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Least-Squares Prices of Games

Yukio Hirashita

Abstract

What are the prices of random variables? In this paper, we define the least-squares
prices of coin-flipping games, which are proved to be minimal, positive linear, and
arbitrage-free. These prices depend both on a set of games that are available for
investing simultaneously and on a risk-free interest rate. In addition, we show a
case in which the mean-variance portfolio theory is inappropriate in our incomplete
market.

2000 Mathematics Subject Classification: 91B24, 91B28.
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1. Introduction

Consider the following two coin-flipping games:

Game A : Profit is 19 or 1 if a tossed coin yields heads or tails, respectively.

Game B : Profit is 10 if a tossed coin yields heads or tails.

In general, game B is preferable to game A (see [7, Example 9.2]). Despite
the fact that the expectations concerning the two games are equal, the price of
B should be higher than that of A. However, if game C is available for investing
simultaneously, the three prices of these games should be the same; this is because
the mixed game (A+ C)/2 is equal to B.

Game C : Profit is 1 or 19 if a tossed coin yields heads or tails, respectively.

Therefore, the price of a game should change in accordance with the set of
games that are available for investing simultaneously. As F. Black and M. Scholes
demonstrate, the price of an option depends on the risk-free continuously compound
interest rate r > 0 (see [1, page 643]). It is noteworthy that if r = 0, no investor
will invest his/her money, because no gain is expected. In this paper (except in
Remarks 3.5 and 3.6), we assume that r is 0.05. The term “arbitrage-free” implies
that no investor has an opportunity to earn a profit exceeding the risk-free interest
rate.

Here, we introduce the pricing method of a coin-flipping game.

Theorem 1.1. Suppose that a game A := (a, b) involves a profit a or b (a,
b > 0) if a tossed coin yields heads or tails, respectively. Put EA := (a + b)/2.

If EA/
√
ab ≤ er, then the price of game A is given by uA

r =
√
ab/er, and the

optimal proportion of investment is 1. Otherwise, uA
r = κa+ (1− κ)b (if a ≥ b) or

κb+(1−κ)a (if a < b), where κ := (1−
√
1− 1/e2r)/2, and the optimal proportion

of investment is uA
r (E

A −uA
r ) /((a− uA

r ) (u
A
r − b)).

Proof . Using Remark 3.1 under the conditions of this theorem and solving the
simultaneous quadratic equations, we obtain the conclusion. �

Game A : As EA/
√
ab = 10/

√
19 ; 2.294 > e0.05 ; 1.051 and κ ; 0.3458, we

obtain the price uA
r ; 7.224 and the optimal proportion of investment tuA

r
; 0.274.

Now, we explain the term “optimal proportion of investment.” Let t ∈ [0, 1] be
a proportion of investment; then, the investor repeatedly invests t of his/her current
capital. For example, let c be the current capital; when the investor plays game A =
(19, 1) once, his/her capital will be 19ct/u+c(1−t) or ct/u+c(1−t) if a tossed coin
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yields heads or tails, respectively, where u is the price of the game. Let the initial
capital be 1. After N attempts, if the investor has capital cN , then the growth rate

(geometric mean) is given by c
1/N
N . As the value limN→∞

(
expectation of c

1/N
N

)
is a

function with respect to t ∈ [0, 1], it reaches its maximum of Gu at t = tu, where Gu

is called the limit expectation of the growth rate. The price uA
r is determined by the

equation Gu = er. Thus, the optimal proportion of investment tuA
r
is determined

(see Remark 3.1). It is noteworthy that the value limN→∞

(
variance of c

1/N
N

)
is 0.

Game B : As EB/
√
ab = 10/

√
100 = 1 < e0.05 ; 1.051, we obtain the price uB

r

; 9.512. In this case, the optimal proportion of investment is 1. This implies that
the investor should invest his/her entire current capital in each attempt.

In Section 2, we will introduce the least-squares price uA, Ω
r of game A in a set

Ω of games and prove some properties of uA, Ω
r .

Example 1.1. Ω = {(19, 1), (4, 16)}. Using Theorem 1.1, we have u
(19, 1)
r ;

7.224 and u
(4, 16)
r ; 8.149. As 0.4(19, 1) + 0.6(4, 16) = (10, 10), using Lemma 2.2,

we obtain u
(19, 1), Ω
r = u

(4, 16), Ω
r = 10/er ; 9.512, where each price reaches its

maximum.

Example 1.2. Ω = {(19, 1), (16, 4)}. As Example 1.1, we have u
(19, 1)
r ; 7.224

and u
(16, 4)
r ; 8.149. Observe that p(19, 1) + (1 − p)(16, 4) = (3p + 16, 4 − 3p)

and 10/
√
(3p+ 16)(4− 3p) ≥ 5/4 > e0.05 ; 1.051 for each p ∈ [0, 1]. In this case,

using Lemma 2.3 with the linearity u
(3p+16, 4−3p)
r = 6pκ+ 12κ −3p+ 4, we obtain

u
(19, 1), Ω
r = u

(19, 1)
r and u

(16, 4), Ω
r = u

(16, 4)
r , where each price is unchanged.

Example 1.3. Ω = {(12, 8), (11, 9)}. Using Theorem 1.1, we have u
(12, 8)
r ;

9.320 and u
(11, 9)
r ; 9.465. Observe that p(12, 8) + (1 − p)(11, 9) = (p + 11,

9 − p) and 10/
√
(p+ 11)(9− p) ≤ 5/(2

√
6) ; 1.021 < e0.05 ; 1.051 for each p

∈ [0, 1]. In this case, by the fact that u
(p+11, 9−p)
r =

√
(p+ 11)(9− p)/er and using

numerical calculations according to Definition 2.1, we obtain u
(12, 8), Ω
r ; 9.345 and

u
(11, 9), Ω
r ; 9.469, where uA

r < uA, Ω
r < EA/er for each A ∈ Ω.

For a better understanding of the background, we present our incomplete
market assumptions as follows (compare with [8, Sections 2.1 and 8.2]).

1. Frictionless Market: There are no transactions costs or taxes, and all
securities are perfectly divisible.

2. Price-Taker: The investor’s actions cannot affect the probability distribution
of returns on the securities. Every security has a positive expectation.

3. No Arbitrage Opportunities: There exits a unique riskless standard asset,
that is not necessarily tradable. Further, there exists a security, wherein the limit
expectation of the growth rate is equal to that of the riskless standard asset.
The limit expectation of the growth rate of any security never exceeds that of
the standard asset. The standard asset is usually provided by the riskless rate of
interest.

4. No Short Sales: Combined with suitable transactions, all necessary short
sales must be included in the securities (probability distribution of returns), that
have positive expectations. For example, −(19, 1) + 2(16, 4) = (13, 7).



3

2. Least-Squares Prices

Let Ψ := {Gj := (cj , dj) : cj , dj > 0, j = 1, 2, ...,m} be a finite set of coin-flipping
games, which are completely correlated. Denote the convex cone {∑m

j=1 kjGj :

kj ≥ 0, j = 1, 2, ...,m} by Ψ̂. Then, a basis Ω := {Ai : i = 1 or i = 1, 2}
exists such that Ψ̂ = Ω̂ (see Remark 3.3). This is because, if minj=1,2,...,m cj/dj
= maxj=1,2,...,m cj/dj, we can choose Ω := {A1 := G1}. If not, we can choose
Ω := {A1 := Gj0 , A2 := Gj1} such that cj0/dj0 = minj=1,2,...,m cj/dj and cj1/dj1
= maxj=1,2,...,m cj/dj. Since the set Ω = {Ai, 1 ≤ i ≤ n} (n = 1 or 2) is a basis of

the convex cone Ω̂, if
∑n

i=1 kiAi =
∑n

i=1 k
′
iAi, then ki = k′i for each 1 ≤ i ≤ n.

Set S := {(ti) ∈ Rn : 0 ≤ ti ≤ 1, 1 ≤ i ≤ n} and Q := {(pi) ∈ Rn :∑n
i=1 pi = 1, pi ≥ 0, 1 ≤ i ≤ n}.
From Theorem 1.1, we can verify that 0 < uA

r ≤ EA/er and ukA
r := u

(ka, kb)
r

= kuA
r for each A = (a, b) and k > 0.

Definition 2.1. By defining the function

(2.1) L((ti)) := sup
(pi)∈Q

u
Pn

i=1 piAi

r∑n
i=1 pi(u

Ai
r + ti(EAi/er − uAi

r ))
((ti) ∈ S),

we have L((0)) = sup(pi)∈Q(u
Pn

i=1 piAi

r /
∑n

i=1 piu
Ai
r ) ≥ uA1

r /uA1
r = 1 and

L((1)) = sup
(pi)∈Q

u
Pn

i=1 piAi

r∑n
i=1 piE

Ai/er
= sup

(pi)∈Q

u
Pn

i=1 piAi

r

E
P

n
i=1 piAi/er

≤ 1.

Since the set T := {(ti) ∈ S : L((ti)) ≤ 1} is not null, convex, closed, and thus
compact, there is a unique point (xi) ∈ T such that v := min(ti)∈T

∑n
i=1 t2i =∑n

i=1 x
2
i . Define uAi, Ω

r := uAi
r +xi(E

Ai/er − uAi
r ) and call it the least-squares

price of Ai in Ω for each 1 ≤ i ≤ n. For each mixed game
∑n

i=1 kiAi ∈ Ω̂, define

u
Pn

i=1 kiAi, Ω
r :=

∑n
i=1 kiu

Ai, Ω
r (see [7, Section 9.6]).

Lemma 2.2. If (pi) ∈ Q exists such that
∑n

i=1 piAi is constant and pk 6= 0, then
uAk, Ω
r = EAk/er.

Proof. Write B :=
∑n

i=1 piAi; then as B is constant, uB
r = EB/er. From

Definition 2.1, we obtain uAi
r ≤ uAi, Ω

r ≤ EAi/er and uB
r ≤ ∑n

i=1 piu
Ai, Ω
r ≤∑n

i=1 piE
Ai/er = uB

r . Thus, u
Ak, Ω
r = EAk/er if pk 6= 0. �

Lemma 2.3. If u
Pn

i=1 piAi

r =
∑n

i=1 piu
Ai
r for each (pi) ∈ Q, then uAi, Ω

r = uAi
r

(1 ≤ i ≤ n).
Proof. By the above assumption, we obtain L((0)) = 1 and v = 0, which implies
the conclusion. �

Theorem 2.4. The system of least-squares prices is arbitrage-free, and there is a

mixed game that earns profit equal to the growth rate of er.

Proof. As T ⊂ S and Q are compact, and u
Pn

i=1 piAi

r is continuous with respect to
(pi) ∈ Q (see Theorem 1.1), (xi) ∈ T and (qi) ∈ Q exist such that

(2.2) L((xi)) = max
(pi)∈Q

u
Pn

i=1 piAi

r∑n
i=1 pi(u

Ai
r + xi(EAi/er − uAi

r ))
=

u
Pn

i=1 qiAi

r∑n
i=1 qiu

Ai, Ω
r

= 1.

This shows that the mixed game
∑n

i=1 qiAi earns profit that is equal to the growth
rate of er. On the other hand, for each nonzero mixed game

∑n
i=1 kiAi = k

∑n
i=1 piAi
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∈ Ω̂ (k :=
∑n

i=1 ki, k > 0, pi := ki/k, (pi) ∈ Q), by equation (2.2), we have

u
Pn

i=1 kiAi

r = ku
Pn

i=1 piAi

r ≤ k
∑n

i=1 piu
Ai, Ω
r =

∑n
i=1 kiu

Ai, Ω
r . Therefore, the game∑n

i=1 kiAi earns profit that is equal to or less than the growth rate of er. �

Theorem 2.5. The system of least-squares prices is minimal in order to be

arbitrage-free.
Proof. We prove this by using reduction to absurdity. Assuming that a set of
prices {Ri} of {Ai} exists such that Ri ≤ uAi, Ω

r (1 ≤ i ≤ n) and Rk < uAk, Ω
r

for some k. If Rj < u
Aj
r for some j, then the game Aj earns profit exceeding the

growth rate of er. Thus, we can assume that uAi
r ≤ Ri (1 ≤ i ≤ n). Therefore,

(si) ∈ S exists such that Ri = uAi
r +si(E

Ai/er − uAi
r ), where sj := 0 is chosen if

u
Aj
r = EAj/er. It is easy to verify that si ≤ xi (1 ≤ i ≤ n) and sk < xk. From the

above statement, we have
∑n

i=1 s2i <
∑n

i=1 x
2
i , which implies (si) /∈ T , and thus

L((si)) > 1. Therefore, a point (qi) ∈ Q exists such that
∑n

i=1 qiRi < u
Pn

i=1 qiAi

r ,
that is, the mixed game

∑n
i=1 qiAi earns profit exceeding the growth rate of er. �

It is not difficult to verify that if Ω = {Ai : 1 ≤ i ≤ n} and Ω
′

= {Bj :

1 ≤ i ≤ s} are the bases of the convex cone Ψ̂, then n = s, Ai = viBi, and uAi, Ω
r =

viu
Bi, Ω

′

r (vi > 0, 1 ≤ i ≤ n) after the permutations. Therefore, uA, Ω
r = uA, Ω′

r for

each A ∈ Ψ̂, and we can define uA, Ψ
r := uA, Ω

r .

3. Remarks

Remark 3.1. Consider a random variableX with nonnegative bounded profit a(x)
and distribution dF (x). In the case where exp(

∫
log a(x)dF (x))/er ≤ 1/

∫
1/a(x)dF (x),

the price is given by uX
r = exp(

∫
log a(x)dF (x))/er , and the optimal proportion

of investment is 1. Otherwise, the price u = uX
r and the optimal proportion of

investment t are determined by the simultaneous equations exp(
∫
log(a(x)t/u−t+1)

dF (x)) = er and
∫
(a(x)−u)/(a(x)t −ut+u)dF (x) = 0 (see [3, Corollaries 5.1, 5.3,

and Section 6]).

Remark 3.2. Remark 3.1 can be generalized to the nonnegative unbounded case
where

∫
a(x)>1

a(x)νdF < ∞ for some ν > 0. For example, because
∑∞

j=1(2
j)1/2/2j =

2/(2 −
√
2) and exp(

∑∞
j=1(log 2

j)/2j)/er = 4/e0.05 > 1/
∑∞

j=1 1/4
j = 3, the St.

Petersburg game {profit 2j with probability 1/2j, j = 1, 2, ...} is priced at 4.816
with the optimal proportion of investment 0.204.

Remark 3.3. In Section 2, the value of n is 1 or 2. However, when the reader
challenges to study dice games, the value of n may be 36. To generalize this theory

to the convex cone Ψ̂ with a finite basis Ω, we need the fact that u
Pn

i=1 piAi

r is concave
and continuous with respect to (pi) ∈ Q for any positive integer n. This can be
achieved using [2, Theorems 185 and 214] and [9, Theorems 10.1, 10.3 and 20.5]
with tedious discussions. Therefore, in Definition 2.1, sup(pi)∈Q can be replaced by

max(pi)∈Q because of Berge’s maximum theorem (see [10, Theorem 2.1]).

Remark 3.4. Let S denote the stock price which is a nonnegative random variable.
Define P := max(K − S, 0) and C := max(S − K, 0) for the strike price K.
Applying Lemma 2.2 with Ω = {P, C, S − C}, the equalities P + (S − C) = K
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and C + (S − C) = S imply Put-call parity uC, Ω
r − uP, Ω

r +K/er = uS, Ω
r (see [7,

Sections 12.3 and 13.2]).

Remark 3.5. In this remark, we assume that the risk-free interest rate r = 0.02
is simple (not continuously compound). Consider two independent coin-flipping
games, X = (50, 1) and Y = (30.6191, 14), where the variances are vX = 600.25
and vY = 69.0486, respectively. Assume that the rates of mean return ([7, section
6.4]) are rX = 0.233546 and rY = 0.079211, respectively. Thus, from the one-fund
theorem ([7, section 6.9]), we have the weight

wX =
rX−r
vX

rX−r
vX

+ rY −r
vY

= 0.2932,

which implies that the single fund of risky assets is

wXX + (1− wX)Y = (36.3016, 24.5552, 21.9348, 10.1884).

The four values of this fund occur with the same probability of 1/4. The price of
this fund is 21.3995 according to Remark 3.1, where er is replaced by 1 + r.

However, the price of wX + (1 − w)Y (0 ≤ w ≤ 1) reaches its maximum value
of 21.4134 when w = 0.3514, that is, the fund

0.3514X + 0.6486Y = (37.4295, 26.6504, 20.2109, 9.4318)

is more valuable than the single fund wXX+(1−wX)Y because 21.3995 < 21.4134.
It should be noted that by using 1 + r instead of er, Theorem 1.1 gives the

prices of X and Y as uX = 20.6721 and uY = 20.6721, respectively. Thus, the
corresponding rates of mean return are rX = 25.5/uX − 1 = 0.233546 or rY =
22.30955/uY − 1 = 0.07921.

Moreover, Remark 3.1 gives us the optimal proportion t = 0.4222 for the risky
fund. Thus, the best proportions of investment to X , to Y , and the risk-free
asset are tw = 0.1484, t(1 − w) = 0.2738, and 1 − t = 0.5778, respectively.
The mean-variance portfolio theory cannot provide a proportion of 0.5778 for the
risk-free asset (see [7, section 7.1]).

Remark 3.6. Let Y := {Yt}0≤t≤T<∞ be a measurable stochastic process with a
filtration. Put Ψ := {τ ; τ is a stopping time such that τ ≤ T }. We define the price

uY by supτ∈Ψ uYτ

rE(τ), where u
Yτ

rE(τ) is the price of the random variable Yτ(ω)(ω) (see

[Karatzas et al. (1998)]) with respect to the growth rate erE(τ):

sup
0≤z≤1

z≤ess infω Yτ(ω)(ω) z/u+1

∫

Ω

log
(
Yτ(ω)(ω)z/u− z + 1

)
dω = rE(τ).

The geometric price of Y := {Yt}0≤t<∞ is defined by sup0<T<∞ u{Yt}0≤t≤T .
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