) with 0 ≤ r ≤ 1.
PROOF. From Lemmas 3.18 and 4.3, we obtain limm→E− umax/E = 1+limc→∞ Ψ′(c)

/ ((c+ ξ)Ψ′′(c)) = (1− r)/ (2− r). �

Whenever we use the notation q(t), it is understood that ρ(dt) = q(t)dt with
q(t) ≥ 0.

LEMMA 4.5. If q(t) ∈ Rα, then α ≤ 1. In addition, if E <∞, then α ≤ 0.
PROOF. We can write q(t) = tαl(t) with l(t) ∈ R0. From [1, Corollary 1.4.2],

X > 0 exists such that l(x) is locally bounded in [X , ∞). Assuming α > 1,
then using [1, Propositions 1.3.6 and 1.5.8], we obtain limx→∞

∫ x

X
ρ(dt)/(x(x+ 1))

= limx→∞ xα−1l(x)/(α + 1) · limx→∞ 1/(1 + 1/x) = ∞. On the other hand, for
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each x > X , we observe that
∫ x

X
ρ(dt)/(x(x + 1)) ≤

∫ x

X
(t(t + 1))−1ρ(dt) ≤

∫∞

0
(t(t

+1))−1ρ(dt) <∞ (Lemma 3.5), which is a contradiction.
When E < ∞, we have

∫ x

X ρ(dt)/x ≤
∫∞

0 t−1ρ(dt) < ∞ (Lemma 3.6). Thus,
arguments similar to the one above yield the conclusion. �

LEMMA 4.6. If q(t) ∈ Rα, then
∫ x

0
q(t)dt ∈ Rα+1 (α > −1) or

∫ x

0
q(t)dt ∈ R0

(α ≤ −1).
PROOF. As the proof of Lemma 4.5, if α > −1, using [1, Proposition 1.5.8],

we obtain
∫ x

X
tαl(t)dt ∼ xα+1l(x)/(α + 1) ∈ Rα+1. If α = −1, then from [1,

Proposition 1.5.9a], we have
∫ x

X t−1l(t)dt ∈ R0. If α < −1, then the nondecreasing

function
∫ x

0 q(t)dt =
∫ x

0 t
αl(t)dt is bounded as will be shown below, which suggests

that
∫ x

0 q(t)dt ∈ R0. Put ε := −(α + 1)/2 > 0. Then, from limt→∞ t−εl(t) = 0,

Y > 0 exists such that 0 ≤ t−εl(t) ≤ 1 for each t ≥ Y . Therefore, for each x ≥ Y ,

we find that
∫ x

0
q(t)dt ≤

∫ Y

0
q(t)dt +

∫ x

Y
t−εl(t)t−1−εdt ≤

∫ Y

0
q(t)dt+1/(εY ε) <∞.

�

CORORALLY 4.7. If E <∞ and q(t) ∈ Rα, then α ≤ 0 and

(4.1) lim
m→E−

umax

E
=

{
1
2 , if α ≤ −1,
α

α−1 , if − 1 < α ≤ 0.

PROOF. It is the direct consequence of Theorem 4.4 and Lemmas 4.5 and 4.6.
�
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5. Tauberian theorems

Given a measurable function f : (0,∞) → R, let f̌(z) :=
∫∞

0 t−z−1f(t)dt be
its Mellin transform for z ∈ C such that the integral converges absolutely (see [1,
2, 3]). For example, putting k(x) := 2x2 (0 < x < 1) or 0 (x ≥ 1), we obtain

ǩ(z) = 2/(2− z) (−∞ < Re z < 2). In addition, putting h(x) := x (0 < x < 1) or 0
(x ≥ 1), we obtain ȟ(z) = 1/(1− z) (−∞ < Re z < 1). Given measurable functions
f, g : (0,∞) → R, let (f ∗ g)(x) :=

∫∞

0
t−1f(x/t)g(t)dt be the Mellin convolution

of these functions for x > 0 such that the integral converges absolutely.
THEOREM 5.1. If E < ∞ and limm→E− u′max exists, then limm→E− umax/E

= (1 − r)/(2 − r) (0 ≤ r ≤ 1) and
∫ x

0 ρ(dt) ∈ Rr, where r is the upper order of∫∞

0
(x/(x + t))

n
ρ(dt) (n > 1).

PROOF. Putting K(x) :=
∫∞

0
(x/(x+ t))

3
ρ(dt), we observe that ǩ(2−) = ∞

and

(k ∗K) (x)

K(x)
=

∫∞

0
(x/(x+ t))

2
ρ(dt)

∫∞

0
(x/(x+ t))

3
ρ(dt)

≥ 1.

From Lemma 3.18, limx→∞ (k ∗K) (x)/K(x) = c ≥ 1 exists. As K(x) is an
increasing function, from [1, Theorem 5.2.3 and Section 2.1.2], we obtain c =
ǩ(ωK) = 2/(2−ωK), ωK < 2 andK(x) is regularly varying. Thus, limm→E− umax/E
= − limm→E− u′max = 1 − 1/(2 − ωK) = (1 − ωK)/(2 − ωK). From Lemma 4.2, it
follows that

∫ x

0
ρ(dt) ∈ RωK . Moreover, from Lemma 4.1, we have 0 ≤ ωK ≤ 1.

This implies that the upper order of
∫∞

0
(x/(x+ t))n ρ(dt) is always ωK for each

n > 1. �

THEOREM 5.2. If E <∞ and limm→E− umax/E 6= 0 exists, then limm→E− umax

/E = − limm→E− u′max = (1 − r)/(2 − r) (0 ≤ r < 1) and
∫ x

0
ρ(dt) ∈ Rr, where r

is the upper order of
∫∞

0
(x/(x+ t))

n
ρ(dt) (n > 1).

PROOF. This proof is formally the same as that in Theorem 5.1. Putting
S(x) :=

∫∞

0
(x/(x+ t))2 ρ(dt), we observe that ȟ(1−) = ∞ and

(h ∗ S) (x)
S(x)

=

∫∞

0 x/(x + t)ρ(dt)
∫∞

0 (x/(x+ t))
2
ρ(dt)

≥ 1.

From Lemma 3.17, limx→∞ (h ∗ S) (x)/S(x) = c ≥ 1 exists. As S(x) is an increasing
function, from [1, Theorem 5.2.3 and Section 2.1.2], we obtain c = ȟ(ωS) = 1/(1
−ωS), ωS < 1, and that S(x) is regularly varying. Thus, limm→E− umax/E =
1/(c+ 1) = (1 − ωS)/(2 − ωS). From Lemma 4.2, it follows that

∫ x

0
ρ(dt) ∈ RωS .

Moreover, from Lemma 4.1, we have 0 ≤ ωS < 1. This implies that the upper
order of

∫∞

0
(x/(x+ t))n ρ(dt) is always ωK for each n > 1. In this case, based on

Lemmas 3.18 and 4.3, limm→E− u′max exists. �

CORORALLY 5.3. If E <∞, the following are equivalent.

(a) limm→E− umax/E 6= 0 exists.

(b)
∫ x

0
ρ(dt) ∈ Rr (r 6= 1).

(c) limm→E− u′max 6= 0 exists.

PROOF. Using Theorems 4.4, 5.1, and 5.2, and Lemmas 3.18 and 4.3, we arrive
at the conclusion. �

It is noteworthy that
∫ x

0
ρ(dt) ∈ R1 includes limm→E− umax/E = 0. However,

the converse is not necessarily true because a nonregularly varying function
∫ x

e ρ(dt)
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= (2+ sin (log x))x/(1+ log x)3/2 − (2+ sin 1)e/(2
√
2) (x ≥ e) provides an example

with limm→E− umax/E = 0. The details are left to the reader. In this direction, we
observe that limm→E− umax/E = 0 if and only if

∫∞

0
(x + t)−1ρ(dt) is normalized

slowly varying. Because, since limc→∞ cΨ′(c)/(E −Ψ(c)) = 0 (Lemma 3.17), E −
Ψ(c) =

∫∞

0 (t + c + ξ)−1ρ(dt) (Lemma 3.5) is normalized slowly varying (see [1,
(1.3.4)]).

LEMMA 5.4 [1, Theorem 1.7.2]. If
∫ x

0
f(t)dt ∼ cxrl(x) (x → ∞), where f(x)

is nondecreasing or nonincreasing in an interval (T , ∞) (T > 0), then f(x) ∼
crxr−1l(x) (x→ ∞).

CORORALLY 5.5. Assuming E <∞, ρ(dt) = q(t)dt and q(t) is nonincreasing

in an interval (T , ∞) (T > 0). When limm→E− umax/E 6= 0 exists, the following

properties hold:

(1) If ωq ≤ −1, then limm→E− umax/E = 1/2 and
∫ x

0 q(t)dt is slowly varying.

(2) If ωq > −1, then ωq < 0, limm→E− umax/E = −ωq/(1 − ωq), and q(t) is

regularly varying.

PROOF. Put S(x) :=
∫∞

0 (x/(x+ t))
2
q(t)dt. Then, by applying Theorem 5.2,

we obtain limm→E− umax/E = (1 − ωS)/(2 − ωS), (0 ≤ ωS < 1) and
∫ x

0
q(t)dt

∈ RωS . Thus, by Lemma 5.4 we find that
∫ x

0
q(t)dt ∼ xωS l(x) (x → ∞) and q(t)

∼ ωSt
ωS−1l(t) (t → ∞).

(1) Assume ωq < −1. From lim supt→∞ log q(t)/ log t < −1, we obtain
∫∞

0
q(t)dt

< ∞,
∫ x

0
q(t)dt ∈ R0, and ωS = 0. Next, assume ωq = −1. If ωS 6= 0, we have

ωq = ωS − 1 = −1, which is a contradiction.
(2) Assume ωq > −1 and ωS 6= 0. Then, we find that ωq = ωS − 1 < 0 and

limm→E− umax/E = −ωq/(1 − ωq). Next, assume ωq > −1 and ωS = 0. Then,
q(t) = o(t−1l(t)) (t → ∞) and ωq ≤ −1, thus contradicting the assumption. �
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