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THE BLOCK STRUCTURE SPACES OF REAL PROJECTIVE

SPACES AND ORTHOGONAL CALCULUS OF FUNCTORS II

TIBOR MACKO AND MICHAEL WEISS

Abstract. For a finite dimensional real vector space V with inner product,
let F (V ) be the block structure space, in the sense of surgery theory, of the
projective space of V . Continuing a program launched in [Ma], we investigate
F as a functor on vector spaces with inner product, relying on functor calculus
ideas. It was shown in [Ma] that F agrees with its first Taylor approximation
T1F (which is a polynomial functor of degree 1) on vector spaces V with

dim(V ) ≥ 6. To convert this theorem into a functorial homotopy-theoretic
description of F (V ), one needs to know in addition what T1F (V ) is when
V = 0. Here we show that T1F (0) is the standard L-theory space associated
with the group Z/2, except for a deviation in π0. The main corollary is a
functorial two-stage decomposition of F (V ) for dim(V ) ≥ 6 which has the
L-theory of the group Z/2 as one layer, and a form of unreduced homology
of RP (V ) with coefficients in the L-theory of the trivial group as the other
layer. (Except for dimension shifts, these are also the layers in the traditional
Sullivan-Wall-Quinn-Ranicki decomposition of F (V ). But the dimension shifts
are serious and the SWQR decomposition of F (V ) is not functorial in V .)
Because of the functoriality, our analysis of F (V ) remains meaningful and
valid when V = R

∞.

1. Introduction

This paper is a continuation of [Ma]. In [Ma] a certain continuous functor from
the category J of finite-dimensional real vector spaces with inner product to the
category Spaces∗ of pointed spaces was introduced. Here (in this introduction) we
denote this functor by F g. For V an object of J , the value F g(V ) is the block
structure space

S̃(RP (V ))

of the projective space of V . For a morphism ξ in J the map F g(ξ) is a generaliza-
tion of the join construction of Wall. See [Ma] or [Qu] for the definition of the block
structure space of a manifold, [Ma] and [Wa] for more on the join construction.

Each space F g(V ), alias block structure space of RP (V ), is individually well
understood as the n-fold loop space of the homotopy fiber of a standard assembly
map in L-theory, where n = dim(V ) − 1 and we assume n ≥ 5. See [Qu]. The
assembly map has good naturality properties, but the prefix Ωn tends to corrupt
these when n becomes a variable. Hence the standard methods for calculating the
values F g(V ) do not lead to very satisfying homotopy theoretic descriptions of the
induced maps F g(ξ).

The goal of the project presented in [Ma] and here is to provide a homotopy
theoretic description of the spaces F g(V ) natural in V , i.e. to describe the functor
F g. This will allow us to let dim(V ) tend to infinity. Hence it gives us a homotopy
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2 TIBOR MACKO AND MICHAEL WEISS

theoretic description of the (homotopy) colimit of the spaces F g(Rn), a space which
might be considered as the block structure space of RP∞ and which, as explained
in the introduction to [Ma], can be further related to certain space of equivariant
(honest = non-block) automorphisms of spheres. For this purpose another tool is
employed, the orthogonal calculus of functors of Weiss [We]. The desired descrip-
tion should be obtained from the orthogonal calculus Taylor tower of the functor
F g. This tower yields in particular a first Taylor approximation T1F

g of F g “at
infinity”, which is another functor from J to Spaces∗ and comes with a canonical
transformation F g → T1F

g. The degree 1 property of T1F
g implies a homotopy

fibration sequence, natural in V :

(1.1) Ω∞[(S(V )+ ∧Θ(1))hO(1)]→ T1F
g(0)→ T1F

g(V ).

Here S(V ) is the unit sphere in V with the antipodal involution, the subscript +
denotes an added base point, Θ(1) denotes the first derivative spectrum of F g and
the subscript hO(1) denotes a homotopy orbit construction for the symmetry group
O(1) ∼= Z2. See [We] or [Ma] for the definitions and more on the Taylor tower of a
continuous functor from J to Spaces∗.

A first step in the project was made in [Ma]. Namely, it was shown that for
V such that dim(V ) ≥ 6 the canonical map F g(V ) → T1F

g(V ) is a homotopy
equivalence. Therefore the homotopy fibration sequence (1.1) can be rewritten as
a homotopy fibration sequence

(1.2) Ω∞[(S(V )+ ∧Θ(1))hO(1)]→ T1F
g(0)→ F g(V ).

It was also shown in [Ma] that πkΘ
(1) is the k-th L-group of the trivial group. We

see that in order to obtain the desired description of F g(V ) when dim(V ) ≥ 6,
natural in V , it is (nearly) enough to describe T1F

g(0). Unfortunately this is far
from easy.

Let A be the additive category of finitely generated free abelian groups and let
A[Z2] be the additive category of finitely generated free modules over the group
ring Z[Z2]. Both of these have duality functors and hence determine L-groups and
L-theory spaces. Our main result is as follows.

Theorem 2. There is a homotopy fibration sequence

T1F
g(0) −−−−→ L0(A[Z2]

+)
σ̃/8
−−−−→ Z .

The space L0(A[Z2]
+) is the standard L-theory space for the group Z2 with the

trivial orientation character. Its homotopy groups are πkL0(A[Z2]
+) = Lk(Z

+
2 ).

The map σ̃/8 is the composition of the transfer homomorphism L0A[Z2]
+)→ L0(A)

and the isomorphism L0(A) ∼= Z defined by signature over 8. It is onto. See [Wa,
chapter 13A].

In [Ma] mainly the geometric surgery theory of Wall [Wa] was used, but for the
proof of theorem 2 we switch to the algebraic theory of surgery of Ranicki [Ra]. In
the geometric surgery setup, the block structure space of an n-dimensional closed
manifold X fits into the homotopy fibration sequence, due to Quinn [Qu],

(1.3) S̃(X)→ N (X)→ Ln(X),

where N (X) is the space of normal invariants of X and Ln(X) is the surgery
obstruction space associated with X . The homotopy groups of Ln(X) are the L-
groups of π = π1(X) with associated orientation character and with an appropriate
dimension shift. Quinn’s homotopy fibration sequence is the space version of a long
exact sequence of (homotopy) groups usually attributed to Sullivan in the simply
connected case, and to Wall in the nonsimply connected case.
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In the algebraic surgery setup the input consists typically of a connected sim-
plicial complex X , an integer n, a universal covering space for X with deck trans-
formation group π and a homomorphism w : π → Z2. The output is the homotopy
fibration sequence, due to Ranicki [Ra],

(1.4) S(X,n,w)→ Ln(A∗(X,w))→ Ln(A[π]
w).

Here all three spaces are L-theoretic spaces constructed from certain additive cate-
gories with chain duality. The homotopy groups πkLn(A[π]

w) are again the groups
Lk+n of the group ring Z[π] with the w-twisted involution. The homotopy groups
πkLn(A∗(X,w)) are better known as the generalized homology groups Hk+n of
X with w-twisted coefficients in the L-theory spectrum of the trivial group. We
should perhaps add that our conventions here are slightly less restrictive than the
ones which Ranicki has in many of his papers on algebraic surgery. As a conse-
quence we have strict 4-periodicity, S(X,n,w) ≃ Ω4S(X,n,w) for all n ∈ Z, in
addition to the spectrum property S(X,n+1, w) ≃ ΩS(X,n,w) which Ranicki also
insists on in most circumstances.

If X is a triangulated closed n-manifold and w is its orientation character, then
modulo a small modification the sequence (1.4) can be identified with the sequence
(1.3) by a result of [Ra]. (In this situation we usually write S(X) instead of
S(X,n,w).) More concretely the first terms in the sequences (the two versions
of the block structure space) are related via a homotopy fibration sequence

(1.5) S̃(X)→ S(X)→ Z.

The advantage of the algebraic setup is that S(X) is much more tractable from the
point of view of algebraic topology: it is an infinite loop space and it is 4-periodic
as such, almost by definition.

But for us the algebraic setup has some disadvantages, too. No triangulation
is invariant under the action of the orthogonal group O(V ) on V . Therefore it is
not possible to define a continuous functor from J to Spaces∗ by a formula such as
V 7→ S(RP (V )). Instead we construct a continuous functor F a from J to Spaces∗
along the following lines. For V in J , the value F a(V ) is a colimit of spaces
S(X), where X runs through a directed system of generalized simplicial complexes
obtained from certain generalized triangulations of RP (V ). Of course, the space
F a(V ) will have the homotopy type of S(RP (V )).

We emphasize that, although F a is better behaved than F g from the orthogonal
calculus point of view, its behavior on objects V in J of dimension < 3 is still
not good. This is due to the fact that the map RP (V ) → RP (W ) induced by a
morphism V → W in J need not be 1-connected if dim(V ) < 3. However, that
difficulty can be overcome and we have the following result which easily implies
Theorem 2:

Theorem 1. We have T1F
a(0) ≃ L0(A[Z2]

+).

An overview of the proof will be given in the next section. — The algebraic
surgery approach also gives us the following:

Remark. The sequence (1.2) is a homotopy fibration sequence of infinite loop
spaces.

The paper is organized as follows. In section 2 we give the proof of our main
result, Theorem 1, modulo certain theorems A, B and C and a natural homotopy
fiber sequence F g(V )→ F a(V )→ Z when dim(V ) ≥ 6. In the rest of the paper we
prove theorems A, B and C and construct that natural homotopy fiber sequence.
Specifically, in section 3 we give a review of the tools from algebraic surgery we need.
Section 4 contains a somewhat abstract preview of the functor F a while sections 5
and 6 deliver the technical details. Section 7 contains the proofs of Theorems A,
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B and C. In section 8 we relate F a to F g. This completes the proof of theorem 1
and it also reduces Theorem 2 to Theorem 1. At the very end of section 8 we also
explain the remark above on infinite loop space structures.

2. Proof of Theorem 1.

The main ingredients in the proof of Theorem 1 are Theorems A, B and C
below. Their statements and proofs rely on the algebraic theory of surgery setup.
The construction of the functor F a and the proofs of Theorems A and B are themes
of the subsequent sections. Theorem C was proved in [Ma]. Although F a has a
complicated definition, for the purposes of this section we may pretend that it is
given by F a : V 7→ S(RP (V )). Now we state Theorems A and B without proofs
and derive Theorem 1 from them.

Theorem A. For an oriented W ∈ J such that 4 divides dim(W ), there is a
homotopy equivalence F a(V )→ ΩWF a(V ), natural in V .

This is just the usual 4-periodicity in L-theory. — Our next statement is about
a Thom isomorphism in algebraic L-theory. Let V and W objects in J . As one
would expect, there is a join map S(RP (W )) → S(RP (V ⊕W )) and we do not
generally have a way of extending that to a map between the two homotopy fiber
sequences (1.4) for X = RP (W ) and X = RP (V ⊕ W ), respectively. But it is
relatively easy to supply the lower horizontal arrow in a homotopy commutative
diagram

S(RP (W )) //

��

S(RP (V ⊕W ))

��
Lm(A∗(RP (W ))) Ln(A∗(RP (V ⊕W )))oo

where m = dim(W ) − 1 and n = dim(V ⊕W ) − 1. It is also easy to promote the
resulting composite map

ϕ :S(RP (V ⊕W ))→ Lm(A∗(RP (W )))

to a natural transformation between functors in the variable V (note that the
target functor is constant). More precisely we can construct a continuous functor
GW :J → Spaces∗ which is polynomial of degree 0 (that is, essentially constant)
and a natural transformation

ϕ :S(RP (V ⊕W ))→ GW (V )

which specializes to Ranicki’s map S(RP (W )) → Lm(A∗(RP (W ))) when V = 0.
Now we can state our Thom isomorphism result.

Theorem B. Let W in J be oriented, of even dimension. There is a natural map

ΩWF a(V )→ hofiber[F a(V ⊕W )
ϕ
→ GW (V )]

which is a homotopy equivalence for dim(V ) ≥ 3.

The following is a simple reformulation of the main result of [Ma].

Theorem C. Let W ∈ J be such that dim(W ) ≥ 6. Then the functor

V 7→ F g(V ⊕W )

on J is polynomial of degree ≤ 1.

Proof of Theorem 1. We assume a natural homotopy fiber sequence

F g(V )→ F a(V )→ Z
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when dim(V ) ≥ 6. We use that and Theorem C to deduce that for W in J
with dim(W ) ≥ 6, the functor V 7→ F a(V ⊕ W ) is polynomial of degree ≤ 1
without any low-dimensional deviations. Now suppose in addition that W is even-
dimensional and oriented. Let F aW be the functor taking V in J to the homotopy
fiber of ϕ :F a(V ⊕W )→ GW (V ) in Theorem B. Then F aW is polynomial of degree
≤ 1 without any low-dimensional deviations, because it is the homotopy fiber of a
natural transformation between a functor which is polynomial of degree ≤ 1 and
another functor which is polynomial of degree ≤ 0. Therefore we have

F aW (V ) ≃ T1F
a
W (V )

for all V in J . From Theorem B we obtain

T1F
a
W (V ) ≃ T1Ω

WF a(V )

for all V ∈ J , since F aW and ΩWF a “agree” on objects V of sufficiently large
dimension. Now suppose in addition that 4 divides dim(W ). Then we get from
Theorem A that

T1Ω
WF a(V ) ≃ T1F

a(V )

for all V in J . Composing these three natural homotopy equivalences, we get
F aW (V ) ≃ T1F

a(V ) for all V in J . Specializing to V = 0 and unraveling the
definition of F aW (0) we obtain the statement of Theorem 1. �

3. Overview of algebraic surgery

The aim of this section is to recall the homotopy fibration sequence of algebraic
surgery due to Ranicki [Ra]. It has the form

(3.1) S(X,w)→ Ln(A∗(X,w))→ Ln(A[π]
w),

where X is a connected simplicial complex (equipped with a universal covering,
with deck transformation group π) and w : π → Z2 is a homomorphism. More
generally, X can be a ∆-complex (see [Hat] and definition 3.3 below). If X is an
n-dimensional manifold and w : π → Z2 is the orientation character, then up to a
small modification the homotopy fibration sequence (3.1) can be identified with the
geometric homotopy fibration sequence of surgery

(3.2) S̃(X)→ N (X)→ Ln(X).

This section contains essentially no new results. It is a review of definitions and
tools we need from [Ra] (see also [We2]). We focus mostly on the case where w is
trivial, but towards the end of the section we indicate the modifications needed if
w is not trivial (the non-orientable case). All spaces in (3.1) are certain L-theory
spaces associated with various additive categories with chain duality and all the
maps in (3.1) are induced by functors between these categories. We start with
an additive category A and introduce the category B(A) of chain complexes of A-
objects, graded over Z and bounded above and below. The notion of a chain duality
T : A → B(A) on A will be recalled below. We use this to define symmetric and
quadratic structures on objects of B(A).

Definition 3.1. A chain duality on an additive category A is a contravariant
additive functor T : A → B(A) together with a natural transformation e from
T 2 : A→ B(A) to id : A→ B(A) such that for each M in A

(1) eT (M) · T (eM ) = id: T (M)→ T 3(M)→ T (M),

(2) eM : T 2(M)→M is a chain homotopy equivalence.
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A chain duality T : A → B(A) can be canonically extended to the chain duality
T : B(A)→ B(A) as follows. Let C be a chain complex in B(A). Then we can define
a double complex

T (C)p,q = T (C−p)q.

The dual chain complex T (C) ∈ B(A) is the total complex of this double complex.
A chain duality T : A → B(A) can be used to define a tensor product of two

objects M , N in A over A as

(3.3) M ⊗A N = HomA(T (M), N).

This is a chain complex of abelian groups.
The main examples of additive categories with chain duality we will consider are

the following.

Example 3.2. Let R be a ring with involution r 7→ r̄ and let A(R) be the category
of finitely generated projective left R-modules. On the category A(R) we can define
a chain duality A → A by T (M) = HomR(M,R). The involution can be used to
make T (M) into a f.g. projective left R-module. The dual T (C) of a finite chain
complex C in A(R) is HomR(C,R).

The most important example for us is R = Z[π], the group ring of a group π,
with involution given by ḡ = g−1 for g ∈ π.

The category A(Z) with chain duality will sometimes be denoted just by A, and
the category A(Z[π]) will sometimes be denoted A[π].

In this paper we write ∆ for the category with objects n = {0, 1, . . . , n}, for
n = 0, 1, 2, . . . , and order-preserving injective maps as morphisms. A ∆-set is a
functor from ∆op to sets. A ∆-set Y has a geometric realization |Y |. It is the
quotient of

∐
n Yn ×∆n by the relations (u∗y, x) ∼ (y, u∗x) for y ∈ Yn , x ∈ ∆m

and u :m→ n a morphism in ∆.
Out of a ∆-set Y , we can make a category cat(Y ) with object set

∐
n Yn , where a

morphism from σ ∈ Ym to τ ∈ Yn is a morphism u :m→ n in ∆ with f∗τ = σ. We
write u : σ → τ for short.

Definition 3.3. A ∆-complex is a space X together with a ∆-set sX and a home-
omorphism |sX | → X . It is considered finite if sX is finite. When we write simplex
in X, for a ∆-complex X , we mean a simplex in sX .

Example 3.4. Let A be an additive category and let X be a finite ∆-complex. Then
there are defined two additive categories A∗(X) and A∗(X) of X-based objects in
A. An object M of A is X-based if it comes as

M =
∑

n≥0

∑

σ∈sXn

M(σ).

A morphism f :M → N in A∗(X), resp. A∗(X), is a matrix f = (fu) of morphisms
fu :M(σ) → N(τ) in A, resp. fu :M(τ) → N(σ) in A, with entries corresponding
to morphisms u :σ → τ between simplices of X . Composition of morphisms is given
by matrix multiplication.
Such a morphism f can be thought of as an upper triangular, resp. lower triangular
matrix. For example, f is an isomorphism if and only if all diagonal entries, the fu
in which u is an identity, are invertible in A.
Given N in A and σ in X , let Nσ in A∗(X), resp. A∗(X), be defined by Nσ(σ) = N
and Nσ(τ) = 0 for τ 6= σ. Clearly N → Nσ is a functor from A to A∗(X), resp.
A∗(X). This functor has a right adjoint M → M [σ] from A∗(X), resp. A∗(X), to
A. We have M [σ] =

∑
σ→τ M(τ) , resp. M [σ] =

∑
τ→σM(τ) where the direct

sum is taken over all morphisms σ → τ , resp. τ → σ, with fixed σ and arbitrary
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τ . For a morphism f :M0 → M1 in A∗(X), resp. A∗(X), the induced morphism
M0[σ]→M1[σ] is a sum of terms fu : M0(τ)→M1(ρ), one such for every diagram

σ → τ
u
−→ ρ , resp. ρ

u
−→ τ → σ

of simplices in X .
Rather than defining chain dualities in A∗(X) and A∗(X) directly, we focus on
the tensor products, ⊗A∗(X) and ⊗A∗(X), which are easier to motivate. Suppose
therefore that M and N are X-based objects of A. Then

(M ⊗A∗(X) N)r =
∑

σ∈sXr

∑
λ←σ→µ(M(λ)⊗A N(µ))r−|σ|

(M ⊗A∗(X) N)r =
∏
σ∈sXr

∑
λ→σ←µ(M(λ) ⊗A N(µ))r+|σ|.

In the case where the ∆-complex X is a simplicial complex (with ordered vertex
set, say), these graded abelian groups can be regarded as chain subcomplexes of
C∗X⊗Z (M⊗AN) and HomZ(C∗X,M⊗AN) respectively, where C∗X is the cellular
chain complex of X . In the general case, we can still say that

σ 7→
∑
λ←σ→µM(λ)⊗A N(µ)

σ 7→
∑
λ→σ←µM(λ)⊗A N(µ)

is a contravariant (resp. covariant) functor, with chain complex values, on the
category of simplices ofX . This determines in the usual way a double chain complex
of abelian groups. The corresponding total chain complex is M ⊗A∗(X) N , resp.
M ⊗A∗(X) N . The adjunction (3.3) then determines the chain duality functors
A∗(X) → B(A∗(X)) and A∗(X) → B(A∗(X)) as follows. Let M be an object in
A∗(X), resp. A∗(X). Then

T (M)r(σ) =

{
T (M [σ])r+|σ|,

T (M [σ])r−|σ|,

with differential

dT (M)(u : σ → τ) :

{
T (M [τ ])→ T (M [σ])

T (M [σ])→ T (M [τ ])

equal to dT (M [σ]) if σ = τ , equal to
{
(−1)iT

(
u∗ : M [τ ]→M [σ]

)

(−1)iT
(
u∗ : M [σ]→M [τ ]

)

if |τ | = |σ|+ 1 and u omits the i-th vertex, and equal to 0 for all other σ → τ .

Remark 3.5. An object M in A∗(X) determines a contravariant functor M♮ from
the category of simplices of X to A byM♮(σ) =M [σ]. We call such a contravariant
functor from the category of simplices of X to A, or any isomorphic one, cofibrant.
Similarly an object M in A∗(X) determines a covariant functor M ♮ from the cate-
gory of simplices of X to A by M ♮(σ) =M [σ]. Again we call such a covariant func-
tor, or any isomorphic one, cofibrant. A morphism f : M → N in A∗(X) induces
a natural transformation f♮ :M♮ → N♮, and vice versa. A morphism f :M → N in
A∗(X) induces a natural transformation f ♮ :M ♮ → N ♮, and vice versa. In this way
A∗(X) and A∗(X) are equivalent to, and could be re–defined as, certain categories
of functors on the category of simplices of X . There are situations when we have
to resort to these alternative definitions.

Example 3.6. For more motivation of the duality on the categories of X-based
objects here is an example. To start with let X be a finite simplicial complex with
ordered vertex set and let X ′ be its barycentric subdivision. The simplices σ of X
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correspond to the vertices σ̂ of X ′. For a simplex σ of X its dual cell D(σ,X) is
the subcomplex of X ′ spanned by the simplices with vertex set of the form

{τ̂0, τ̂1, . . . , τ̂p}

where τ0 contains σ and τ0 ⊂ τ1 ⊂ · · · ⊂ τp. Its “boundary” is spanned by all
simplices in D(σ,X) which do not have σ̂ as a vertex. The dual cell D(σ,X) is
contractible. Apart from that it does not always have the properties that we would
expect from a cell (such as being homeomorphic to a euclidian space), but it has
the dual properties. In particular, D(σ,X)r ∂D(σ,X) has a trivial normal bundle
in X with fibers homeomorphic to R|σ|.

Let M be a closed n-dimensional smooth or PL manifold. Any map f : M → X
is homotopic to a map transverse to the dual cells of X . If f is transverse to the
dual cells, then

(M [σ], ∂M [σ]) = f−1(D(σ,X), ∂D(σ,X))

is an (n − |σ|)-dimensional manifold. The collection {M [σ] | σ in X}, or more
precisely, the contravariant functor σ 7→ M [σ], is called an X-dissection of M . In
this situation there exists a structure of a CW -space on M such that each M [σ]
is a CW -subspace. The cellular chain complex C∗M can then be understood as a
chain complex in B(A∗(X)) via the decomposition

C∗M =
∑

σ

C∗(M [σ], ∂M [σ]).

We may expect this to be self-dual, with a shift of n, since M is a closed manifold.
The dual of C∗M in A∗(X) is by definition

T (C∗M) =
∑

σ

C−|σ|−∗(M [σ]).

The ordinary Poincaré duality homotopy equivalences

C∗(M [σ], ∂M [σ]) ≃ Cn−|σ|−∗(M [σ])

suggest that ΣnT (C∗M) is indeed homotopy equivalent in A∗(X) to C∗M . This
will be confirmed later.
Now we need to generalize these observations from the setting of simplicial com-
plexes to that of ∆-complexes. For a ∆-complex X and a simplex σ in X , we
have the category of simplices of X under σ. Its objects are morphisms u :σ → τ
where σ is fixed and τ in X is variable. Its nerve is a ∆-set and the corresponding
∆-complex is, by definition, the dual cell D(σ,X). The boundary ∂D(σ,X) corre-
sponds to the nerve of the full subcategory with objects u : σ → τ where u is not
an identity.
The dual cell D(σ,X) is contractible, because the category of simplices of X under
σ has an initial object. There is a canonical map

cσ : D(σ,X) −→ X

defined as follows. A k-simplex of D(σ,X) corresponds to a diagram

σ → τ0 → τ1 → · · · → τk

of simplices in X . The vertices of that k-simplex are the resulting σ → τi for
i = 0, 1, . . . , k. The restriction of cσ to the k-simplex is the “linear” map taking
the vertex σ → τi to the barycenter of τi in X .
The map cσ need not be injective. However, it is locally injective, it embeds
D(σ,X) r ∂D(σ,X), and the image of that restricted embedding has a trivial-
ized normal bundle in X , with fibers homeomorphic to R|σ|. This results in a
stratification of X where the strata have the form

X(σ) = cσ(D(σ,X)r ∂D(σ,X))
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and each stratum has a trivialized normal bundle with fiber homeomorphic to a
euclidian space. The closure X [σ] of X(σ) in X is the union of all X(τ) for which
there exists a morphism σ → τ . (Zeeman’s dunce hat, the two-dimensional ∆-
complex with a single 0-simplex, a single 1-simplex and a single 2-simplex, is an
instructive example.)
Let M be an n-dimensional smooth or PL manifold. Any map f : M → X is
homotopic to a map transverse to the stratification of X by subsets X(σ). If f is
transverse to the stratification, then the pullback of f and cσ is a manifold M [σ]
with boundary ∂M [σ]. Any morphism σ → τ in X determines a mapM [τ ]→M [σ]
which, if |τ | > |σ|, factors through ∂M [σ]. That map is locally an embedding and
it embeds M [τ ] r ∂M [τ ]. The functor σ 7→ M [σ] together with the identification
colimσM [σ] ∼= M is called an X-dissection of M . It is always possible to equip
the functor σ 7→ M [σ] with a CW-structure. (A CW-structure on a contravariant
functor F from a small category to spaces is a filtration of F by subfunctors Fi for
i = −1, 0, 1, 2, 3, . . . , where F−1 = ∅ and Fi is obtained from Fi−1 by “attaching”
functors of the form a 7→ Di ×

∐
λ hom(a, bλ) using natural attaching maps Si ×∐

λ hom(a, bλ)→ Fi−1(a). If F comes with a CW-structure, we also say that F is
a CW-functor. See [Dro] for more details.) The cellular chain complex C∗M can
then be understood as a chain complex in B(A∗(X)) via the decomposition

C∗M =
∑

σ

C∗(M [σ], ∂M [σ]).

where C∗(M [σ], ∂M [σ]) is the cellular chain complex of M [σ]/∂M [σ]. The dual of
C∗M in A∗(X) is

T (C∗M) =
∑

σ

C−|σ|−∗(M [σ]).

If M is (only) a topological manifold, and f :M → X is transverse to the strati-
fication of X by subsets X(σ), then we can still construct a contravariant functor
σ 7→ F [σ] with CW-structure from the category of simplices of X to the category
of spaces, and a natural homotopy equivalence F [σ] → M [σ], for σ in X . Then
∂F [σ] is well defined: it is the CW-subspace of F [σ] containing all the cells which
come from some F [τ ] via some u : σ → τ . The object

C∗F =
∑

σ

C∗(F [σ], ∂F [σ])

in B(A∗(X)) is a good substitute for a possibly nonexistent C∗M .

A chain duality T : A → B(A) can be used to define symmetric and quadratic
chain complexes in B(A) as follows. Firstly, notice that given two objects M and
N of A, their tensor product M ⊗A N possesses a symmetry isomorphism

TM,N : M ⊗A N → N ⊗A M

given by taking

f ∈ (M ⊗A N)n = HomA(T (M)−n, N)

to

TM,N (f) ∈ (N ⊗A M)n = HomA(T (N)−n,M)

where

TM,N(f) = eM · T (f) : T (N)n → T (T (M)−n)−n ⊆ T
2(M)0 →M.

This tensor products extends to a tensor product C ⊗AD of chain complexes C,D
in B(A) and there is also a symmetry isomorphism

TC,D : C ⊗A D → D ⊗A C.
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If C = D this makes C ⊗AC into a finite chain complex of Z[Z2]-modules. Now let
W be the standard Z[Z2]-resolution of Z, i.e. it is a chain complex of Z[Z2]-modules

W = · · ·Z[Z2]
1+T
−−−→ Z[Z2]

1−T
−−−→ Z[Z2]→ 0

concentrated in non-negative degrees. Then there are the following two chain com-
plexes of abelian groups

HomZ[Z2](W,C ⊗A C),

W ⊗Z[Z2] (C ⊗A C).

Definition 3.7. An n-dimensional symmetric algebraic complex in B(A) is a pair
(C, φ) with C a chain complex in B(A) and φ an n-cycle in HomZ[Z2](W,C ⊗A C).
An n-dimensional quadratic algebraic complex in B(A) is a pair (C,ψ) with C a
chain complex in B(A) and ψ an n-cycle in W ⊗Z[Z2] (C ⊗A C).

We note that in the above definition it is not required that the chain complex
C is concentrated in dimensions from 0 to n, it is only required that it is bounded
below and above. The dimension n is associated with the symmetric structure φ
or with the quadratic structure ψ.

An n-dimensional symmetric structure φ on a chain complex C can be described
as a collection of chains in HomA(T (C), C),

φ = {φs : T (C)−∗ → Cn−∗+s | s ≥ 0}

satisfying certain relations.
An n-dimensional quadratic structure ψ on a chain complex C can be described

as a collection of chains in HomA(T (C), C),

ψ = {ψs : T (C)−∗ → Cn−∗−s | s ≥ 0}

satisfying certain relations.
An n-dimensional quadratic structure ψ on C determines an n-dimensional sym-

metric structure φ on C by φ0 = (1 + T )ψ0 and φs = 0 for s > 0. We describe this
relationship by writing φ = (1 + T )ψ.

Definition 3.8. For C in B(A), an n-cycle in C ⊗A C ∼= HomA(TC,C) is nonde-
generate if the corresponding chain map TC → C of degree n is a chain homotopy
equivalence. An n-dimensional symmetric algebraic Poincaré complex (SAPC) in
B(A) is a symmetric algebraic complex (C, φ) such that φ0 is nondegenerate. An
n-dimensional quadratic algebraic Poincaré complex (QAPC) in B(A) is a quadratic
algebraic complex (C,ψ) such that (1 + T )ψ0 is nondegenerate.

Example 3.9. Let X be a connected finite CW -complex and X̃ → X a universal
covering with deck transformation group π. The diagonal map

∇ :X → X̃ ×π X̃

is a Z2-map for the trivial action of Z2 on the source and the permutation action
on the target. It is not cellular in general. However it is easy to construct a cellular
Z2-map

∇♯ :EZ2 ×X → X̃ ×π X̃

which is Z2-homotopic to the composition of ∇ just above with the projection
EZ2 × X → X . Here EZ2 can be taken as the universal (=double) cover of
BZ2 = RP∞, with the standard CW -structure on RP∞. Hence the map of cellular
chain complexes induced by ∇♯ takes the form

W ⊗ C∗X −→ C∗X̃ ⊗Z[π] C∗X̃

with adjoint

C∗X −→ HomZ[Z2](W,C∗X̃ ⊗Z[π] C∗X̃).
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Regard now C∗X̃ as an object in B(A[π]), with A[π] as in example 3.2. Then by all
the above, any n-cycle µ in C∗X determines an n-dimensional symmetric structure

φ(X) on C∗X̃. If X is an orientable Poincaré duality space and µ represents a
fundamental class [X ], then φ0 is nondegenerate and so

(C∗X̃, φ(X))

is an n-dimensional SAPC.

Example 3.10. Let (f, b) : M → X be a degree one normal map of n-dimensional
closed manifolds or Poincaré duality spaces, where X is connected and equipped
with a universal covering. Denote by K(f) the algebraic mapping cone of the
Umkehr map of chain complexes

f ! : C∗X̃ ≃ Cn−∗X̃
fn−∗

−−−−−−−→ Cn−∗M̃ ≃ C∗M̃.

As explained just above, C∗X̃ comes with a structure of n-dimensional SAPC over
Z[π]. This projects to a structure of n-dimensional SAPC on K(f). Ranicki in
[RaLMS2], [Ra] refines the latter to an n-dimensional QAPC on (K(f), ψ(f)).

In the next definition, the standard simplex ∆n is regarded as a simplicial
complex in the usual way. Each face inclusion ∆n−1 → ∆n induced by the
monotone injection {0, 1, . . . , n − 1} → {0, 1, . . . , n} induces an additive functor
di :A

∗(∆n) → A∗(∆n−1) which commutes with the chain dualities. We identify
A∗(∆0) with A.

Definition 3.11. Two n-dimensional SAPC (QAPC) in B(A), say (C, φ) and
(C′, φ′), are called cobordant if there exists an n-dimensional SAPC (QAPC), say
(D,ψ) in B(A∗(∆1)), such that d0(D,ψ) ∼= (C, φ) and d1(D,ψ) ∼= (C′, φ′).

With the alternative definition of A∗(∆1) outlined in remark 3.5, the cobordism
relation is an equivalence relation on n-dimensional SAPC (QAPC). The direct sum
makes the cobordism classes of SAPC (QAPC) into an abelian group, where the
inverse of [(C, φ)] is given by [(C,−φ)].

Definition 3.12. The group of cobordism classes of n-dimensional SAPC in B(A)
is denoted by Ln(A). The group of cobordism classes of n-dimensional QAPC in
B(A) is denoted by Ln(A).

Example 3.13. For the category A[π] with chain duality as in Example 3.2, the
L-groups Ln(A[π]) are the usual symmetric L-groups Ln(π) of Mishchenko and the
L-groups Ln(A[π]) are the quadratic L-groups Ln(π) of Wall (see [Ra]).

The L-groups are in fact the homotopy groups of certain spaces. These are
defined as ∆-sets (alias “simplicial sets without degeneracy operators”) as follows.

Definition 3.14. Let Ln(A), resp. Ln(A), denote the ∆-set whose k-simplices
are n-dimensional SAPC, resp. QAPC in the category A∗(∆k). The face maps are
induced by the functors di : A

∗(∆k)→ A
∗(∆k−1). We use the alternative definitions

of A∗(∆k) given in remark 3.5.

Example 3.15. With A[π] as in Example 3.2, the L-theory space Ln(A[π]) is the
L-theory space Ln(π) of Quinn, with homotopy groups πkLn(π) = Lk+n(π).

Remark 3.16. The assignment ψ 7→ (1 + T ) · ψ for (C,ψ) an n-dimensional QAPC
in B(A) defines a symmetrization map (1 + T ) : Ln(A)→ Ln(A).

Let X be a finite Delta-complex. We now have the definitions of the spaces
Ln(A∗(X)) and Ln(A[π]) from the homotopy fibration sequence (3.1), ignoring ori-
entation matters which will be discussed later. Assuming A = A(Z) for simplicity,
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we proceed to describe the map α from Ln(A∗(X)) to Ln(A[π]) which is called
assembly.

Suppose that X comes with a principal π–bundle p :X♮ → X . (In most applica-
tions this will be a universal covering for X , and X will be connected, but we do
not have to assume that now.) The map α is induced by an additive functor, also
denoted α. Define

α : A∗(X)→ A[π]

on objects by

α(M) =
∑

σ∈sX♮

M(p(σ))

with π acting on the right-hand side by permutating summands in the obvious way.
A morphism f :M → N in A∗(X) induces α(f) : α(M) → α(N), which we define
in matrix notation by

α(f)(σ,τ) =
∑

u : σ→τ

fp(u)

where u : σ → τ in X♮ and p(u) : p(σ)→ p(τ) is the induced morphism in X .
In order to see that the assembly functor α induces a map of the L-spaces one
has to see that it “commutes” with the chain dualities as in Examples 3.2, 3.4,
or with the corresponding tensor products. We choose the tensor product option.
The coefficient system σ 7→

∑
λ←σ→µM(λ) ⊗A N(µ) on X comes with an evident

natural transformation to the constant coefficient system σ 7→ α(M) ⊗A[π] α(N),
due to the fact that a diagram such as λ ← σ → µ in X determines a preferred
path class in X connecting the barycenters of λ and µ. Passing to the cellular chain
complexes associated with these coefficient systems gives

M ⊗A∗(X) N −→ C∗X ⊗
(
α(M)⊗A[π] α(N)

)
.

We compose with the augmentation C∗(X)→ Z to get

M ⊗A∗(X) N −→ α(M)⊗A[π] α(N)

and more generally
C ⊗A∗(X) D −→ α(C) ⊗A[π] α(D)

for objects C and D in B(A). We use this to transport symmetric and quadratic
structures. Nondegeneracy is preserved, so that QAPC are mapped to QAPC. It
follows that we have a well defined map of L-spaces

(3.4) α : Ln(A∗(X))→ Ln(A[π]),

which is also called assembly. It is an algebraic version, due to Ranicki, of the
assembly map of Quinn [Qu]. Apart from being algebraic, it also incorporates
Poincaré duality to switch from a cohomological setup to a homological one.

Remark 3.17. In the above construction we indicated how an n-dimensional QAPC
in B(A∗(X)), say (C,ψ), determines an assembled n-dimensional QAPC in B(A[π]),
denoted α(C,ψ). For the sake of readability we will sometimes omit the prefix α
in the sequel, provided it is clear enough in which category we are working.

Remark 3.18. The spaces Ln(A) can be arranged into an Ω-spectrum L•(A), with
homotopy groups πkL•(A) ∼= Lk(A) for k ∈ Z. Beware that Ln(A) is the (−n)-th
space in the Ω-spectrum L•(A). With our conventions, Lk(A) is isomorphic to
Lk+4(A) for all k ∈ Z, and indeed L•(A) ≃ Ω4L•(A). We also have Ranicki’s law

πk(Ln(A∗(X))) ∼= Hn+k(X ;L•(A))

for k, n ∈ Z, and to be more precise L•(A∗(X)) ≃ X+∧L•(A). See [Ra] for details.
When A is the category of f.g. free Z-modules with the standard chain duality,
then we write L• for L•(A).
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Example 3.19. Let (f, b) : M → N be a degree one normal map of n-dimensional
closed smooth or PL manifolds and g : N → X be a map to a simplicial complex X
such that both gf and g are transverse to the dual cells of X . By Example 3.6 we
have X-dissections M ∼= colimM [σ] and N ∼= colimN [σ], so that C∗M and C∗N
can be regarded as objects in B(A∗(X)), for suitable CW–structures on M and
N . By analogy with Example 3.9, there are preferred structures of n–dimensional
SAPC on C∗M and C∗N , as objects of B(A∗(X)). By analogy with Example 3.10,
there is an algebraic Umkehr map

f ! :C∗N −→ C∗M

in B(A∗(X)) with mapping coneK(f), say. The resulting structure of n–dimensional
SAPC on K(f), as an object of B(A∗(X)), has a preferred refinement to a QAPC
structure ψ. We remark that K(f)(σ) for a simplex σ in X can be identified with
the mapping cone of an algebraic Umkehr map

C∗(N [σ], ∂N [σ]) −→ C∗(M [σ], ∂M [σ])

which is the diagonal entry f !(σ, σ) of f !. See again [Ra] for details. Under assembly,
these constructions match and recover those in Examples 3.9 and 3.10.

Suppose that X is a connected ∆-complex equipped with a universal covering,
with deck transformation group π. One way to define the space S(X,n) is to say
that it is the homotopy fiber of the assembly map

α :Ln(A∗(X))→ Ln(A[π]).

However, the theory of algebraic bordism categories of [Ra] can be used to provide
a more direct description of the space S(X,n) as the L-theory space associated
to certain additive category with chain duality (with certain restrictions on the
objects). The description is as follows.

Definition 3.20. A k-simplex of the space S(X,n) is an n-dimensional QAPC
in the category B((A∗(X))∗(∆k)) which assembles to a contractible QAPC in
B((A[π])∗(∆k)).

Then there is an obvious inclusion map S(X,n) → Ln(A∗(X)). By the result
of [Ra, Proposition 3.9] the sequence (3.1) consisting of this map and the assembly
map α is a homotopy fibration sequence.

Theorem 4.5 of [We2] provides the following alternative to definition 3.20:

Definition 3.21. A k-simplex of S(X,n) is an n-dimensional SAPC in the category
B((A∗(X))∗(∆k)) which assembles to a contractible SAPC in B((A[π])∗(∆k)).

Twisted versions. Now we recall modifications in the above machinery needed
to treat the general case of nonorientable or just nonoriented manifolds. It will be
necessary to modify the definition of the tensor product of X-based objects and the
tensor product of Z[π]-modules and thus also the assembly map.

Definition 3.22. A twist on a group π is a π-module Γ whose underlying abelian
group is infinite cyclic. A homomorphism of twisted groups, say from (π,Γ) to
(π′,Γ′), is a homomorphism f : π → π′ together with an isomorphism Γ→ f∗Γ′ of
π-modules.

Example 3.23. For a connected n–manifold X and a universal covering of X with
deck transformation group π, there is a canonical way to define a twist on π. Let
Γ be the n–th integer homology with locally finite coefficients of the universal
covering. The action of π on Γ is obvious.
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We now fix a finite ∆-complex X with a principal π-bundle p : X♮ → X and
a twist Γ on π. The twist determines a homomorphism w : π → {±1} such that
gz = w(g) ·z for all g ∈ π and z ∈ Γ. On the group ring Z[π] we have the w-twisted
involution given by

g 7→ w(g) · g−1.

The group ring with this involution will be denoted by Z[π]w and the category of
f.g. free left Z[π]w-modules will be denoted by A[π]w. We already have a chain
duality T on A[π]w from Example 3.2; unfortunately this is no longer considered
quite right and to correct it we compose with the functor Γ⊗Z. Note that this
causes a small change in ⊗A[π]w as well. Namely, for objects M and N in A[π]w

there is the following isomorphism of abelian groups:

(3.5) M ⊗A[π]w N = Γ⊗Z[π] (M ⊗Z N).

Similar remarks apply to A∗(X), which we now rename A∗(X,w) to indicate a
modified chain duality. We already have a chain duality T on A∗(X) from Exam-
ple 3.4; this is no longer considered quite right for A∗(X,w). To correct it we define
a “local coefficient system” Γ! of infinite cyclic groups on X by Γ!(σ) = Γ×πp−1(σ̂),
for simplices σ ∈ sX with barycenter σ̂. Then we compose the old chain duality T
with the endofunctor given by

∑

σ∈sX

M(σ) 7→
∑

σ∈sX

M(σ)⊗ Γ!(σ)

to obtain the new duality. Hence, for objects M and N of A∗(X), there is an
embedding

M ⊗A∗(X) N −→ C∗(X ; Γ!)⊗ (M ⊗Z N).

The assembly functor α : A∗(X,w) → A[π]w is defined exactly as in the untwisted
setting by

M 7→ α(M) =
∑

σ♮∈sX♮

M(σ♮)

with M(σ♮) :=M(p(σ♮)), but the old definition of the comparison maps

C ⊗A∗(X) D −→ α(C) ⊗A[π] α(D)

for C,D in B(A∗(X)) has to be modified since its source and target are not what
they were then. This is straightforward. As before, the assembly functor induces a
map between L-theory spaces

α : Ln(A∗(X,w))→ Ln(A[π]
w)

also called assembly. Assuming that X is connected and p :X♮ → X is a universal
covering, one can define the space S(X,n,w) as the homotopy fiber of the assembly
map. There is also a description of this space as an L-theory space of the category
of chain complexes in B(A∗(X,w)) with contractible assembly in B(A[π]w).

Truncated version. Let X be a finite ∆-complex with subcomplexes X1 and
X2 such that X1 ∪X2 = X . Ranicki’s excision theorem for L•(A∗(X)) mentioned
earlier in Example 3.18 means that the square of Ω–spectra

L•(A∗(X1 ∩X2))

��

// L•(A∗(X1))

��
L•(A∗(X2)) // L•(A∗(X1 ∪X2))

is a homotopy pushout square. This implies that X 7→ π∗L•(A∗(X)) is a general-
ized (unreduced) homology theory. We now recall some of Postnikov’s method for
making truncated variants of generalized homology theories.
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Let X 7→ Q∗(X) be a generalized homology theory (from finite ∆-complexes to
graded abelian groups, say). Fix r ∈ Z. We define the Postnikov fiber truncation
℘r by

℘rQn(X) = im[Qn(X
n−r)→ Qn(X

n−r+1)].

Then ℘rQ∗ is again a generalized homology theory and there are long exact se-
quences

· · · → Hn−r+1(X ;Qk)→ ℘r+1Qn(X)→ ℘rQn(X)→ Hn−r(X ;Qr)→ · · ·

where Qr = Qr(∗). For fixed r ≤ n− dim(X), we clearly have ℘rQn(X) = Qn(X).
In our situation there is a space version of this construction which we outline

very briefly. Let (C,ψ) be a k–simplex in Ln(A∗(X)), alias n–dimensional QAPC
in (A∗(X))∗(∆k). We say that (C,ψ) is of type ℘r if, for simplices σ ∈ sX , τ ∈ ∆k,
the chain complex C(σ, τ) is zero if |σ|−|τ | > n−r+1, and nullbordant as a QAPC
of dimension n− |σ|+ |τ | in B(A) if |σ| − |τ | = n− r+1 (with the QAPC structure
determined by ψ). The simplices of type ℘r form a ∆–subset Ln(A∗(X);℘r) of
Ln(A∗(X)). Letting n vary, these ∆–subsets can be arranged into a subspectrum

L•(A∗(X);℘r) ⊂ L•(A∗(X))

and we have L•(A∗(X);℘r) ≃ X+ ∧ ℘rL•(A). The verification, along the lines of
Ranicki’s reasoning for r = −∞, is left to the reader.

For us, only the case of Ln(A∗(X);℘1) with dim(X) = n is of interest. In that
case Ln(A∗(X);℘1) is a ∆–subset of Ln(A∗(X)) determined by a condition on the
0–simplices only. A 0–simplex (C,ψ) of Ln(A∗(X)), alias n–dimensional QAPC
in A∗(X), belongs to Ln(A∗(X);℘1) if and only if (C(σ), ψ|σ) is a nullbordant 0-
dimensional QAPC in B(A) for every n–simplex σ in X . (The higher–dimensional
simplices in Ln(A∗(X)) belong to Ln(A∗(X);℘1) precisely if all their vertices do.)
Note that if X is connected, then the clause for every n–simplex σ can be replaced
by for some n–simplex σ.

Geometric versus algebraic surgery sequence. For a ∆-complex X which is
an n-dimensional connected oriented manifold and a specified universal covering of
X with deck transformation group π, there is the following diagram of homotopy
fibration sequences

S̃(X) //

��

N (X) //

��

Ln(X)

��
S(X ;℘1) // Ln(A∗(X);℘1) // Ln(A[π])

where the vertical arrows are homotopy equivalences, and S(X ;℘1) is defined as
the homotopy fiber of Ln(A∗(X);℘1)→ Ln(A[π]).

Note that in Example 3.19 we essentially described a map N (X)→ Ln(A∗(X)).
This factors through Ln(A∗(X);℘1). Indeed for an n-dimensional simplex σ in X
the dual cell D(σ,X) is a point σ̂ and for any degree one map f :M → X transverse
to σ̂, the inverse image f−1(σ̂) is a closed 0–manifold of signature 1. (Hence the
signature of f−1(σ̂) minus the signature of σ̂ is 0.) Again there are versions of
the identification for the cases when X is a non-orientable or just non–oriented
manifold. The details are again left to the reader.

Remark 3.24. Strictly speaking, in order to define a map N (X) → Ln(A∗(X))
we should have added CW-structures as in example 3.6 and “geometric symmetric
structures” (maps ∇♯ as in example 3.9) on the manifolds or CW-spaces involved
to the geometric data, since choices of these must be made before the algebraic
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data can be extracted. However, these choices are “contractible” choices. Adding
them or neglecting them does not change the homotopy type of N (X).

Products. For (C, φ) an m-dimensional SAPC in B(A[π]), and (C′, φ′) an n-
dimensional SAPC in B(A[π′]), we have (C ⊗ C′, φ⊗ φ′) , an (m+ n)-dimensional
SAPC in B(A[π×π′]). For (C, φ) anm-dimensional SAPC in B(A[π]), and (D,ψ) an
n-dimensional QAPC in B(A[π′]), we have (C⊗D,φ⊗ψ) , an (m+n)-dimensional
QAPC in B(A[π × π′]). See [RaLMS1, section 8].

Let X be an m-dimensional, and Y an n-dimensional Poincaré duality CW-
complexes with chosen orientation classes. Then we have a natural isomorphism

(3.6) (C∗(X̃ × Ỹ ), φ(X × Y )) ∼= (C∗X̃ ⊗ C∗Ỹ , φ(X)⊗ φ(Y ))

of (m+ n)-dimensional SAPCs in B(A[π1(X × Y )]). See [RaLMS2, section 8]. We
are assuming that geometric symmetric structures on X and Y as in example 3.9
have been selected, and use the product geometric symmetric structure on X × Y .
A similar but slightly more complicated statement for normal maps and quadratic
structures is available. We do not formulate this because we will not need it, thanks
to the stated equivalence of definitions 3.21 and 3.20.

4. Orthogonal Calculus and Products

The orthogonal calculus [We] is about continuous functors from a certain cate-
gory J of real vector spaces to the category of spaces. For details and definitions,
see also [Ma]. Here we take another look at orthogonal calculus from a “multiplica-
tive” viewpoint.

Let J iso be the subcategory of the isomorphisms in J . The objects of J iso are
the finite dimensional real vector spaces V,W, . . . with inner product, and the space
of morphisms from V to W in J iso is the space of invertible linear isometries from
V to W .

Definition 4.1. Let E and F be continuous functors from J iso to based spaces.
A multiplication on E is a binatural based map m :E(V ) ∧ E(W ) → E(V ⊕W ),
defined for V and W in J iso, which satisfies the appropriate associativity law. A
unit for the multiplication is a distinguished element 1 ∈ E(0) which is a neutral
element for the multiplication m. For E equipped with a multiplication m and a
unit, an action of E on F is a binatural based map

a :E(V ) ∧ F (W )→ F (V ⊕W ),

again defined for V and W in J iso, which satisfies the appropriate associativity law
involving m and a, and has 1 ∈ E(0) acting by identity maps.

Example 4.2. Let E(V ) = S0 for all V , with m :E(V ) ∧E(W ) ∼= E(V ⊕W ) for all
V,W . For a continuous F from J iso to based spaces, an action of E on F amounts
to an extension of F from J iso to J .

Example 4.3. Let E(V ) = ∗ for all V . For any continuous F from J iso to based
spaces, there is a unique action of E on F .

Example 4.4. Let E be given as in definition 4.1, with multiplication m. Fix U
in J iso. We are going to define an F from J iso to spaces, with an action of E,
in such a way that F is free on one generator ι ∈ F (U). We set F (W ) = ∗ if
dim(W ) < dim(U). For W with dim(W )− dim(U) = k ≥ 0 we define

F (W ) = mor(U ⊕ R
k,W )+ ∧O(k) E(Rk).

Here “mor” refers to a space of morphisms in J iso, and the ∧O(k) notation means
that we are dividing by the equivalence relation which identifies (gh, x) with (g, hx)
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whenever h ∈ O(k) ⊂ O(U ⊕ Rk). It is clear that F is a functor on J iso. The
multiplication m on E determines an action of E on F as follows. For x ∈ E(V )
we have the left multiplication mx :E(Rk)→ E(V ⊕ Rk) and we define the action
ax :F (W )→ F (V ⊕W ) by

mor(U ⊕ Rk,W )+ ∧O(k) E(Rk)
yincl.∧mx

mor(U ⊕ V ⊕ Rk, V ⊕W )+ ∧O(V⊕Rk) E(V ⊕ Rk)
∼=

−−−−→ F (V ⊕W ).

The generator of F is ι = (id, 1) ∈ F (U).
Let F1 be another continuous functor from J iso to spaces with an action of E.
Then a map v :F → F1 which respects the actions of E is completely determined
by v(ι) ∈ F1(U), which can be prescribed arbitrarily.

Definition 4.5. Given E and F as in definition 4.1, with multiplication m and
action a, we say that F is free if it has a wedge decomposition F ∼=

∨
Fλ where

each Fλ is free on one generator, as in example 4.4.

Definition 4.6. Let E,F be as in definition 4.1, with multiplication m on E and
action a of E on F . An E-CW -structure on F is a collection of subfunctors F i ⊂ F
for i = −1, 0, 1, 2, . . . , subject to a few conditions:

• F−1 = ∗ and F i ⊂ F i+1 for i ≥ −1 ;
• F (V ) =

⋃
i F

i(V ) with the colimit topology, for all V ;
• the action of E on F respects each F i ;
• for every i ≥ −1, there exists a pushout square

Zi ∧ S
i
+

⊂
−−−−→ Zi ∧ D

i+1
+y

y

F i
⊂

−−−−→ F i+1

where Zi is another functor from J iso to spaces, with a free action of E,
and the (vertical) arrows respect the actions of E.

The subfunctor F i is sometimes called the i-skeleton of F .

Lemma 4.7. Let E,F be as in definition 4.1, with multiplication m on E and
action a of E on F . There exists an E-CW -approximation for F . That is, there
exists a weak equivalence F̂ → F of continuous functors on J iso with E-action,
where F̂ has an E-CW -structure as in 4.6.

Definition 4.8. Let E1, E2 be functors as in definition 4.1, with multiplications
m1 on E1 and m2 on E2. Let h :E1 → E2 be a natural transformation respecting
the units and multiplications. We consider continuous functors F from J iso to
pointed spaces, either with an action of E1 or with an action of E2. Composition
with h gives a functor from the category of functors F as above with an action of
E2 to the category of functors F as above with an action of E1. This functor has
a left adjoint, which we call induction along h and denote by indh. Thus, for F
from J iso to based spaces with an action of E1 , we have indhF from J iso to based
spaces with an action of E2. There is a canonical transformation F → indhF which
“intertwines” the actions and has a universal property.

The induction functor indh as defined above tends to produce pathological re-
sults. However, there are situations where it is well behaved:

Lemma 4.9. Keep the notation of definition 4.8. Suppose that F from J iso to based
spaces comes with an action of E1. If F has an E1-CW -structure with skeletons
F i , then indhF has an E2-CW -structure with skeletons indhF

i.
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We therefore have something like a “derived induction” procedure which is as
follows. Fix h :E1 → E2 as above and some F from J iso to based spaces, with
an action of E1. Replace F by an E1-CW -approximation as in lemma 4.7. Then
apply indh to the CW -approximation, assuming that a multiplicative h :E1 → E2

is given.
Our interest here is mainly in the case where E2(V ) = S0 for all V as in example 4.2.
Then indh of an E1-CW -approximation to F is a continuous functor on J , and
that is (still) the sort of object we are after.

Lemma 4.10. Keep the assumptions of lemma 4.9. Suppose in addition that
h :E1(V )→ E2(V ) is a based homotopy equivalence for every V . Then the canoni-
cal map F (W )→ indhF (W ) is a based homotopy equivalence for every W .

Definition 4.11. Let P be the following monoidal category. Objects of P are
pairs (X,u) where X is a finite ∆-complex homotopy equivalent to a sphere and
u : X → X is a free involution respecting the ∆-complex structure. Morphisms are
∆-maps, respecting the involutions, which are weak homotopy equivalences. The
monoidal operation ∗ is the join: (X,u) ∗ (Y, v) = (X ∗ Y, u ∗ v).

Comment. If X is a finite Delta-complex homotopy equivalent to Sm and u is
a free involution on X , then by the Lefschetz trace formula u acts on the reduced
m-th homology of X by (−1)m+1. Using that observation and obstruction theory,
one can easily show that the orbit space X/u is homotopy equivalent to RPm. The
case m = −1 is not an exception: in that case X = ∅ and the reduced (−1)-th
homology is ∼= Z. Obviously ∅ is a very important object of P because it is a unit
for the join operation.

We think of P as a combinatorial variant of the monoidal category J iso (the
subcategory of J in which only isomorphisms are allowed as morphisms, with the
monoidal operation product alias direct sum). The following definitions introduce
a construction, essentially a homotopy Kan extension, which “transforms” a space-
valued functor on P into a space-valued continuous functor on J iso.

Definition 4.12. For V in J iso, let PV be the following topological category. An
object is an object (X,u) of P together with a map λ : X → V r 0 which is linear
on each simplex of X and satisfies λu(x) = −λ(x). A morphism from (X,u) with
λ0 : X → V to (Y, v) with λ1 : Y → V is a morphism f : (X,u) → (Y, v) in P
satisfying λ1f = λ0. The topology on the object class PV comes (only) from the
fact that, in an object (X,u) with λ : X → V , the λ can vary continuously (within
a finite dimensional space, since λ is determined by its values on vertices of X).
Thus the projection functor PV → P is continuous.

Definition 4.13. For a functor G from P to (well-)based spaces, let GK be the
continuous functor on J iso defined by

GK(V ) = hocolim
λ : X→V

G(X,u)

where λ : X → V runs through PV (and the homotopy colimit is “reduced” so that
it is again a based space).

Lemma 4.14. Suppose that G takes all morphisms in P to homotopy equivalences.
Then for any λ : X → V in PV the inclusion G(X,u) → GK(V ) is a homotopy
equivalence.

Proof. The hypothesis implies that the forgetful map from GK(V ) to BPV is a
quasi-fibration. Therefore it is enough to show that BPV is contractible. To do so
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we first replace the topological category PV by a simplicial category k 7→ PV,k. An
object of PV,k is an object X = (X,u) of P together with a map

f :X ×∆k −→ V

such that, for every z ∈ ∆k, the map fz :X → V defined by fz(x) = f(x, z) defines
a n object in PV . A morphism from f :X×∆k → V to g :Y ×∆k → V is a ∆-map
X → Y making a certain triangle commute. It is easy to show that, for fixed j ≥ 0,
the canonical map

|k 7→ NjPV,k| −→ NjPV

is a homotopy equivalence, where N• denotes the nerve construction. Integrating
over j, we conclude that the canonical map from |k 7→ BPV,k| to −→ BPV is a
homotopy equivalence. Now it only remains to show that BPV,k is contractible for
fixed k ≥ 0. But that is again straightforward because PV,k is a directed category,
in the strong sense that every finitely generated diagram in PV,k admits a co-
cone. Namely, suppose that D is a finitely generated category and v :D → PV,k
is any functor. Then there exists a constant functor c :D → PV,k and a natural
transformation v ⇒ c. To construct c, form the “direct limit” of v, not necessarily
an object of PV,k but a well defined finite ∆-complex Z with a certain map from
Z ×∆k to V avoiding 0 ∈ V . By attaching simplices to Z as appropriate, embed
Z in an object of PV,k. �

Lemma 4.15. Let G0, G1 and G2 be functors from P to (well-)based spaces. Any
natural multiplication

G0(X,u) ∧G1(Y, v) −→ G2(X ∗ Y, u ∗ v)

induces a natural multiplication GK0 (V ) ∧GK1 (W ) −→ GK2 (V ×W ).

5. Joins in dissected L-theory

Let A be the additive category of finitely generated free abelian groups, with the
standard chain duality. Let (C,D) and (C′, D′) be chain complex pairs in B(A).
We assume the boundary inclusions D → C and D′ → C′ are cofibrations, i.e.,
degreewise split, and to be quite precise we assume that such degreewise splittings
have been specified. Then there is the product pair (C,D)⊗ (C′, D′) consisting of
C ⊗ C′ and the subcomplex (C ⊗D′)⊕(D⊗D′) (D ⊗ C

′) as the “boundary”.
Let X and Y be finite ∆-complexes. By a dissection of D over X we mean a

splitting D =
∑
σ∈sX D(σ) of D as a graded abelian group which promotes D to

an object of B(A∗(X)).

Lemma 5.1. A dissection of D over X and a dissection of D′ over Y together
determine a dissection of the boundary of (C,D)⊗ (C′, D′) over X ∗ Y .

Proof. Suppose that the dissections of D and D′ are given by graded group split-
tings D =

⊕
σD(σ) and D′ =

⊕
τ D(τ). The specified splittings of D → C and

D′ → C′ also give us identifications C ∼= D⊕C/D and C′ ∼= D′ ⊕C′/D′ of graded
groups. Hence the boundary complex of (C,D)⊗(C′, D′) splits (as a graded group)
into summands

D(σ) ⊗D′(τ) , D(σ) ⊗ C′/D′ , C/D ⊗D′(τ) .

We now label these summands by simplices of X ∗ Y . A summand of the form
D(σ)⊗D′(τ) gets the label σ ∗ τ . A summand of type D(σ)⊗C′/D′ gets the label
σ, and we note that X ⊂ X ∗ Y . A summand of type C/D ⊗D′(τ) gets the label
τ . It is easy to verify that this labeling defines a dissection. �
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We next discuss a few variations on the theme of lemma 5.1 where the pairs
(C,D) and (C′, D′) come with symmetric structures. Notation: We write for ex-
ample

(D ⊗D)hZ/2 , (D ⊗D)hZ/2

for HomZ[Z/2](W,D ⊗ D) and W ⊗Z[Z/2] (D ⊗ D), respectively, where W is the
standard Z[Z/2]-resolution of Z. A symmetric structure on a pair (C,D) of chain
complexes will be described as a chain ϕ ∈ (C ⊗ C)hZ/2 whose boundary ∂ϕ is in
the subcomplex (D ⊗ D)hZ/2. Similarly a quadratic structure on (C,D) will be
described as a chain ψ ∈ (C ⊗ C)hZ/2 whose boundary ∂ϕ is in the subcomplex
(D ⊗D)hZ/2.

Lemma 5.2. Keep the assumptions of lemma 5.1. Suppose also that the pairs
(C,D) and (C′, D′) are equipped with symmetric structures ϕ and ψ. If the bound-
ary symmetric structures ∂ϕ on D and ∂ψ on D′ are dissected over X and Y ,
respectively, then the symmetric structure ∂(ϕ⊗ψ) on the boundary chain complex
of (C,D)⊗ (C′, D′) is dissected over X ∗Y . If in addition ∂ϕ and ∂ψ are dissected
Poincaré, then ∂(ϕ⊗ ψ) is dissected Poincaré.

Lemma 5.3. Keep the assumptions of lemma 5.2. Suppose also that the ∆-
complexes X and Y come with free actions of a finite group π, and the chain
complex pairs (C,D), (C′, D′) come with actions of π so that the dissections of D
and D′ are π-invariant (in the sense that gD(σ) = D(gσ) and gD′(τ) = D′(gτ) for
g ∈ π and simplices σ in X, τ in Y ). Suppose further that ϕ and ψ are π-invariant.
Then ϕ⊗ψ is π-invariant, and the dissection of ∂(ϕ⊗ψ) over X ∗Y is π-invariant
for the diagonal action of π on X ∗ Y .

We will need slight generalizations of lemmas 5.1, 5.2 and 5.3. Let A1, A2 and
A3 be additive categories with chain duality. We assume given a functor

B(A1)× B(A2) −→ B(A3)
(C,C′) 7→ C ⊠ C′

which is bi-additive and respects cofibration sequences in any of the two input
variables. (This means that if C appears in a degreewise split short exact sequence
K → C → Q, then K⊠C′ → C ⊠C′ → Q⊠C′ is also degreewise split short exact,
and similarly if C′ appears in a degreewise split short exact sequence.) We also
need some compatibility between ⊠ and the tensor products ⊗Ai

for i = 1, 2, 3. We
assume therefore that a natural chain map

u : (B ⊗A1
C)⊗ (B′ ⊗A2

C′) −→ (B ⊠B′)⊗A3
(C ⊠ C′)

is given, depending on variablesB,C in B(A1) and B
′, C′ in B(A2). This is supposed

to respect nondegenerate cycles. That is, if x and y are nondegenerate cycles in
B ⊗A1

C and B′ ⊗A2
C′ , respectively, then u(x, y) is a nondegenerate cycle in

(B ⊠B′)⊗A3
(C ⊠ C′).

Given C in B(A1) and C
′ in B(A2) and symmetric structures ϕ, ψ on C and C′ ,

respectively (of degreesm and n, respectively) we have a symmetric structure ϕ⊗ψ
on C ⊠ C′, of degree m+ n, by composing

W
diagonal

−−−−−−−−→ W ⊗W
yϕ×ψ

(C ⊗A1
C)⊗ (C′ ⊗A2

C′)
u

−−−−→ (C ⊠ C′)⊗A3
C ⊠ C′).

There is a similar construction for pairs (C,D) and (C′, D′) with symmetric struc-
tures ϕ and ψ, respectively.
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Lemma 5.4. Lemmas 5.1, 5.2 and 5.3 remain valid for pairs (C,D) and (C′, D′)
in B(A1) and B(A2) , respectively, in which case the product pair is to be taken as
(C,D) ⊠ (C′, D′) in B(A3).

Example 5.5. We use the above ideas on dissection and joins to produce examples
of functors F and E on P satisfying the condition of lemma 4.14 and related by
multiplications as in lemma 4.15. Fix X in P . Determine m so that X ≃ Sm−1.
Let A be the category of finitely generated abelian groups, as before. In outline,
E(X) will be defined as the algebraic cobordism space of formally m-dimensional
symmetric Poincaré pairs (C,D, ϕ) in B(A) where the boundary (D, ∂ϕ) is equipped
with an involution and a (symmetric Poincaré) dissection overX which respects the
involutions. The definition of F (X) is the same, except for an additional condition
on the symmetric Poincaré pairs (C,D, ϕ), which is that both C and D have to be
contractible as objects of B(A). A tensor product construction, where we use the
above lemmas on dissection and joins, gives us maps

E(X) ∧ E(Y ) −→ E(X ∗ Y ) , E(X) ∧ F (Y ) −→ F (X ∗ Y ).

These maps have the usual associativity properties. There is also a unit in E(∅).
For all details, see the next chapter.

Remark 5.6. Lemma 4.14 gives us some information about the associated functors
FK and EK on J iso. We will use that in the next chapter to understand FK in
homotopy theoretic terms. But we will not attempt to describe the homotopy type
of EK(V ) for all or some V . Instead we will use geometric ideas in a later chapter to
construct a “smaller” functor EK,η on J iso, with multiplication as in definition 4.1,
and a multiplicative transformation EK,η → EK . The point of the smallness is
that EK,η admits a weak equivalence h to the constant functor V 7→ S

0 with the
standard product. We regard FK as a functor with an action of EK,η and do a
derived induction along h to obtain a functor defined on all of J . See example 4.2
and lemma 4.10.

6. Structure spaces in the algebraic setting

We begin with a remark on the additive categories A∗(X) and A∗(X) with chain
duality. They have been defined for any ∆-complex X . However, it should be clear
that the definitions extend to more general cases where the faces of X are “convex
polytopes”. We will only need this extension in the case of A∗(X), and then only
when X is a “multisimplex”, that is, a product of finitely many standard simplices.

Definition 6.1. Here we give the full definition of E(X) and F (X) in example 5.5.
Both are geometric realizations of m-fold ∆-sets. Let k = (k1, . . . , km) be a multi-
index. Write ∆k for ∆k1 × · · · ×∆km and

E(X, k)

for the set of k-multisimplices of E(X). By definition, an element of that set is a
pair (C,D) in the category B(A∗(∆k)). There are more data:

• We ask for an SAPC pair structure ψ of formal dimension m +
∑

i ki on
the chain complex pair (C,D).
• A dissection of (D, ∂ψ) over X is also part of the data, and we want this
to be Poincaré; hence the dissected (D, ∂ψ) is an SAPC in

B((A∗(∆k))∗(X)) ∼= B((A∗(X))∗(∆k)) .

• An involution on (C,D) is required, respecting the dissection of D (and
compatible with the given free involution on X , as far as D is concerned)
and respecting ψ up to a sign (−1)m.
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Note that E(X, k) is a pointed set: the zero object (C = D = 0) serves as the base
point. When we form the geometric realization

| k 7→ E(X, k) |

we collapse all base point simplices to a single point; hence the geometric realization
is a pointed space. The product maps

E(X) ∧E(Y ) −→ E(X ∗ Y )

are induced by set maps

E(X, k) ∧ E(Y, ℓ) −−−−→ E(X, k#ℓ)

with k#ℓ = (k1, k2, . . . , km, ℓ1, ℓ2, . . . , ℓn), which in turn are given by a generalized
(but obvious) tensor product construction ⊠ as in lemma 5.4.
The definition of F (X) is almost identical with that of E(X) just given. Again it
is the geometric realization of an m-fold ∆-set and we write F (X, k) for the set
of k-multisimplices. The elements of that set are pairs (C,D) almost exactly as
above, but with one added condition, that C and D be contractible as objects of
B(A∗(∆k)).

There are “first axis” subspaces of E(X) and F (X), obtained by allowing only
k–multisimplices where k has the form (k1, 0, 0, . . . , 0).

Lemma 6.2. The inclusions of the first axes in E(X) and F (X) , respectively, are
homotopy equivalences.

Lemma 6.3. Let FK be the functor on J iso associated to F as in example 4.13.
For V in J iso with dim(V ) = j + 1 there is a homotopy equivalence

FK(V ) ≃ S(RP (V ), j).

Proof. The functor F satisfies the condition of lemma 4.14. Hence FK(V ) ≃ F (X),
assuming that X and V are related as in that lemma. Now use lemma 6.2 to
complete the proof. �

7. Periodicity and Thom isomorphism

Theorem 7.1. We have FK(V ) ∼= Ω4FK(V ) by a natural homeomorphism which
respects the action of EK .

Proof. The proof is by inspection, using the well-known periodicity of algebraic
L-theory given by the double (skew-)suspension. But it is appropriate to say what
exactly Ω4FK(V ) means. First of all, given an m-fold based ∆-set Y , what do we
mean by ΩY ? We can define ΩY as the based m-fold ∆-set given by

(k1, k2, . . . , km) 7→ {y ∈ Y (k1 + 1, k2, . . . , km) | u∗k1(y) = ∗, v
∗
k1(y) = ∗}

where uk1 : {0} → {0, 1, . . . , k1, k1 + 1} is the inclusion and

vk1 : {0, 1, . . . , k1} → {0, 1, . . . , k1, k1 + 1}

is given by i 7→ i + 1. (These monotone maps act as face operators in the “first”
coordinate direction.) This definition is justifiable if Y has the Kan extension
property.

We defined FK(V ) form-dimensional V as a reduced homotopy colimit of spaces
F (X) for X → V in PV . Since F satisfies the condition of lemma 4.14, we may
define Ω4FK(V ) as a reduced homotopy colimit

hocolim
X→V

Ω4F (X)
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for X → V in PV . Moreover in that last expression we may interpret Ω4 as the
fourth power of an operator Ω on based ∆-sets, as defined above, to be applied
before geometric realization. Then we have indeed FK(V ) ∼= Ω4FK(V ). �

Next we discuss Thom isomorphisms. Our theme is that for an oriented W in
J iso of even dimension d, the functor taking V in J iso to ΩdFK(V ) is identified with
a subfunctor of V 7→ FK(V ⊕W ), and that the homotopy fibers of this inclusion
are in some sense independent of V . Despite appearances, this has little to do with
periodicity.

For X in P we have a definition of ΩdF (X) which looks almost exactly like the
definition of F (X), except for one change which consists in increasing the formal
dimensions of all SAPC’s in the definition of F (X) by d. (If X ≃ Sm−1, then
the (0, 0, ..., 0)-simplices of ΩdF (X) are certain SAPC pairs (C,D, ϕ) of formal
dimension m + d with a dissection of the boundary (D, ∂φ) over X .) Using that
description of ΩdF (X), we have the following maps:

Ωd
(
hocolim
f :X→V

F (X)
)

hocolim
f :X→V

g :Y→W

ΩdF (X)

≃

OO

ι // hocolim
e :Z→V⊕W

F (Z).

The vertical map is obtained by forgetting the data g :Y →W , which run through
PW , and using the inclusion hocolimΩdF → Ωd(hocolimF ), where the homotopy
colimits are taken over PV only. It is a homotopy equivalence because its target can
be identified up to homotopy equivalence with ΩdF (X) for any f :X → V in PV by
lemma 4.14, and its source can also be identified up to homotopy equivalence with
ΩdF (X) by the same kind of argument. The horizontal map uses an embedding

ΩdF (X) −→ F (X ∗ Y )

for f :X → V in PV and g :Y →W in PW . This is simply induced by the inclusions
X → X ∗ Y and A∗(X)→ A∗(X ∗ Y ), which respect the chain dualities. Using the
vertical arrow as an “identification”, we write

ι : ΩdFK(V ) −→ FK(V ⊕W ) .

We now wish to extend ι to a homotopy fiber sequence

ΩdFK(V )
ι

−−−−→ FK(V ⊕W )
ζ

−−−−→ ΦK(V ⊕W,V )

where ΦK is a certain functor of pairs. The definition of ΦK follows the standard
pattern. Hence we start by introducing functors on pairs of certain ∆-complexes.

Definition 7.2. Fix a pair (Z,X) of finite ∆-complexes, with a free involution,
homotopy equivalent to the pair (S(V ⊕W ), S(V )) with the antipodal involution.
We define

Φ(Z,X)

essentially by repeating the definition of F (Z) in terms of Poincaré pairs (C,D, ψ)
contractible in B(A) with dissected boundary, but relaxing it in one respect: for
the dissection of ∂ψ as a symmetric structure on the dissected D, we require that
to be Poincaré modulo X only. (This means that the mapping cone of the appro-
priate duality map is chain equivalent, as an object dissected over Z, to something
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dissected over X .) That being done, we put

ΦK(V ⊕W,V ) := hocolim
(Z,X)→(V⊕W,V )

Φ(Z,X)

The homotopy colimit is taken over all pairs (Z,X) as above and simplexwise affine
Z/2-maps (Z,X)→ (V ⊕W,V ) taking X to V r0 and Z to V ⊕Wr0, and inducing
a homotopy equivalence (Z,X)→ (V ⊕W r 0, V r 0). We have maps

hocolim
(Z,X)→(V⊕W,V )

F (Z)
ζ //

≃

��

hocolim
(Z,X)→(V⊕W,V )

Φ(Z,X)

hocolim
Z→V⊕W

F (Z)

where the horizontal arrow is determined by the inclusions F (Z)→ Φ(Z,X). Using
the vertical arrow as an identification, we may write

ζ :FK(V ⊕W ) −→ ΦK(V ⊕W,W ) .

Proposition 7.3. For V of dimension ≥ 3 and oriented W of even dimension d,
both in J iso, the following is a homotopy fiber sequence:

ΩdFK(V )
ι

−−−−→ FK(V ⊕W )
ζ

−−−−→ ΦK(V ⊕W,V ).

Remark. We need dim(V ) ≥ 3 to ensure that the inclusion V → V ⊕W induces an
isomorphism of fundamental groups of the associated projective spaces.

Proof. For fixed V and W , after routine reformulations as in lemma 4.14, this boils
down to a homotopy fiber sequence

ΩdF (X) −−−−→ F (X ∗ Y ) −−−−→ Φ(X ∗ Y,X)

where X → V in PV and Y → W in PW . Both arrows are inclusion maps. This
homotopy fiber sequence is very standard, e.g. from [Ra]. �

Remark. In the applications of this proposition we need a fair amount of naturality
in the variable V . This calls for a more precise formulation and a better proof. We
have the following commutative square:

hocolim
X→V

Y→W

ΩdF (X) //

��

hocolim
(Z,X)→(V⊕W,V )

F (Z)

��
hocolim
X→V

Y→W

ΩdΦ(X,X) // hocolim
(Z,X)→(V⊕W,V )

Φ(Z,X).

Here the upper left-hand term can be identified with ΩdFK(V ) by a forgetful homo-
topy equivalence which is natural in V as an object of J iso. The upper right-hand
term can be identified with FK(V ⊕W ), again by a forgetful homotopy equiva-
lence which is natural in V as an object of J iso. The lower right-hand term is
ΦK(V ⊕W,V ). The lower left-hand term is contractible and is functorial in V as
an object of J iso. The square as a whole is homotopy cartesian (by the argument
already given).
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Let EK be the functor on J iso associated with E of definition 6.1, as in defini-
tion 4.13. Then EK acts on each of the four functors (of the variable V ) represented
by the four terms of the square just above. For example, there is an action map

EK(U) ∧ ΦK(V ⊕W,V ) −→ ΦK(U ⊕ V ⊕W,U ⊕ V ).

It is given by a straightforward tensor product construction and we omit the details.

A connected component of EK(U), with dim(U) = m, determines (forgetfully)
an element in the relative Lm group of the assembly functor A∗(X)→ A∗ , for any
X → U in PU . This relative Lm group is canonically isomorphic to L0(A) ∼= Z. In
this way, connected components of E(U) have a “degree” which is an integer.

Theorem 7.4. Keep the assumptions of proposition 7.3 and let U be in J iso. Let
z ∈ EK(U) be in a component of degree 1. Then multiplication by z is a homotopy
equivalence

ΦK(V ⊕W,V ) −→ ΦK(U ⊕ V ⊕W,U ⊕ V ).

Proof. Choose (Z,X)→ (V⊕W,W ) as in the definition of ΦK(V⊕W,V ) and choose
Y → U in PU . For typographic reasons we use the abbreviations ZY = Z ∗ Y and
XY = X ∗ Y , and denote passage to Z/2-orbits by a tilde subscript, as in X∼.
We can assume that z ∈ E(Y ), and we have to show that multiplication by z is a
homotopy equivalence

Φ(Z,X) −→ Φ(ZY , XY ).

Let k = dim(V ) + d− 1 = dim(V ) + dim(W )− 1 and write m = dim(U) as before.
Most of the proof is in the following commutative diagram:

Φ(Z,X) // Φ(ZY , XY )

S(Z∼, X∼, k)

≃

OO

//

≃

��

S(ZY∼ , X
Y
∼ , k +m)

≃

OO

≃

��

Lk(A∗(X∼)→ A∗(Z∼)) // Lk+m




A∗(Y∼) −−−−→
=

A∗(Y∼)
y

y

A∗(X
Y
∼ ) −−−−→ A∗(Z

Y
∼ )




In this diagram , all horizontal arrows are defined as multiplication by z ∈ E(Y ).
The vertical arrows in the upper half of the diagram are forgetful: they forget
boundaries in dissected Poincaré pairs. By proposition 3.21 and [Ra], they are
homotopy equivalences. That is, the forgotten dissected boundaries can always be
recovered as “obstructions to nondegeneracy” in A∗(Z∼). To produce the vertical
arrow in the lower half of the diagram, we switch to definition 3.20 of the algebraic
structure spaces, i.e., to quadratic structures. (Strictly speaking, we should insert
another row into the diagram to do that.) These vertical arrows in the lower half of
the diagram can then be defined as inclusion maps. They are homotopy equivalences
by the alternative definition of the algebraic structure spaces as homotopy fibers of
assembly maps. Here we are also exploiting the fact that the inclusions X∼ → Z∼
and XY

∼ → ZY∼ induce isomorphisms of fundamental groups, i.e., we are using
dim(V ) ≥ 3.
It remains to show that the lower horizontal arrow in the diagram is a homotopy
equivalence. By a five lemma argument, this reduces to showing that multiplication
by z induces isomorphisms

π∗Lj(A∗(X∼)) −→ π∗Lj+m
(
A∗(Y∼)→ A∗(X

Y
∼ )

)



26 TIBOR MACKO AND MICHAEL WEISS

for all j ∈ Z, and similarly with X replaced by Z. But this is a case of an ordinary
Thom isomorphism. The standard proof uses a spectral sequence comparison argu-
ment. The spectral sequences are determined by the skeleton filtration of X . �

An element of FK(V ), with dim(V ) = n, determines forgetfully an element in the
relative Ln group of the assembly functor A∗(S(V ))→ A∗. This relative Ln group
is canonically isomorphic to L0(A) which we identify with Z using the isomorphism
σ/8, signature divided by 8. In this way there is a degree function from FK(V ) to
Z which we denote by σ̃/8.

Lemma 7.5. Let U be in J iso. Let z ∈ EK(U) be in a component of degree 1.
Then for every V in J iso , the following is commutative:

FK(V )
z·

−−−−→ FK(U ⊕ V )
yσ̃/8

yσ̃/8

Z
=

−−−−→ Z .

Proof. The square can be enlarged to a six-term diagram

FK(V )
z·

−−−−→ FK(U ⊕ V )
yζ

yζ

ΦK(V, 0)
z·

−−−−→ ΦK(U ⊕ V, U)
yσ̃/8

yσ̃/8

Z
=

−−−−→ Z .

Here the top square commutes by construction. The middle row is an isomorphism
by theorem 7.4, and the reasoning used in the proof of that theorem also shows
that the lower square commutes. �

8. Structure spaces in the mixed algebraic-geometric setting

In sections 3, 4, 5 and 6, we constructed an algebraic analogue of the geometric
theory in [Ma], as far as possible. Section 7 has, in the algebraic setting, the proofs
and theorems that we need in the geometric setting of section 2 and [Ma]. It
remains to make the translation. This is a tedious business and the method that
we have chosen might not be the best. In any case we have in a few places sacrificed
completeness for the sake of intelligibility.

8.1. Transversality. We will rely mainly on the notion of “transversality to a
foliation”. Let N be a topological space. There is a presheaf on N which to an open
subset W ⊂ N associates the set of equivalence relations on W . A global section
ρ of the associated sheaf is called a local equivalence relation on N . If N can be
covered by open subsetsWα which admit homeomorphisms (pα, qα) :Wα → Vα×Uα
with Uα open in Rk (but no conditions on Vα other than “being a space”) such that
ρ|Wα is represented by the equivalence relation

y ∼ z ⇔ qα(y) = qα(z)

on Wα , then ρ is a codimension k foliation of N . See [KM] for more details.
A map f from a topological manifold M to N is transverse to a codimension k
foliation ρ on N if for every x ∈ M there exists an open neighborhood W of
f(x) ∈ N and a product structure (p, q) :W → V × U with U ⊂ Rk representing
ρ|W , as above, such that qf is a topological submersion f−1(W )→ U . (To preclude
misunderstandings, we point out that submersions don’t have to be surjective. A
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map between topological manifolds is a submersion if it satisfies a certain regularity
condition at or near every point of the source manifold.)

Closely related is the following concept of transversality: Suppose that N is a
space, X ⊂ N is a locally closed subspace, U is an open neighborhood of X in N
which comes with a codimension k foliation, andX is a leaf of that foliation. We say
informally that a map f from a manifold M to N is transverse to X if f restricted
to a sufficiently small neighborhood of f−1(X) is transverse to the foliation of U .
In the examples that we will be looking at, the foliation of U is determined by a
single map q :U → Rk, so that the leaves of the foliation are the fibers of q.

8.2. Main examples.

Definition 8.1. For a ∆-complex X , the open cone O(X) is X+ ∧ [0,∞). We
describe a point in O(X) as x = ty where y ∈ sX and t ∈ [0,∞), or by its
barycentric coordinates,

x = (xi)i∈σ = (tyi)i∈σ

where xi ≥ 0 and i runs through the vertices of a simplex σ containing y. The open
cone O(X) comes with the norm function x 7→ maxi{xi}. The levels of the norm
define a foliation on O(X) r 0 with the leaves O(X, c) = {x ∈ O(X) | ‖x‖ = c}
for c > 0. For (X,u) in P , the open cone O(X) also comes with an involution
ty 7→ t · u(y), where y ∈ sX .

Definition 8.2. We often regard O(X) as a stratified space, stratified by the inte-
riors of the coned dual cells and the cone point. This is similar to the stratification
of X in example 3.6. But we need a few more details here. We need to declare
what it means for a map f :M → O(X)r 0 to be transverse to the stratification.

For a k-simplex σ of X the stratum O(X, σ) (the interior of the coned dual cell)
consists of points x ∈ O(X) whose barycentric coordinates satisfy xi = ‖x‖ if i ∈ σ
and xi < ‖x‖ if i /∈ σ. The map qσ defined on a (sufficiently small) neighborhood
of O(X, σ) in O(X) by

x 7→

(
xi
‖x‖

)

i∈σ

∈ R
|σ|+1

has image contained in the hypersurface

Zk =
{
(yi)i∈σ ∈ R

|σ|+1 | max
i
{yi} = 1}.

The sets q−1σ (y) for y ∈ Zk are the leaves of a foliation of the neighborhood. One
of these leaves is O(X, σ) itself. We say that a map f from a manifold to O(X) is
transverse to O(X, σ) if qσf , as a map with target Zk , is a topological submersion
in a neighborhood of f−1(O(X, σ)).

Comment. The codimension k foliation defined by qσ (of an open neighbor-
hood of O(X, σ) in O(X)) also restricts to a codimension k foliation of an open
neighborhood of O(X, σ) ∩ O(X, c) in O(X, c), for every c > 0.

Definition 8.3. For (X,u) in P with X ≃ Sm−1 we define G0(X,u) as an m-
fold simplicial set. A nontrivial (0, 0, . . . , 0)-simplex consists of a based space W
homeomorphic to R

m, with an involution fixing the base point, and an equivariant
based proper map p : W → O(X) of degree ±1 which is transverse to the foliation of
O(X)r0 by norm levels, and has preimage of base point equal to base point. There
is also a unique trivial (0, 0, . . . , 0)-simplex which, along with all its degeneracies,
constitutes a connected component of G0(X,u) after realization.

Definition 8.4. For (X,u) in P with X ≃ Sm−1 we define G1(X,u) as an m-
fold simplicial set. A (0, 0, . . . , 0)-simplex consists of two based spaces W , W ′ both
homeomorphic to Rm, both with an involution fixing the base point, and equivariant
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proper maps W → W ′ → O(X) of degree ±1 such that both W ′ → O(X) and
the composite map W → O(X) are transverse to the foliation of O(X) r 0 by
norm levels, and have preimage of base point equal to base point. We regard
such a (0, 0, . . . , 0)-simplex as trivial if W → W ′ is a homeomorphism. All trivial
(0, 0, . . . , 0)-simplices are to be identified with each other.

With the above definitions of G0 and G1, there are products

G0(X,u) ∧G0(Y, v) −→ G0(X ∗ Y, u ∗ v) ,
G0(X,u) ∧G1(Y, v) −→ G1(X ∗ Y, u ∗ v).

In more detail, on non-trivial simplices the multiplication map is given simply by

the product map, the action map sends V
p
−→ O(X) and W

q
−→W ′

p′

−→ O(Y ) to

V ×W
id×q // V ×W ′

p×p′ // O(X ∗ Y ).

They induce similar products involving GK0 and GK1 .

Next we introduce certain refinements of G0 containing more combinatorial in-
formation. These refinements make up a diagram of functors on P and natural
transformations

G0−3 → G0−2 → G0−1 →֒ G0

Moving from right to left, we first add a transversality condition, then certain CW-
approximations, then cellular diagonal approximations and cellular fundamental
cycles/chains for the approximating CW-spaces involved. Fix (X,u) in P , where
X ≃ Sm−1, and a nontrivial (0, 0, . . . , 0)-simplex p : W → O(X) of G0(X,u).

Definition 8.5. To promote p : W → O(X) to a (0, 0, . . . , 0)-simplex in the m-fold
∆-set G0−1(X,u), we impose the condition that p be simultaneously transverse to
the strata O(X, σ) and to the levels of the norm fibration (see the comment just
below). This implies that for every c > 0, the restriction of p to the sphere p−1(c)
is a map to O(X, c) ∼= X which is transverse to the strata X(σ).

Comment. Let σ be a k-simplex of X . We test p for transversality to the
stratum O(X, σ) by asking whether qσp is a submersion (see definition 8.2). We
test for transversality to the norm levels by asking whether ‖p‖ :W r p−1(0)→ R

is a submersion. Here we need a condition which is slightly stronger than these two
transversality conditions put together. We require that the map

neighborhood of p−1(O(X, σ)) −→ Zk × R

defined by w 7→ (qσp(w), ‖p(w)‖) be a submersion. Since Zk × R can be identified
with R|σ|+1 , the formula w 7→ (qσp(w), ‖p(w)‖) can also be replaced by the much
simpler formula

w 7→
(
pi(w)

)
i∈σ
∈ R

|σ|+1

where the pi(w) are the barycentric coordinates of p(w) corresponding to the ver-
tices i of σ.
We mention the following in passing. Suppose that p satisfies the above strong
transversality condition for a particular σ. Let τ be a face of σ. Then, in a suffi-
ciently small neighborhood of p−1(O(X, σ)), the strong transversality condition for
p in relation to τ and the stratum O(X, τ) is automatically satisfied. The reason
is, of course, that the barycentric coordinates pi(w) for w in W and i a vertex of τ
are subsumed in the barycentric coordinates pi(w) for i a vertex of σ.

Lemma 8.6. The product on G0 can be refined to a product on G0−1.
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Proof. Given (X,u) and (Y, v) in P and p : W → O(X) and q : W ′ → Y satisfying
the appropriate transversality conditions, we verify that the resulting map from
W × W ′ to O(X) × O(Y ) ∼= O(X ∗ Y ) satisfies the appropriate transversality
condition. The strata of O(X ∗Y ) ∼= O(X)×O(Y ), apart from the cone point, can
be described as follows:

(i) for each σ in X , there is a stratum consisting of all (x, y) in O(X, σ)×O(Y )
where ‖x‖ > ‖y‖ ;

(ii) for each τ in Y , there is a stratum consisting of all (x, y) in O(X)×O(Y, τ)
where ‖x‖ < ‖y‖ ;

(iii) for each simplex of the form σ∗τ with σ in X and τ in Y , there is a stratum
consisting of all (x, y) in O(X, σ) ×O(Y, τ) where ‖x‖ = ‖y‖.

Hence the transversality properties that we need follow from the transversality
properties of p in case (i), from the transversality properties of q in case (ii), and
from the transversality properties of both p and q in case (iii). We omit the details,
except for pointing out that in the case (iii), the vertex set of σ ∗ τ is identified
with the disjoint union of the vertex sets of σ and τ respectively. It follows that an
expression such as ((

p× q)i(w,w
′)
)
i∈σ∗τ

∈ R
|σ∗τ |+1

for (w,w′) ∈ W ×W ′ can be re-arranged to look like
((
pi(w)

)
i∈σ

,
(
qi(w

′)
)
i∈τ

)
∈ R

|σ|+1 × R
|τ |+1 . �

We enlarge cat(X), the category of simplices of X , to a category {0} ∗ cat(X)
by adding the object 0, its identity morphism, and one morphism 0 → σ for each
σ ∈ sX . The transversality condition in the previous definition yields, for every
(0, 0, . . . , 0)-simplex p : W → O(X) in G0−1(X,u) as above, a contravariant functor
W⋄ from {0} ∗ cat(X) to compact spaces by

{
W⋄(σ) =W [σ][1]

W⋄(0) =W [0, 1]

where W [σ][1] is p∗ of O(X, σ) ∩ O(X, 1), the norm level 1 of the coned dual cell
corresponding to σ, and W [0, 1] denotes p−1O(X, [0, 1]), the inverse image of the
portion of O(X) with the norm ≤ 1. (Here p∗ denotes a pullback. We do not write
p−1 since the dual cell corresponding to σ need not be a subspace of X .)

Definition 8.7. To promote p : W → O(X) further to a (0, . . . , 0)-simplex in
G0−2(X,u) we add the following: a contravariant CW-functorW⋄⋄ from {0}∗cat(X)
to compact spaces, with a natural transformation γ : W⋄⋄ → W⋄ which evaluates
to a homotopy equivalence for every object of {0} ∗ cat(X).

The definition gives us in particular a CW -pair (W⋄⋄(0),W⋄⋄[1]) with dissected
boundary, where

W⋄⋄[1] = colim
σ 6=0

W⋄⋄(σ).

Passage to cellular chain complexes transforms a pair of chain complexes (C,D)
with C = C∗(W⋄⋄(0)) in B(A) and with dissected boundary D = C∗(W⋄⋄[1]) in
B(A∗(X)).

Definition 8.8. To promote p : W → O(X) further to a (0, 0, . . . , 0)-simplex in
G0−3(X,u), we add the following data: cellular diagonal approximations and fun-
damental cycles/chains in the cellular chain complex(es) of W⋄⋄.

The additional data in definition 8.8 imply a preferred structure of an n-dimensional
SAPP (where n = dim(W )) on the pair of chain complexes

(C∗(W⋄⋄(0)), C∗(W⋄⋄[1]))
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in B(A), refined to a dissected (n−1)-dimensional SAPC structure on the boundary
in B(A∗(X)).

All the above refinements of G0 have multiplications refining the one on G0. The
case of G0−1 has already been discussed. For the case of G0−2, suppose given (X,u)
and (Y, v) in P , as well as p : W → O(X) and q : W ′ → O(Y ) and

W⋄⋄ →W⋄ , W ′⋄⋄ →W ′⋄

satisfying the conditions of definition 8.7. We need to say what (W ×W ′)⋄⋄ should
be. We have {0}∗cat(X ∗Y ) ∼= {0}∗cat(X)×{0}∗cat(Y ). Using this identification
we let (W×W ′)⋄⋄(i, j) =W⋄⋄(i)×W ′⋄⋄(j) for i in {0}∗cat(X) and j in {0}∗cat(Y ).

Lemma 8.9. The forgetful maps

G0−3 → G0−2 → G0−1 →֒ G0

are (weak) homotopy equivalences.

Next, there are refinements of G1 analogous to the above refinements of G0.
These make up a diagram of functors and natural transformations

G1−3 → G1−2 → G1−1 →֒ G1 .

Let’s define them very briefly. We fix (X,u) in P as before and a (0, . . . , 0)-simplex
W →W ′ → O(X) in G1(X,u).

Definition 8.10. To promote W → W ′ → O(X) to a (0, 0, . . . , 0)-simplex in
G1−1(X,u), we impose the condition that both W → O(X) and W ′ → O(X) be
simultaneously transverse to the stratification of O(X)r 0 by strata O(X, σ), and
to the norm levels. (Compare definition 8.5.)

Definition 8.11. To promote W → W ′ → O(X) further to a (0, . . . , 0)-simplex
in G1−2(X,u) we add the following data: contravariant CW-functors W⋄⋄ and
W ′⋄⋄ from {0} ∗ cat(X) to compact spaces, a CW-embedding W⋄⋄ → W ′⋄⋄ and
natural transformations γ : W⋄⋄ →W⋄ , γ

′ : W ′⋄⋄ →W ′⋄ which evaluate to homotopy
equivalences for every object of {0} ∗ cat(X). We require commutativity of

W⋄⋄ //

��

W ′⋄⋄

��
W⋄ // W ′⋄ .

Definition 8.12. To promote : W →W ′ → O(X) further to a (0, 0, . . . , 0)-simplex
in G1−3(X,u), we add compatible cellular diagonal approximations for W⋄⋄ and
W ′⋄⋄ , and fundamental cycles/chains in the cellular chain complex(es) of W⋄⋄.

Similarly as in the case of the functor G0−3 the additional data allow us to
extract certain algebraic data. These are two preferred structures of n-dimensional
SAPPs (where n = dim(W ) = dim(W ′)) and a map

q⋄⋄ : (C∗(W⋄⋄(0)), C∗(W⋄⋄[1]))→ (C∗(W
′
⋄⋄(0)), C∗(W

′
⋄⋄[1]))

of SAPPs in B(A), refined to a map of dissected (n− 1)-dimensional SAPCs on the
boundary in B(A∗(X)). To obtain a single SAPP with a contractibility property,
which is our goal, we need the construction of symmetric kernels in the setting
of chapter 3, definitions 3.1 and 3.7. This is a purely algebraic and functorial
construction and is given after Definition 8.18 below.

Remark. A (0, 0, . . . , 0)-simplex in G1−i(X,u) is still considered trivial if the
corresponding mapW → W ′ is a homeomorphism. All trivial (0, 0, . . . , 0)-simplices
are to be identified with each other.
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Lemma 8.13. The forgetful maps

G1−3 → G1−2 → G1−1 →֒ G1

are weak homotopy equivalences.

All the above refinements of G1 admit actions by the corresponding refinements
of G0 (which refine the action of G0 on G1). At the top of the range we get
multiplication and action maps

G0−3(X,u) ∧G0−3(Y, v) −→ G0−3(X ∗ Y, u ∗ v)

G0−3(X,u) ∧G1−3(Y, v) −→ G1−3(X ∗ Y, u ∗ v).

for any (X,u) and (Y, v) in P .

That completes our efforts to extract chain complex algebra from the functors
G0 and G1. Now we need to do some more work on the geometric side.

Definition 8.14. Let s ∈ [0, 1]. For V in J iso and f :X → V in PV , we define
a “norm” function on O(X) by tx 7→ ‖tx‖s = (1 − s)‖tx‖ + s‖f(tx)‖ , using the
Euclidean norm on V .

Keeping the notation of definition 8.14, we introduce a refinement rfG0(X,u) of
G0(X,u), and a refinement rfG1(X,u) of G1(X,u), both depending on f :X → V .

Definition 8.15. Let V be in J iso and f :X → V in PV . To promote a non-
trivial (0, 0, . . . , 0)-simplex p :W → O(X) in G0(X,u) to the status of a nontrivial
(0, 0, . . . , 0)-simplex in rfG0(X,u) we add the assumptionW = V and the following
data:

• a homotopy (ps)0≤s≤1 through Z/2-maps ps :W → O(X), each having
preimage of base point equal to base point, such that p0 = p and ps is
transverse to the nonzero levels of the norm function ‖...‖s on O(X), for
s ∈ [0, 1];
• a homotopy (ht)1≤t≤2 from the composition

W
p1 // O(X)

f // V

to the identity, where each ht :W → V is equivariant, with preimage of
base point equal to base point, and transverse to the nonzero levels of the
euclidian norm on V .

Definition 8.16. Let V be in J iso and f :X → V in PV . To promote a (0, 0, . . . , 0)-
simplex

W
q // W ′

p // O(X)

in G1(X,u) to the status of a (0, 0, . . . , 0)-simplex in rfG1(X,u) we add the as-
sumption W ′ = V and the following data:

• a homotopy (ps)0≤s≤1 through Z/2-maps ps :W
′ → O(X), each having

preimage of base point equal to base point, such that p0 = p and ps is
transverse to the nonzero levels of the norm function ‖...‖s on O(X), for
each s;
• a homotopy (ht)1≤t≤2 from the composition

W ′
p1 // O(X)

f // V

to the identity, where each ht :W
′ → V is equivariant, with preimage of

base point equal to base point, and transverse to the nonzero levels of the
euclidian norm on V ;
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• a homotopy (qs)0≤s≤2 through Z/2-maps W →W ′ , each having preimage
of base point equal to base point, with q0 = q, such that psqs is transverse
to the nonzero levels of the norm function ‖...‖s on O(X) for s ≤ 1, and
hsqs is transverse to the nonzero levels of the euclidian norm on V for s ≥ 1.

Such a simplex is trivial if qs is a homeomorphism for all s ∈ [0, 2]. All trivial
simplices are to be identified with each other.

Next, rfGi−3(X,u) is defined (for i = 0, 1) by means of a pullback square

rfGi−3(X,u) //

��

Gi−3(X,u)

forget

��
rfGi(X,u)

forget // Gi(X,u).

To be more precise we form the pullback at the level of multisimplicial sets, i.e.,
before realization. The square is also a homotopy pullback square (by a direct check
on homotopy groups). For V in J iso let

Ega(V ) = hocolim
f :X→V in PV

rfG0−3(X,u),

F ga(V ) = hocolim
f :X→V in PV

rfG1−3(X,u).

We still have multiplication and action maps

Ega(V ) ∧ Ega(W ) −→ Ega(V ⊕W )
Ega(V ) ∧ F ga(W ) −→ F ga(V ⊕W )

for V,W in J iso.

Let F a,K and Ea,K be the functors on J iso which we denoted by FK and EK

in section 7. We define F g essentially as the restriction to J iso of the functor F on
J constructed in [Ma], except for the small change that F g(W ) is defined as the
geometric realization of an m-fold simplicial set, where m = dim(W ). To make up
for the information lost in restricting from J to J iso, we introduce a multiplicative
functor Eg on J iso as in example 4.2.

Definition 8.17. For V in J iso, let Eg(V ) = S0. In each multidegree (k1, . . . , kn)
we have a base-point and another point which we think of as represented by the
space V ×

∏
∆ki . The action map Eg ∧ F g → F g is given by multiplying a map

q :W ×
∏

∆li → W ′ ×
∏

∆li with the identity on V ×
∏

∆ki .

Now we can relate the functor pair (Ea,K , F a,K) to the pair (Eg, F g), using
(Ega, F ga) as a stepping stone. Namely, there are forgetful natural transformations

Eg Ega
w0oo v0 // Ea,K

F g F ga
w1oo v1 // F a,K

(details in definitions 8.18 and 8.19 below) respecting the multiplications and the
actions. The two in the lower row, w1 and v1 , are natural homotopy equivalences,
giving us (at last) a two-step identification of F g with F a,K . Of the two in the
upper row, w0 is again a natural homotopy equivalence, whereas v0 is not. But
since v0 is multiplicative, we can use it to let Ega act on F a,K . We then do a
derived induction along w0 to obtain what is essentially an extension of F a,K to
J ⊃ J iso. See example 4.2 and lemma 4.10. This closes the gap between section 7
and section 2, because the main results of section 7 can be re-interpreted as results
about F a,K as a functor on all of J .
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Definition 8.18. The transformation w0 is defined by taking trivial simplices to
the basepoint of S0 , and nontrivial simplices to the non-basepoint. The transfor-
mation w1 is induced by forgetful maps

rfG1−3(X,u)→ rfG1(X,u)→ F g(V ).

In the notation of definition 8.16, we proceed by taking a (0, 0, . . . , 0)-simplex (for
example) in rfG1(X,u) , consisting of

W
q

−−−−→ W ′
p

−−−−→ O(X)

and homotopies (ps), (hs), (qs) to q2 :W →W ′ = V which is a (0, 0, . . . , 0)-simplex
in F g(V ).

Before describing v0 and v1, we review the construction of symmetric kernels in
the setting of chapter 3, definitions 3.1 and 3.7. Let A be an additive category with
chain duality. Let f :C → D be a morphism in B(A) and let ψ be an n-dimensional
symmetric Poincaré structure on C∗ such that f∗ψ is also symmetric Poincaré . It
is well known that in such a case (C,ψ) must break up, up to suitable homotopy
equivalence, into a sum

(K∗, ϕ)⊕ (D, f∗ψ)

of SAPC’s. What we need is a functorial construction of (K,ϕ). Let K be the
mapping cone of the composite chain map of degree n defined as

TD
Tf // TC

ψ0 // C .

(Think of this as an ordinary chain map of degree zero from a shifted copy of TD to
C, where the differentials d :TDi → TDi−1 have been multiplied by (−1)ni.) Then
there is an inclusion e :C → K. We let ϕ := e∗ψ , which is a symmetric Poincaré
structure on K. The construction works also for pairs.

Hence, in the notation of comments after Definition 8.12, using the symmetric
kernel construction, we obtain from a map of SAPPs

q⋄⋄ : (C∗(W⋄⋄(0)), C∗(W⋄⋄[1]))→ (C∗(W
′
⋄⋄(0)), C∗(W

′
⋄⋄[1]))

an n-dimensional SAPP

(K(q⋄⋄(0)),K(q⋄⋄[1]))

in B(A), refined to a dissected SAPC structure on the boundary in B(A∗(X)). The
condition that the map q is of degree ±1 assures the contractibility condition.

Definition 8.19. The transformation v0 is induced by forgetful maps

rfG0−3(X,u)→ G0−3(X,u)→ Ea(X,u)

where the second one extracts the chain complex data (including symmetric struc-
tures). The transformation v1 is induced by maps

rfG1−3(X,u)→ G1−3(X,u)→ F a(X,u)

where the first is forgetful and the second extracts the symmetric kernels from the
available chain complex data (including symmetric structures).

The definitions of v0, v1 are set up to respect the multiplication and action maps.

Remark. There is a slight complication in the definition of v1 , due to the fact that
the symmetric kernels determined by multisimplices in G1−3(X,u) which we have
defined as trivial are not completely trivial. (They are contractible but they are not
equal to zero.) It seems best to agree that, wherever a multisimplex in G1−3(X,u)
has trivial (multi)faces, the corresponding subcomplexes of the symmetric kernel
determined by that multisimplex must be collapsed to zero.
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We conclude with an explanation of the remark on infinite loop space structures
at the end of the introduction. Each space F (X,u), in the notation of section 7,
comes equipped with a structure of (underlying space of a) Γ-space in the sense
of Segal [Seg], determined by the direct sum operation in the categories B(A) and
B(A∗(X)). This structure is clearly preserved by the multiplication maps

E(X,u) ∧ F (Y, v) −→ F (X ∗ Y, u ∗ v).

(We do not need and we do not use a structure of Γ-space on E(X,u) here. Infor-
mally, one could say that the adjoint map from E(X,u) to the space of maps from
F (Y, v) to F (X ∗ Y, u ∗ v) factors canonically through the space of Γ-maps from
F (Y, v) to F (X ∗ Y, u ∗ v).) It follows that F a,K can be refined to a functor (first
on J iso, then on J ) with values in the category of group-like Γ-spaces. By [Seg],
the “underlying space” functor from group-like Γ-spaces to spaces factors through
the category of infinite loop spaces.
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