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BRAID GROUP REPRESENTATIONS FROM TWISTED

QUANTUM DOUBLES OF FINITE GROUPS

PAVEL ETINGOF, ERIC ROWELL, AND SARAH WITHERSPOON

Abstract. We investigate the braid group representations arising from cate-
gories of representations of twisted quantum doubles of finite groups. For these
categories, we show that the resulting braid group representations always factor
through finite groups, in contrast to the categories associated with quantum
groups at roots of unity. We also show that in the case of p-groups, the cor-
responding pure braid group representations factor through a finite p-group,
which answers a question asked of the first author by V. Drinfeld.

1. Introduction

Any braided tensor category C gives rise to finite dimensional representations
of the braid group Bn. A natural problem is to determine the image of these
representations. This has been carried out to some extent for the braided tensor
categories coming from quantum groups and polynomial link invariants at roots of
unity [7, 8, 9, 10, 11, 12, 13]. A basic question in this direction is: Is the image of
the representation of Bn a finite group? In the aforementioned papers the answer
is typically “no”: Finite groups appear only in a few cases when the degree of the
root of unity is small.
In this paper we consider the braid group representations associated to the

(braided tensor) categories Mod-Dω(G), where Dω(G) is the twisted quantum
double of the finite group G. We show (Theorem 4.2) that the braid group images
are always finite. We also answer in the affirmative (Theorem 4.5) a question of
Drinfeld: If G is a p-group, is the image of the pure braid group Pn also a p-group?
The contents of the paper are as follows. In Section 2 we record some definitions

and basic results on braided categories, and Section 3 is dedicated to the needed
facts about Dω(G). Then we prove our main results in Section 4. The last section
describes some open problems suggested by our work.
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2. Braided Categories and Braid Groups

In this section we recall some facts about braided categories and derive some
basic consequences. For more complete definitions the reader is referred to either
[2] or [14].
The braid group Bn is defined by generators β1, . . . βn−1 satisfying the relations:

(B1) βiβi+1βi = βi+1βiβi+1 for 1 ≤ i ≤ n− 2,
(B2) βiβj = βjβi if |i− j| ≥ 2.

The kernel of the surjective homomorphism from Bn to the symmetric group
Sn given by βi 7→ (i, i+ 1) is the pure braid group Pn, and is generated by all
conjugates of β2

1 .
Let C be a k-linear braided category over an algebraically closed field k of

arbitrary characteristic. The braiding structure affords us representations of Bn as
follows. For any object X in C we have braiding isomorphisms cX,X ∈ End(X⊗2)
so that defining

Ři := Id
⊗(i−1)
X ⊗cX,X ⊗ Id

⊗(n−i−1)
X ∈ End(X⊗n)

we obtain a representation φn
X of Bn by automorphisms of X⊗n by

φn
X(βi) = Ři.

Similarly, for any collection of objects {Xi}
n
i=1, one has representations of Pn on

X1 ⊗ · · · ⊗ Xn. Throughout the paper, when we refer to representations of Pn

and Bn arising from tensor products of objects in a braided category, these are the
representations we mean.
We say that Y is a subobject of Z if there exists a monomorphism q ∈

HomC(Y, Z), and W is a quotient object of Z if there exists an epimorphism
p ∈ HomC(Z,W ). Because of the functoriality of the braiding, we have the follow-
ing obvious lemma, which will be used in Section 4.

Lemma 2.1. (i) If Y is a quotient object or a subobject of Z, then φn
Y (Bn) is a

quotient group of φn
Z(Bn) and similarly for the restrictions of these representations

to Pn.
(ii) Let S be a finite set of objects of a braided tensor category C for which

the image of the representation of Pn in End(X1 ⊗ · · · ⊗ Xn) is finite for all
X1, . . . , Xn ∈ S. Let X be the direct sum of finitely many objects taken from S.
Then the image of the representation of Bn in End(X⊗n) is finite.

3. The twisted quantum double of a finite group

In this section we define the twisted quantum double of a finite group, and give
some basic results that we need. For more details, see for example [3, 5, 16].
Let k be an algebraically closed field of arbitrary characteristic ℓ. Let G be

a finite group with identity element e, kG the corresponding group algebra, and
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(kG)∗ the dual algebra of linear functions from kG to k, under pointwise multi-
plication. There is a basis of (kG)∗ consisting of the dual functions δg (g ∈ G),
defined by δg(h) = δg,h (g, h ∈ G). Let ω : G×G×G → k× be a 3-cocycle, that is

ω(a, b, c)ω(a, bc, d)ω(b, c, d) = ω(ab, c, d)ω(a, b, cd)

for all a, b, c, d ∈ G. The twisted quantum (or Drinfeld) double Dω(G) is a
quasi-Hopf algebra whose underlying vector space is (kG)∗ ⊗ kG. We abbreviate
the basis element δx ⊗ g of Dω(G) by δxg (x, g ∈ G). Multiplication on Dω(G) is
defined by

(δxg)(δyh) = θx(g, h)δx,gyg−1δxgh,

where

θx(g, h) =
ω(x, g, h)ω(h, h, h−1g−1xgh)

ω(g, g−1xg, h)
.

As an algebra, Dω(G) is semisimple if and only if the characteristic ℓ of k does
not divide the order of G [16].
The quasi-coassociative coproduct ∆ : Dω(G) → Dω(G)⊗Dω(G) is defined by

∆(δxg) =
∑

y,z∈G
yz=x

γg(y, z)δyg ⊗ δxg,

where

γg(y, z) =
ω(y, z, g)ω(g, g−1yg, g−1zg)

ω(y, g, g−1zg)
.

The quasi-Hopf algebra Dω(G) is quasitriangular with

R =
∑

g∈G

δg ⊗ g and R−1 =
∑

g,h∈G

θghg−1(g, g−1)−1δge⊗ δhg−1.

In particular R∆(a)R−1 = σ(∆(a)) for all a ∈ Dω(G), where σ is the transposition
map. If X and Y are Dω(G)-modules, then Ř = σ ◦R provides a Dω(G)-module
isomorphism from X ⊗ Y to Y ⊗ X . Let cX,Y be this action by Ř. Then the
category Mod-Dω(G) of finite dimensional Dω(G)-modules is a braided category
with braiding c.

4. The images of Bn and Pn

In this section we fix a finite group G and a 3-cocycle ω, and prove that the
image of Bn in EndDω(G)(V

⊗n) is finite for any positive integer n and any finite
dimensional Dω(G)-module V . In case G is a p-group, we prove that the image of
Pn in EndDω(G)(V

⊗n) is also a p-group.

Remark 4.1. It follows from a theorem of C. Vafa (see [2, Theorem 3.1.19])
and the so-called balancing axioms that for braided fusion categories over C, the
images of the braid group generators βi in the above representations of Bn always
have finite order. This is far from enough to conclude that the image of Bn is
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finite; Coxeter [4] has shown that the quotient of Bn by the normal closure of the
subgroup generated by {βk

i : 1 ≤ i ≤ n− 1} is finite if and only if 1
n
+ 1

k
> 1

2
.

The case of general finite groups. Let r and m be positive integers. The full

monomial group G(r, 1, m) is the multiplicative group consisting of the m×m
matrices having exactly one nonzero entry in each row and column, all of whose
nonzero entries are rth roots of unity. It is one of the irreducible complex reflection
groups.
Let r = |G|ℓ′ be the part of |G| not divisible by the characteristic ℓ of k (i.e.

|G| = rℓs and (r, ℓ) = 1).

Theorem 4.2. Let V be a finite dimensional Dω(G)-module. Then the image of
Bn in End(V ⊗n) is finite. More specifically, this image is a quotient of a subgroup
of G(r, 1, m) for m = |G|2n.

Proof. We will need the following well known lemma, which follows from [15,
Theorem 6.5.8]. Let µr ⊂ k× be the set of r-th roots of unity.

Lemma 4.3. The natural map H i(G, µr) → H i(G, k×) is surjective. In particular,
any element in H i(G, k×) may be represented by a cocycle taking values in µr.

Now we turn to the proof of the theorem. As any finite dimensional Dω(G)-
module is finitely generated, and therefore is a quotient of a finite rank free module,
by Lemma 2.1 (i), it suffices to prove the statement when V is a finite rank free
module. By Lemma 2.1 (ii), we need only consider the case V = Dω(G), the left
regular module.
Assume first that n = 2. Let x, y, a, b ∈ G. The action of Ř on the basis element

δxa⊗ δyb of D
ω(G)⊗Dω(G) is

Ř(δxa⊗ δyb) = σ(
∑

g∈G

δg ⊗ g)(δxa⊗ δyb)

= σ(θxyx−1(x, b)δxa⊗ δxyx−1xb)

= θxyx−1(x, b)δxyx−1xb⊗ δxa.

If n > 2, similar calculations show that each Ři permutes the chosen basis of
Dω(G) up to scalar multiples of the form θxyx−1(x, b). By Lemma 4.3, whe may
assume that ω and hence θ takes values in the r-th roots of unity. This implies
that the image of Bn in End(Dω(G)⊗n) is contained in G(r, 1, m). �

Corollary 4.4. Let C be a braided fusion category that is group-theoretical in the
sense of [6]. Let V be any object of C. Then the image of Bn in End(V ⊗n) is finite.

Proof. Let Z(C) be the Drinfeld center of C. Since C is braided, we have a canonical
braided tensor functor F : C → Z(C). Thus it suffices to show the result holds for
the category Z(C). Since C is group-theoretical, Z(C) is equivalent to Mod -Dω(G)
for some G, ω. Thus the desired result follows from Theorem 4.2. �
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The case of p-groups.

Theorem 4.5. Suppose that G is a finite p-group and V is a finite dimensional
Dω(G)-module. Then the image of Pn in End(V ⊗n) is also a p-group.

The rest of the subsection is occupied by the proof of Theorem 4.5. We will
need a technical lemma:

Lemma 4.6. Let H be a group with normal subgroups H = H0 ⊃ H1 ⊃ ... ⊃ HN =
1, such that Hi/Hi+1 is abelian, and [Hi, Hj] ⊂ Hi+j, and let I be a subgroup of
Aut(H) that preserves this filtration and acts trivially on the associated graded
group. Then I is nilpotent of class at most N − 1.

Proof. Let L1(I) = I, L2(I) = [I, I], L3(I) = [[I, I], I], . . ., be the lower central
series of I. We must show LN(I) = 1.
We prove by induction on n that for any f ∈ Ln(I) and h ∈ Hm, f(h) = ha(h),

where a(h) ∈ Hn+m.
The case n = 1 is clear, since f ∈ I acts trivially on Hm/Hm+1. Suppose the

statement is true for n. Take g ∈ I, f ∈ Ln(I) and h ∈ Hm so that: f(h) = ha(h),
g(h) = hb(h), where a(h) ∈ Hn+m and b(h) ∈ Hm+1. Then fg(h) = f(h)f(b(h)) =
ha(h)b(h)a(b(h)), while gf(h) = hb(h)a(h)b(a(h)).
Since g acts trivially on the associated graded group, b(a(h)) ∈ Hn+m+1. Also

a(b(h)) ∈ Hn+m+1 since b(h) ∈ Hm+1, by the induction assumption. Moreover,
a(h)b(h) = b(h)a(h) modulo Hn+m+1 since [Hi, Hj] ⊂ Hi+j . Thus, fg(h) = gf(h)
in H/Hn+m+1, and thus [f, g](h) = h in H/Hn+m+1, which is what we needed to
show.
Taking m = 0 and n = N − 1, any [f, g] ∈ LN (I) is the identity on H = H/HN ,

and the lemma is proved. �

Now we are ready to prove the theorem. Any finite dimensional Dω(G)-module
is a quotient of a multiple of the left regular Dω(G)-module H = Dω(G). By
Lemma 2.1, it suffices to show that the image of Pn in End(H⊗n) is a p-group.
By Theorem 4.2, the image K of Pn is a subgroup of the full monomial group
G(r, 1, m), where r = pt for some t, and m = |G|2n. The normal subgroup of
diagonal matrices in K is thus a p-group, so it is enough to show that K modulo
the diagonal matrices is a p-group. Thus it suffices to assume that ω = 1 and
H = D(G).
Computing, we have:

Ř(aδx ⊗ bδy) = σ(
∑

g∈G

δg ⊗ g)(aδx ⊗ bδy) = axa−1bδy ⊗ aδx

for all a, b, x, y ∈ G. Denote by (g, x) the element gδx so that a basis of H⊗n is:

(g1, x1)⊗ · · · ⊗ (gn, xn)
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with gi, xi ∈ G. The braid generator βi fixes all factors other than the ith and
(i+ 1)st, and on these it acts by:

(gi, xi)⊗ (gi+1, xi+1) 7→ (gixig
−1
i xi+1, xi+1)⊗ (gi, xi)

= ([gi, xi]xigi+1, xi+1)⊗ (gi, xi),

where [a, b] denotes the group commutator. This action induces a homomorphism
ψ : Bn → Aut(Fr2n) where Fr2n is the free group on 2n generators. Explicitly,
ψ(βi) is the automorphism defined on generators {gi, xi}

n
i=1 of Fr2n by:

xj 7→ xj , gj 7→ gj for j 6∈ {i, i+ 1}

xi 7→ xi+1, xi+1 7→ xi

gi 7→ [gi, xi]xigi+1, gi+1 7→ gi.

Since G is a p-group, it is nilpotent of class, say, N − 1. Note that ψ descends
to a homomorphism ψN : Bn → Aut(Fr2n /LN(Fr2n)) where LN(Fr2n) denotes the
Nth term of the lower central series of Fr2n. Since G is nilpotent of class N − 1,
the action of Bn on the set G2n defined above factors through ψN . Thus, setting
I = ψN(Pn), ones sees that the action of Pn on H⊗n factors through I, that is, K
is a quotient of I.
Let us now show that I is nilpotent. Define a descending filtration on M =

Fr2n /LN(Fr2n) by positive integers as follows. Let M1 = M . Define degrees
on the generators by deg(gi) = 1 and deg(xi) = 2 for all i, and define Mj for
j ≥ 2 to be the normal closure of the group generated by [Mk,Mj−k] for all
0 ≤ k ≤ j together with the generators of degree at least j. Since M is nilpotent,
this filtration is finite. Further, I preserves this filtration and acts trivially on the
quotients Mi/Mi+1. By Lemma 4.6, I is nilpotent.
It follows that the finite group K is nilpotent. However, K is generated by

conjugates of β2
1 , and we claim that β2

1 is an element of order a power of p. Indeed,
this follows from the fact that if the ground field is C (which may be assumed
without loss of generality, since the double of G is defined over the integers), then
the eigenvalues of cX,Y cY,X for any objects X, Y are ratios of twists, which are
computed from characters of G (in [2]), and hence are roots of unity of degree a
power of p. Therefore, K is a finite p-group. The theorem is proved.

5. Questions

We mention some directions for further investigation suggested by these (and
other) results. We refer the reader to [6] and [14] for the relevant definitions.

(1) Suppose G is a p-group. Theorem 4.5 shows that the image of the asso-
ciated representation of Pn is also a p-group. What is its nilpotency class
relative to that of G? Some upper bounds can be obtained from the proof
of Theorem 4.5, but it is not clear how tight they are.
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(2) The finite groups that appear as images of representations of Bn associated
to quantum groups and link invariants at roots of unity (see [7, 9, 10, 11, 12,
13]) basically fall into two classes: symplectic groups and extensions of p-
groups by the symmetric group Sn. Does this hold for the representations
of Bn associated with Mod -Dω(G)? In general, is there a relationship
between the image of Pn and G?

(3) As a modular category, Mod -Dω(G) gives rise to (projective) representa-
tions of mapping class groups of compact surfaces with boundary. Are the
images always finite? It is known to be true for the mapping class groups
of the torus and the n-punctured sphere (Theorem 4.2). For more general
modular categories, the answer is definitely “no,” see [1, Conjecture 2.4].

(4) Let us say that a braided category C has property F if all braid group
representations associated to C have finite images. What class of braided
categories have property F? Among braided fusion categories, Corollary
4.4 shows that all braided group-theoretical categories (in the sense of [6])
have property F . Do all braided fusion categories with integer Frobenius-
Perron dimension have property F?
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