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SOBOLEV INEQUALITIES: SYMMETRIZATION AND SELF

IMPROVEMENT VIA TRUNCATION

JOAQUIM MARTIN∗, MARIO MILMAN, AND EVGENIY PUSTYLNIK

Abstract. We develop a new method to obtain symmetrization inequalities of
Sobolev type. Our approach leads to new inequalities and considerable simpli-
fication in the theory of embeddings of Sobolev spaces based on rearrangement
invariant spaces.

1. Introduction

A well known basic principle in the theory of Sobolev embeddings, due to Maz’ya,
and Federer and Fleming (cf. [15] and the references therein), is the equivalence1

between the isoperimetric inequality and the Gagliardo-Nirenberg inequality

(1.1) ‖f‖Ln/(n−1) ≤ cn ‖∇f‖L1 , ∀f ∈ C∞
0 (Rn).

A second, somewhat less well know principle, which is often rediscovered in the
literature2, and is also apparently due to Maz’ya [15], states that, roughly speaking,
under rather general circumstances a weak type Sobolev inequality implies a strong
type Sobolev inequality. We refer to [1], [22] and [6]. In particular, the first two
quoted papers show how weak Lp Sobolev inequalities self improve by truncation
to L(p, q) inequalities, while [6] provides a nice survey and a unified treatment of
the cases p = 1 and 1 < p < n, of the Sobolev embedding.

It is also known that Sobolev inequalities have an in-built *reiteration* property
which is due to a combination of the chain rule and Hölder’s inequalities. For

example, since for any α > 1 we have |∇ |f |
α
| = α |f |

α−1
|∇f | , it follows that if

we pick p ∈ (1, n), and let q = np
n−p , α = (n−1)p

n−p = n−1
n q, we have (α − 1)p′ = q,

q(n−1
n − 1

p′
) = 1, and ‖f‖

q
Lq = ‖|f |

α
‖
n/(n−1)

Ln/(n−1) . Therefore, from (1.1) we thus have

that, for f ∈ C∞
0 (Rn),

‖f‖
q(n−1)/n
Lq = ‖|f |

α
‖Ln/(n−1) ≤ cn

∥

∥

∥α |f |
α−1

|∇f |
∥

∥

∥

L1

≤ cnα ‖f‖
q/p′

Lq ‖∇f‖Lp ,

which immediately yields the classical Sobolev inequality.
It follows from the discussion above that, roughly speaking, “all” Lp Sobolev

inequalities follow the Gagliardo-Nirenberg inequality (1.1) or, equivalently, from
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2See [6].
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the isoperimetric inequality. But one can go further. Talenti [21], using the isoperi-
metric inequality and the co-area formula, obtained a powerful rearrangement in-
equality3, which is very close to the Pólya-Szegö principle (cf. (1.4) below)

(1.2) s1−1/n (−f∗)
′

(s) ≤ cn
∂

∂s

∫

{|f |>f∗(s)}

|∇f(x)| dx,

where f∗ denotes the non-increasing rearrangement of f.
In particular, Talenti’s inequality can be used to prove Sobolev inequalities in

the setting of rearrangement invariant spaces (cf. [21], [5]), where, in principle,
the chain rule argument is not available. Moreover, given the precise information
about the constant cn in (1.2), Talenti’s inequality allows one to obtain best possible
constants for the classical Sobolev inequalities (cf. [21]).

A somewhat different rearrangement inequality4 was used in [2] to study the
borderline case p = n,

(1.3) f∗∗(t)− f∗(t) ≤ cnt
1/n |∇f |

∗∗
(t), f ∈ C∞

0 (Rn), t > 0,

where f∗∗(t) = 1
t

∫ t

0
f∗(s)ds. The proofs of (1.3) in [2] and in [11] use the sym-

metrization principle5 of Pólya-Szegö,

(1.4) |∇f◦|
∗∗

(t) ≤ |∇f |
∗∗

(t), f ∈ C∞
0 (Rn).

The inequality (1.3) is further extended in [13] using both Talenti’s inequality (1.2)
and the isoperimetric inequality.

The sharpest form of the classical Sobolev inequalities, including the critical
exponent p = n, follow from (1.3), namely, for 1 < p ≤ n, 1 ≤ q ≤ ∞, we have

(1.5)

{∫ ∞

0

[(f∗∗(t)− f∗(t))t1/p−1/n]q
dt

t

}1/q

≤ cn,p

{∫ ∞

0

[|∇f |
∗
(t)t1/p]q

dt

t

}1/q

.

It turns out, however, that the important case p = 1, which is also valid, requires a
separate argument since cn,p blows up as p tends to 1. Indeed (1.5) for p = 1 is the
sharp form of the Gagliardo-Nirenberg inequality due to Poornima [17] (cf. (1.9)
below).

Symmetrization inequalities imply Sobolev inequalites in the setting of rearrange-
ment invariant spaces. Indeed, from (1.3) we obtain: for any r.i. spaceX with upper
Boyd6 index βX < 1, we have (cf. [16])

∥

∥

∥t−1/n(f∗∗(t)− f∗(t))
∥

∥

∥

X
≤ c ‖∇f‖X , f ∈ C∞

0 (Rn),

where c = c(n,X). Moreover, the inequality is sharp (cf. Section 4 below): if Y is
any r.i. space then the validity of

‖f‖Y ≤ c ‖∇f‖X , f ∈ C∞
0 (Rn)

implies that

‖f‖Y ≤
∥

∥

∥t−1/n(f∗∗(t)− f∗(t))
∥

∥

∥

X
.

3For a related inequality see also [15], Lemma 2.3.3.
4A slightly different but equivalent inequality had been obtained earlier in [11].
5f◦(x) = f∗(γn |x|n), is the symmetric decreasing rearrangmeent of f, γn is the measure of

the unit ball in R
n.

6The restriction on the Boyd indices is only required to guarantee that the inequality ‖g∗∗‖X ≤

cX ‖g‖X , holds for all g ∈ X.



SOBOLEV INEQUALITIES VIA TRUNCATION 3

Note that for X = Lp the condition βX < 1 translates into p > 1. The fact
that spaces near L1 cannot be treated using (1.3), and the previous discussion
showing the central role of the Gagliardo-Nirenberg inequalities [cf. (1.1) and (1.9)],
suggested that there could be another more powerful underlying rearrangement
inequality that would allow for a unified treatment.

The purpose of this paper is to show that truncation can be actually used as
a method to obtain symmetrization inequalities. In other words rather than show
that a Sobolev inequality implies other Sobolev inequalities one case at a time, we
prove that from a Sobolev inequality we can obtain a symmetrization inequality
that “implies all the Sobolev inequalities”.

Our analysis leads indeed to new symmetrization inequalities that allow for a
unified treatment of the Sobolev inequalites at both end points in the setting of
r.i. spaces. Remarkably, our approach also provides a considerable simplification
to the methods used to prove the classical symmetrization inequalities discussed
above. This is important for the application of our methods to generalized settings
like metric spaces (cf. [7]), fractional derivatives (cf. [14]), capacities, etc, which
we hope to treat elsewhere.

The following is our main result. We could call it a “symmetrization by trunca-
tion principle”, and it is part of a family of similar inequalities, we consider here
the most important case, namely the end point p = 1 (cf. Section 2.3 below).

Theorem 1. The following statements are equivalent

(i)

(1.6) W 1,1
0 (Rn) ⊂ Ln/(n−1),∞(Rn).

(ii)

(1.7)

∫ t

0

s−
1
n [f∗∗(s)− f∗(s)]ds ≤ cn

∫ t

0

|∇f |∗ (s)ds, f ∈ C∞
0 (Rn).

(iii) For any rearrangement invariant space X with lower Boyd index7 αX > 0
we have

(1.8)
∥

∥

∥s−1/n(f∗∗(s)− f∗(s))
∥

∥

∥

X
� ‖|∇f |‖X , f ∈ C∞

0 (Rn).

(iv)

(1.9) W 1,1
0 (Rn) ⊂ Ln/(n−1),1(Rn).

To understand how Theorem 1 represents an improvement over the known re-
sults, we note that the implication (1.6)⇒(1.9) is the self improvement that follows
by the usual method of truncation (cf. [1], [21], [6]). On the other hand, by
“symmetrization by truncation” we obtain the new rearrangement inequality (1.7)
which readily gives (1.8), and thus we have obtained the most general form of the
Sobolev inequalities in the context of r.i. spaces. Moreover, in the process we have
eliminated the restriction on the upper Boyd indices of [16] and we are able to
treat spaces near L1 in a unified manner. In particular, we note that Theorem 1,
and the discussion preceding it, shows that the symmetrization inequality8 (1.7) is
equivalent to the isoperimetric inequality.

7For X = Lp, αLp = 1/p > 0 translates into p < ∞.
8We shall also refer sometimes to inequalities involving the quantity f∗∗(t) − f∗(t) as “oscil-

lation inequalities”.
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Furthermore, since we believe that it is methodologically important for further
extensions, and in order to clarify the role of the assumptions that intervene in the
proof of the basic inequalities, in Section 2 below we provide a simple direct proof
that all the main rearrangement inequalities discussed here, namely (1.2), (1.3)
(1.7), (1.4)9 follow directly from the straightforward weak type Sobolev inequality
(1.6) via truncation.

A complete discussion concerning Sobolev embeddings in the setting of r.i. spaces
is then given in the final Section 4. Our approach treats all cases in a unified
manner with optimal conditions, the optimal spaces are explicitly constructed and,
moreover, we give a unified treatment of all the borderline cases as well (the reader
should compare our approach with the ones that are currently available in the
literature: cf. [5], [16], [8], [9], and the references quoted therein). We also show
how our methods provide a considerable simplification to recent results on the
compactness of Sobolev embeddings (cf. [10] and [19]).

We stress that in this paper we have not attempted to prove the most general
results, but rather we aim to illustrate the power of our methods. In particular,
in order not to obscure the simplicity of the arguments we work for the most part
on R

n, and we formulate our results as inequalities. This is justified since the
extensions to regular domains can be obtained using well known techniques, while
more sophisticated extensions would require a separate treatment.

As usual, the symbol f ≃ g will indicate the existence of a universal constant
c > 0 (independent of all parameters involved) so that (1/c)f ≤ g ≤ c f , while the
symbol f � g means that f ≤ c g, and f � g means that f ≥ c g.

2. Symmetrization Inequalities by Truncation

The purpose of this section is to show that all the symmetrization inequalities
discussed in the Introduction follow from the Sobolev embedding

(2.1) W 1,1
0 (Rn) ⊂ Ln/(n−1),∞(Rn),

by truncation.
Since it will be important for us to keep track of the constants of the embedding

(2.1), and in order to provide a self contained presentation, we present a proof of
(2.1) following [6], who in turn credits Santalo for the method of proof.

Lemma 1. Let f ∈ W 1,1
0 (Rn), then

sup
t>0

t |{x ∈ R
n : |f(x)| > t}|

n−1
n ≤

1

γ
1/n
n

∫

Rn

|∇f(x)| dx,

where γn =measure of the unit ball in R
n.

Proof. Let f ∈ C∞
0 (Rn), then as it is well known (see [20, Page 125]) we have the

representation

f(x) =
1

nγn

n
∑

j=1

∫

Rn

∂f

∂xj
(x− y)

yj
|y|

n dy.

Thus,

|f(x)| ≤
1

nγn

∫

Rn

|∇f(y)|
1

|x− y|
n−1 dy.

9Actually the version we prove of (1.4) is slightly weaker in as much as the constant n appears
on the right hand side of the inequality.
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LetH = {x : |f(x)| > t} , then, combining the previous inequality with Chebyshev’s
inequality and Fubini, we find that

t |H | ≤

∫

H

|f(x)| dx ≤
1

nγn

∫

Rn

|∇f(y)|

∫

H

dx

|x− y|n−1 dy.

For a fixed y let B = B(y, r) be a ball such that such |B| = |H | . Then by sym-
metrization

∫

H

dx

|x− y|n−1 ≤

∫

B

dx

|x− y|n−1 = nγnr = nγ1−1/n
n |H |1/n .

Summarizing

t |H | ≤
|H |

1/n

γ
1/n
n

∫

Rn

|∇f(y)| dy.

�

2.1. Talenti’s inequality. Our starting point is the weak type inequality

(2.2) sup
t>0

t |{x ∈ R
n : |f(x)| > t}|

n−1
n ≤ γ−1/n

n

∫

Rn

|∇f(x)| dx, f ∈ W 1,1
0 (Rn).

Let 0 < t1 < t2 < ∞, the truncations of f are defined by

f t2
t1 (x) =







t2 − t1 if |f(x)| > t2,
|f(x)| − t1 if t1 < |f(x)| ≤ t2,
0 if |f(x)| ≤ t1.

Observe that if f ∈ W 1,1
0 (Rn) then f t2

t1 ∈ W 1,1
0 (Rn), therefore replacing f by f t2

t1 in
(2.2) we obtain

sup
t>0

t
∣

∣

{

x ∈ R
n :
∣

∣f t2
t1 (x)

∣

∣ > t
}∣

∣

n−1
n ≤ γ−1/n

n

∫

Rn

∣

∣∇f t2
t1 (x)

∣

∣ dx.

We obviously have

sup
t>0

t
∣

∣

{

x ∈ R
n :
∣

∣f t2
t1 (x)

∣

∣ > t
}∣

∣

n−1
n ≥ (t2 − t1) |{x ∈ R

n : |f(x)| ≥ t2}|
n−1
n ,

and
∣

∣∇f t2
t1

∣

∣ = |∇f |χ{t1<|f |≤t2}.

Therefore,

(t2 − t1) |{x ∈ R
n : |f(x)| ≥ t2}|

1−1/n
≤ γ−1/n

n

∫

{t1<|f |≤t2}

|∇f(x)| dx.

Let 0 ≤ a < b, and consider t1 = f∗(b), t2 = f∗(a). Then

(f∗(a)− f∗(b))a1−1/n ≤ (f∗(a)− f∗(b)) |{x ∈ R
n : |f(x)| ≥ f∗(a)}|

1−1/n
(2.3)

≤ γ−1/n
n

∫

{f∗(b)<|f |≤f∗(a)}

|∇f(x)| dx

≤ γ−1/n
n

∫ b−a

0

|∇f |
∗
(s)ds,

whence f∗ is locally absolutely continuous.
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Let s > 0 and h > 0; the previous considerations with t1 = f∗(s + h) and
t2 = f∗(s) yield

(f∗(s)− f∗(s+ h)) s1−1/n ≤ γ−1/n
n

∫

{f∗(s+h)<|f |≤f∗(s)}

|∇f(x)| dx.

Thus,

(f∗(s)− f∗(s+ h))

h
s1−1/n ≤

γ
−1/n
n

h

∫

{f∗(s+h)<|f |≤f∗(s)}

|∇f(x)| dx.

Letting h → 0 we obtain (1.2).

2.2. The Oscillation Inequality. We now prove the oscillation inequality (1.3).
We will integrate by parts, so let us note first that using (2.3) we have, for 0 < s < t,

(2.4) s (f∗(s)− f∗(t)) ≤ γ−1/n
n s1/n

∫ t−s

0

|∇f |∗ (s)ds.

Now,

f∗∗(t)− f∗(t) =
1

t

∫ t

0

(f∗(s)− f∗(t)) ds(2.5)

=
1

t

{

[s (f∗(s)− f∗(t))]t0 +

∫ t

0

s (−f∗)
′

(s)ds

}

=
1

t

∫ t

0

s (−f∗)
′

(s)ds,

where the integrated term [s (f∗(s)− f∗(t))]
t
0 vanishes on account of (2.4).

Now, starting from (2.5) we readily get

f∗∗(t)− f∗(t) =
1

t

∫ t

0

s (−f∗)
′

(s)ds =
1

t

∫ t

0

s1/ns1−1/n (−f∗)
′

(s)ds

≤
t1/n

t

∫ t

0

s1−1/n (−f∗)
′

(s)ds

≤ γ−1/n
n

t1/n

t

∫ t

0

(

∂

∂s

∫

{|f |>f∗(s)}

|∇f(x)| dx

)

ds

≤ γ−1/n
n t1/n |∇f |

∗∗
(t),

where in the third step we used (1.2).

Remark 1. Since it will be useful below we observe that in an intermediate step of
the previous derivation we implicitly obtained the inequality

(2.6)

∫ t

0

s1−1/n (−f∗)
′

(s)ds ≤ γ−1/n
n

∫ t

0

|∇f |
∗
(s)ds.
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2.3. Integrated Oscillation Inequality. We prove (1.7). Starting from (2.5)
and integrating by parts we have
∫ t

0

s−
1
n [f∗∗(s)− f∗(s)]ds =

∫ t

0

s−1− 1
n

∫ s

0

u (−f∗)
′

(u)du ds

= −n

∫ t

0

∫ s

0

u (−f∗)
′

(u)du ds−1/n

= −ns−1/n

∫ s

0

u (−f∗)
′

(u)du

∣

∣

∣

∣

t

0

+

∫ t

0

s1−1/n (−f∗)
′

(s)ds.

Since by (2.4) and (2.5) it follows that

s−1/n

∫ s

0

u (−f∗)
′

(u)du = s1−1/n (f∗∗(s)− f∗(s)) �

∫ s

0

|∇f |∗ (s)ds,

the integrated term vanishes at t = 0. Consequently, in view of (1.3) and (2.6), we
can continue our estimates with
∫ t

0

s−
1
n [f∗∗(s)− f∗(s)]ds = −nt1−1/n (f∗∗(t)− f∗(t)) + γ−1/n

n n

∫ t

0

|∇f |
∗
(s)ds

≤ γ−1/n
n n

∫ t

0

|∇f |∗ (s)ds,

as we wished to show.

Remark 2. Using a standard limiting argument we may extend the validity of (1.3)

and (1.7) from functions in C∞
0 (Rn) to all functions in W 1,1

0 (Rn). For example,

suppose that (1.7) holds for functions in C∞
0 (Rn). Then, given f ∈ W 1,1

0 (Rn) select
fk ∈ C∞

0 (Rn) such that

fk(x) → f(x) a.e. and fk → f in W 1,1
0 (Rn).

Since f∗
k (t) → f∗(t) a.e. we can use Fatou’s lemma

∫ t

0

s−
1
n [f∗∗(s)− f∗(s)]ds ≤ lim

∫ t

0

s−
1
n [f∗∗

k (s)− f∗
k (s)]ds � lim

∫ t

0

|∇fk|
∗
(s)ds

= lim

∫ t

0

|∇(fk + f − f)|
∗
(s)ds

≤ lim

∫ t

0

|∇(fk − f)|
∗
(s)ds+

∫ t

0

|∇f |
∗
(s)ds

≤ lim
n

‖|∇(fk − f)|‖L1 +

∫ t

0

|∇f |∗ (s)ds

=

∫ t

0

|∇f |∗ (s)ds,

as we wished to prove. The extension of (1.3) is proved similarly.

2.4. An elementary proof of the Pólya-Szegö principle. We will actually
prove a slightly weaker form of the Pólya-Szegö principle, namely

|∇f◦|
∗∗

(s) ≤ n |∇f |
∗∗

(s).



8 JOAQUIM MARTIN∗, MARIO MILMAN, AND EVGENIY PUSTYLNIK

Our starting point is Talenti’s inequality (cf. Section 2.1 above): if f ∈ W 1,1
0 (Rn)

then

s1−1/n (−f∗)
′

(s) ≤ γ−1/n
n

∂

∂s

∫

{|f |>f∗(s)}

|∇f(x)| dx.

We claim that if Φ is a positive Young’s function, then

(2.7) Φ
(

nγ1/n
n s1−1/n (−f∗)

′

(s)
)

≤
∂

∂s

∫

{|f |>f∗(s)}

Φ(n |∇f(x)|)dx.

Assuming momentarily the validity of (2.7) we get
∫ ∞

0

Φ
(

nγ1/n
n s1−1/n (−f∗)

′

(s)
)

ds ≤

∫

Rn

Φ(n |∇f(x)|)dx,

and since,
∫ ∞

0

Φ
(

nγ1/n
n s1−1/n (−f∗)

′

(s)
)

ds =

∫

Rn

Φ(|∇f◦(x)|)dx

it follows that for all Young functions Φ we have
∫

Rn

Φ(|∇f◦(x)|)dx ≤

∫

Rn

Φ(n |∇f(x)|)dx.

The last inequality implies, by a well known result of Hardy-Littlewood-Pólya (cf.
[3, Page 88]),

∫ t

0

|∇f◦|
∗
(s)ds ≤ n

∫ t

0

|∇f |
∗
(s)ds,

as we wished to show.
It remains to prove (2.7). Here we follow Talenti’s argument (it is important

for our purposes to note that at this point in the argument we are not using the
isoperimetric inequality or the co-area formula). Let s > 0, then we have three
different alternatives: (i) s belongs to some exceptional set of measure zero, (ii)

(f∗)
′

(s) = 0, or (iii) there is a neighborhood of s such that (f∗)′(u) is not zero,
i.e. f∗ is strictly decreasing. In the two first cases there is nothing to prove. In
case alternative (iii) holds then it follows immediately from the properties of the
rearrangement that for a suitable small h0 > 0 we can write

h = |{f∗(s+ h) < |f | ≤ f∗(s)}| , 0 < h < h0.

Therefore for sufficiently small h we can apply Jensen’s inequality to obtain,

1

h

∫

{f∗(s+h)<|f |≤f∗(s)}

Φ(|∇f(x)|)dx ≥ Φ

(

1

h

∫

{f∗(s+h)<|f |≤f∗(s)}

|∇f(x)| dx

)

.

Arguing like Talenti [21] we thus get

∂

∂s

∫

{|f |>f∗(s)}

Φ(|∇f(x)|)dx ≥ Φ

(

∂

∂s

∫

{|f |>f∗(s)}

|∇f(x)| dx

)

≥ Φ
(

nγ1/n
n s1−1/n (−f∗)

′

(s)
)

,

as we wished to show.
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3. Proof of the main Theorem 1

For the proof we need a slight extension of the following well known fact (prob-
ably due to Hardy and Calderón): if g and h are positive and decreasing and such
that

∫ t

0

g(s)ds �

∫ t

0

h(s)ds, ∀t > 0,

then for any r.i. norm X we have

‖g‖X � ‖h‖X .

We extend this result as follows

Lemma 2. Let f and g be two positive functions on the half line. Moreover,
suppose that there exists a real number α such that the function tαf(t) is monotone
(increasing or decreasing). Then, for any r.i. space X with lower Boyd index αX >

0, there exists a constant C = C(α,X) such that if
∫ t

0
f(s) ds ≤

∫ t

0
g(s) ds, holds

for all t > 0, then

‖f‖X ≤ C‖g‖X .

Proof. Let Pg(t) = 1
t

∫ t

0 g(s)ds and its adjoint Qg(t) =
∫∞

t g(s)dss be the usual
Hardy operators (notice that Q is a positive operator and that Qg(t) is a decreasing
function). Then, applying the operator Q to the inequality Pf(t) ≤ Pg(t), and
using the fact that Q ◦ P = P ◦Q, we obtain

∫ t

0

Qf(s) ds ≤

∫ t

0

Qg(s) ds, for all t > 0.

Since the integrated functions are decreasing we can apply the usual Hardy-Calderón
Lemma (see the discussion preceeding this lemma) to obtain

‖Qf‖X ≤ ‖Qg‖X .

Moreover, since αX > 0, we can continue with

(3.1) ‖Qf‖X ≤ cX‖Q‖X→X‖g‖X .

To estimate the left hand side of (3.1) from below we assume first that the function
tαf(t) is increasing. If α 6= 0, then

Qf(t) ≥

∫ 2t

t

sαf(s)s−α ds

s
≥ tαf(t)

∫ 2t

t

s−α−1ds =
1− 2−α

α
f(t).

While if α = 0 then we readily see that Qf(t) ≥ 1
2f(t). Similarly, if the function

tαf(t) is decreasing, α 6= 0, then

Qf(t) ≥

∫ 2t

t

sαf(s)s−α ds

s
≥ (2t)αf(2t)

∫ 2t

t

s−α−1ds =
2α − 1

α
f(2t).

While if α = 0 then we readily see that Qf(t) ≥ 1
2f(2t). Thus, if t

αf(t) is monotone,
we have

(3.2) ‖f‖X ≤ C(α)‖Qf‖X .

Combining (3.2) and (3.1) the desired result follows. �

We may now proceed with the proof of Theorem 1
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Proof. In Section 2.3 we have proved the implication (i) → (ii).
(ii) → (iii). Using the Hardy operator P we rewrite (1.7) as

P (s−
1
n [f∗∗(s)− f∗(s)])(t) � P (|∇f |

∗
(s))(t).

Let h(s) = s−
1
n [f∗∗(s) − f∗(s)], and g(s) = |∇f |

∗
(s), and note that s1+1/nh(s) =

s[f∗∗(s) − f∗(s)] =
∫∞

f∗(s) λf (u)du (draw a picture!) is increasing. Therefore, by

lemma 2, we find that
∥

∥

∥s−1/n(f∗∗(s)− f∗(s))
∥

∥

∥

X
� ‖|∇f |‖X ,

as we wished to show.
(iii) → (iv) Let X = L1, then (1.8) reads

∫ ∞

0

s1−
1
n [f∗∗(s)− f∗(s)]

ds

s
� ‖|∇f |‖1 ,

and the result follows since formally10 integrating by parts yields

∫ ∞

0

s1−
1
n [f∗∗(s)− f∗(s)]

ds

s
= [1− 1/n]

∫ ∞

0

f∗∗(s)s1−1/n ds

s

= [1− 1/n] ‖f‖Ln/(n−1),1 .

(iv) → (i) This is of course trivial since

W 1,1
0 (Rn) ⊂ Ln/(n−1),1(Rn) ⊂ Ln/(n−1),∞(Rn).

�

4. Sobolev Inequalities in r.i. spaces

In this section we give a self contained approach to the theory of Sobolev in-
equalities in the setting of r.i. spaces. Our results provide optimal results all the
way to the borderline cases.

We recall briefly the basic definitions and conventions we use from the theory
of rearrangement-invariant (r.i.) spaces and refer the reader to [3] for a complete
treatment.

Let Ω be a domain in R
n. A Banach function space X(Ω) is called a r.i. space

if g ∈ X(Ω) implies that all functions f with the same decreasing rearrangement,
f∗ = g∗, also belong to X(Ω), and, moreover, ‖f‖X(Ω) = ‖g‖X(Ω). Let us assume
that we define f(x) = 0 whenever x ∈ R

n \ Ω, then any r.i. space X(Ω) can be
“reduced” to one-dimensional space (which by abuse of notation we will still denote
by X), X = X(0, |Ω|) consisting of all g : (0, |Ω|) 7→ R such that g∗(t) = f∗(t) for
some function f ∈ X(Ω). We shall further assume that our r.i. spaces satisfy the
so-called Fatou property, i.e., for any sequence of functions fk → f a.e, fk ∈ X, and
such that supk ‖fk‖X ≤ M , it follows that f ∈ X and ‖f‖X ≤ lim inf ‖fk‖X .

10The fact that the integrated term vanishes can be easily justified by a familiar limiting
argument.
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The upper and lower Boyd indices11 associated with a r.i. space X are defined
by

βX = inf
s>1

lnhX(s)

ln s
and αX = sup

s<1

lnhX(s)

ln s
,

where hX(s) denotes the norm of the dilation operator, i.e.

hX(s) = sup
f∈X

∥

∥f∗( s. )
∥

∥

X(0,|Ω|)

‖f∗‖X(0,|Ω|)

, s > 0.

Furthermore we shall assume, essentially without loss, that the spaces we con-
sider are separable, and unless otherwise specified we shall also assume that we
work on R

n. However, whenever appropriate, we shall briefly indicate the necessary
modifications to treat more general regular domains.

The results and the proofs of this section are similar to those of the papers [16]
and [18], however in our present treatment we have no restrictions on the upper
Boyd index βX .

We record the following elementary result for Hardy operators (cf. [16]).

Lemma 3. Let X be a r.i. space with the lower Boyd index αX > α ≥ 0. Then
(i)

‖t−αQf(t)‖X ≤ C(α,X) ‖t−αf(t)‖X .

(ii) If f∗∗(∞) = 0, then

‖t−αf∗∗(t)‖X ≤ C(α,X) ‖t−α[f∗∗(t)− f∗(t)]‖X .

Proof. Both assertions can be found in [16]. For example see [[16], Lemma 2.5]
for (i). To prove (ii) use the Fundamental theorem of Calculus to write f∗∗(t) =
∫∞

t (f∗∗(s)− f∗(s))dss and apply (i). �

We use the notation

∣

∣Dkf
∣

∣ =





∑

|α|=k

|Dαf |
2





1/2

.

Theorem 2. Let X be a r.i. space with αX > k−1
n for some k ∈ N, k < n. Then

there exists a constant C > 0, such that

(4.1) ‖t−k/n[f∗∗(t)− f∗(t)]‖X ≤ C ‖|Dkf |‖X , f ∈ C∞
0 (Rn).

Proof. When k = 1 the condition on αX is simply αX > 0, therefore (4.1) for k = 1
was proved in Theorem 1 (iii). We prove the case k > 1 by induction. Consider
first the case k = 2, in which case may assume that αX > 1/n. Using (1.3) we get

‖t−2/n[f∗∗(t)− f∗(t)]‖X � ‖t−1/n|∇f |∗∗(t)‖X .

Applying Lemma 3 with α = 1/n we can continue with

‖t−1/n|∇f |∗∗(t)‖X � ‖t−1/n[|∇f |∗∗(t)− |∇f |∗(t)]‖X .

11In terms of the Hardy operators defined by

Pf(t) =
1

t

Z t

0

f(s)ds; Qaf(t) =
1

ta

Z ∞

t
saf(s)

ds

s
, 0 ≤ a < 1;

P (resp. Qa) is bounded on X if and only if βX < 1 (resp. a < αX) (see for example [3, Chapter
3]). Notice that if a = 0, Q0 = Q.
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At this point we apply the case k = 1 to the right hand side to obtain

‖t−1/n[|∇f |∗∗(t)− |∇f |∗(t)]‖X � ‖|∇ |∇f | |‖X � ‖|D2f |‖X .

Combining these inequalities thus proves the desired result for the case k = 2. The
general case is obtained with the same argument. Indeed, assuming the inequality
is valid for k − 1, we can write

‖t−k/n[f∗∗(t)− f∗(t)]‖X � ‖t−(k−1)/n|∇f |∗∗(t)‖X

≤ Ck−1‖t
−(k−1)/n[|∇f |∗∗(t)− |∇f |∗(t)]‖X

≤ Ck‖ |∇|∇k−1f || ‖X

≤ C ‖ |Dkf |‖X ,

and the result follows. �

To formulate necessary conditions we consider the linear integral operators12 (cf.
[4], [5], [16], [13], [8] and the references therein)

Hk/ng(t) =

∫ ∞

t

sk/ng(s)
ds

s
.

The next result was recorded in [18] but with the restriction βX < 1, the restriction
was later removed in [9] but with a rather complicated proof. Our proof provides
a considerable simplification.

Theorem 3. Let k ∈ N, k < n, and let X be a r.i. space such that αX > k−1
n ;

and let Y be another r.i. space. Then there exists a constant C > 0 such that
‖f‖Y ≤ C ‖ |Dkf | ‖X for all f ∈ C∞

0 (Rn) if and only if Hk/n is a bounded operator
from X → Y .

Proof. Suppose that Hk/n is a bounded operator, Hk/n : X → Y . Let f ∈ C∞
0 (Rn),

and define g(t) = t−k/n[f∗∗(t)− f∗(t)], then

Hk/ng(t) =

∫ ∞

t

[f∗∗(s)− f∗(s)]
ds

s
= Q(f∗∗ − f∗)(t) = f∗∗(t).

Therefore,

‖f‖Y ≤ ‖f∗∗‖Y = ‖Hk/ng‖Y

≤ ‖Hk/n‖X→Y ‖t
−k/n[f∗∗(t)− f∗(t)]‖X

� ‖|Dkf |‖X (by (4.1)).

To prove the converse we consider first the case k = 1. Suppose that Y is a r.i.
space such that ‖f‖Y ≤ C ‖ |∇f | ‖X for all admissible f . Let g be an arbitrary
non-negative function from X ; we must show that the function u defined by

u(t) = H1/ng(t) =

∫ ∞

t

s1/ng(s)
ds

s
,

belongs to Y. Note that u′(t) = 1
n t

1/n−1g(t), therefore if we define f(x) = u(t) with

t = |x|n, we see that |∇f(x)| = nt1−1/n|u′(t)|, whence |∇f(x)| = ng(t). It follows

12In the case of domains Ω one needs to consider likewise the operators H̃k/ng(t) =
R |Ω|
t sk/ng(s)ds

s
.



SOBOLEV INEQUALITIES VIA TRUNCATION 13

that

‖u‖Y ≃ ‖f‖Y � ‖ |∇f | ‖X (by hypothesis)

= Cn‖g‖X ,

as we wished to show. Suppose now that k > 1. Repeating the previous argu-
ment k times leads to the conclusion that the operators (H1/n)

k are bounded,

(H1/n)
k : X → Y. In particular, there exists an absolute constant c > 0 such that

∥

∥(H1/n)
kg
∥

∥

Y
≤ c ‖g‖X . To prove that Hk/n is a bounded operator Hk/n : X → Y,

we compare Hk/n with (H1/n)
k. By induction we find

(H1/n)
kg(t) = nk−1

∫ ∞

t

s1/n(s1/n − t1/n)k−1g(s)
ds

s
.

It follows by direct calculations that there exist constants cm, an such that

(4.2) Hk/ng(t) =

k−1
∑

m=0

cm tm/n(H1/n)
k−mg(t)

(H1/n)
kg(

t

2
) ≥ (an)

m tm/n(H1/n)
k−mg(t), m = 1, 2, . . . , k − 1.

Since the operators (H1/n)
k are bounded and the dilation operator is bounded

on any r.i. space, it follows that
∥

∥

∥tm/n(H1/n)
k−mg(t)

∥

∥

∥

Y
�
∥

∥(H1/n)
kg
∥

∥

Y

� ‖g‖X .

Whence from (4.2) we obtain that
∥

∥Hk/ng
∥

∥

Y
� ‖g‖X ,

as we wished to show.

Remark 3. A similar proof of the necessity part is given in [9].

�

Corollary 1. Let k ∈ N, k < n, and let X be a r.i. space such that αX > k−1
n ;

and let Y be another r.i. space. Then there exists a constant C > 0 such that
‖f‖Y ≤ C ‖ |Dkf | ‖X for all f ∈ C∞

0 (Rn) if and only if

‖f‖Y � ‖t−k/n[f∗∗(t)− f∗(t)]‖X , f ∈ C∞
0 (Rn).

Proof. Suppose that ‖f‖Y ≤ C ‖ |Dkf | ‖X for all f ∈ C∞
0 (Rn). Let f ∈ C∞

0 (Rn),
then by (4.1) t−k/n[f∗∗(t)− f∗(t)] ∈ X and consequently by Theorem 3 we get,

‖Hk/n(t
−k/n[f∗∗(t)− f∗(t)])‖Y �

∥

∥

∥t−k/n[f∗∗(t)− f∗(t)]
∥

∥

∥

X
.

On the other hand, since

Hk/n(t
−k/n[f∗∗(t)− f∗(t)]) = Q(f∗∗ − f∗) = f∗∗,

we see that

‖f‖Y ≤ ‖f∗∗‖Y �
∥

∥

∥
t−k/n[f∗∗(t)− f∗(t)]

∥

∥

∥

X

as we wished to show. �



14 JOAQUIM MARTIN∗, MARIO MILMAN, AND EVGENIY PUSTYLNIK

The previous discussion provides a method to construct the optimal range space
for a Sobolev inequality. Indeed, let X be a r.i. space with αX > k−1

n , and let the

Sobolev spaceW k,X
0 = W k,X

0 (Rn) be defined to be the closure of C∞
0 (Rn) under the

norm ‖ |Dkf | ‖X . Then the optimal target space Y for the embedding W k,X
0 ⊂ Y

is given by the condition

(4.3) ‖f‖Y = ‖t−k/n[f∗∗(t)− f∗(t)]‖X < ∞.

However, the space Y defined by (4.3) may not give a linear function space. For
example, if X = Ln/k, k < n, then the optimal range space for Sobolev’s inequality
is given by the condition (cf. [2], [16])

‖f‖Y =

{∫ ∞

0

(t−k/n[f∗∗(t)− f∗(t)])n/kdt

}k/n

= ‖f‖L(∞,n/k) < ∞,

which is not a linear space. On the other hand, away from the borderline case (i.e.
with a more restrictive condition on the lower Boyd index) it is easy to see that
(4.3) is equivalent to a r.i. Banach space.

In what follows it will be useful to formally define when a Sobolev embedding is
optimal.

Definition 1. Let X,Y be r.i. spaces such that we have a continuous embedding

W k,X
0 ⊂ Y. We shall say that W k,X

0 ⊂ Y is optimal if given any other r.i. Z such

that W k,X
0 ⊂ Z, it follows that Y ⊂ Z continuously.

Corollary 2. Let X be a r.i. space with αX > k
n for some k ∈ N, k < n, and let

Y be the r.i. space defined by the norm ‖f‖Y = ‖t−k/nf∗∗(t)‖X . Then W k,X
0 ⊂ Y,

and the embedding is optimal.

Proof. By Lemma 3 with α = k/n,

‖t−k/nf∗∗‖X � ‖t−k/n[f∗∗(t)− f∗(t)]‖X .

The result now follows from the previous Corollary. �

We conclude discussing how our results can be applied to simplify the study of
compactness of Sobolev embeddings in the setting of r.i. spaces. For the study
of compactness it is natural to restrict oneself to bounded domains Ω, and hence-
forth all spaces will be assumed to be based on a bounded domain Ω with smooth
boundary.

In the study of compactness we will use the following characterization of compact
sets (cf. [19] and the references therein):

Lemma 4. Let Z be a r.i. space and let H ⊂ Z be a bounded.set. Then H is
compact in Z iff H is compact in measure and H has absolutely equicontinuous
norm13.

In order to use the results of this paper we recall the connection between optimal
embeddings and compactness. Indeed, it is known from the classical Lp theory
that optimal Sobolev embeddings are not compact. Pustylnik [19], has recently
extended this result and, most importantly for our purposes, quantified the lack
of compactness of optimal embeddings. More precisely, we have the following (cf.
[19])

13Recall that a set H ⊂ Z is absolutely equicontinuous in norm if ∀ε > 0 ∃δ > 0 such that if
|D| < δ then ‖fχD‖Z < ε.
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Lemma 5. Suppose that W k,X
0 ⊂ Y is optimal, and let Z be a r.i. space such that

W k,X
0 ⊂ Z is compact. Then the inclusion Y ⊂ Z is absolutely continuous14.

We also note for future use that by an easy case of the Rellich-Kondrachov

theorem, the embedding W 1,L1

0 ⊂ L1 is compact. Therefore, since for any r.i.

space X we have W k,X
0 ⊂ W 1,L1

0 ⊂ L1, we see that all bounded sets in W k,X
0

are compact in measure. Consequently to verify that an embedding W k,X
0 ⊂ Z is

compact it is only necessary to verify that bounded sets in W k,X
0 have absolutely

continuous norm in Z.
With these preliminaries at hand we shall now provide our proof of the compact-

ness result recently obtained in [19] and [10] with different but long and complicated
methods of proof.

Theorem 4. Let X,Z be r.i. spaces with αX > k−1
n and such that W k,X

0 ⊂ Z.

Then the embedding W k,X
0 ⊂ Z is compact if and only if H̃n

k
is a compact operator

H̃n
k
: X → Z, here H̃n

k
f(t) =:

∫ |Ω|

t sk/nf(s)dss .

Proof. Suppose first that the embedding W k,X
0 ⊂ Z is compact and consider the

optimal embedding W k,X
0 ⊂ Y provided by (4.3) or by Corollary 2. It follows

readily, by a suitable modified version of Theorem 3 for bounded domains, that
H̃n

k
: X → Y is bounded. It is easy to see that this implies that H̃n

k
sends

bounded sets A ⊂ X into sets H̃n
k
(A) which are compact in measure. Moreover,

by Pustylnik’s Lemma 5 , the embedding Y ⊂ Z is absolutely equicontinuous and
since we obviously can factor H̃n

k
: X → Y ⊂ Z, we see that H̃n

k
: X → Z also

maps bounded sets into sets that are absolutely equicontinuous. Therefore, from
the compactness criteria given by Lemma 4, we find that H̃n

k
: X → Z is a compact

operator.
Conversely, suppose that H̃n

k
: X → Z is a compact operator, and let A be a

bounded set in W k,X
0 . By the definition of W k,X

0 we may assume without loss that
A ⊂ C∞

0 . As pointed out above A is automatically compact in measure, therefore,
by Lemma 4, to prove that A is compact in Z it remains to verify that A has abso-
lutely equicontinuous norm. Define Ã = {f̃ : f̃(t) = t−k/n[f∗∗(t) − f∗(t)], f ∈ A}.

By (4.1), Ã is a bounded set in X = X(0, |Ω|), therefore H̃n
k
(Ã) is compact in Z, in

particular it has absolutely equicontinuous norm, lima→0 supf∈Ã

∥

∥

∥H̃n
k
f̃χ(0,a)

∥

∥

∥

Z
=

0. Moreover, since

H̃n
k
f̃ ≥ f∗∗ ≥ f∗

it follows that
lim
a→0

sup
f∈A

∥

∥fχ(0,a)

∥

∥

Z
= 0,

and consequently A has absolutely equicontinuous norm as we wished to show. �
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