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A GLOBAL VIEW OF EQUIVARIANT VECTOR BUNDLES

AND DIRAC OPERATORS

ON SOME COMPACT HOMOGENEOUS SPACES

MARC A. RIEFFEL

Dedicated to the memory of George W. Mackey

Abstract. In order to facilitate the comparison of Riemannian homogeneous
spaces of compact Lie groups with noncommutative geometries (“quantiza-
tions”) that approximate them, we develop here the basic facts concerning
equivariant vector bundles and Dirac operators over them in a way that uses
only global constructions and arguments. Our approach is quite algebraic,
using primarily the modules of cross-sections of vector bundles. We carry the
development through the construction of Hodge–Dirac operators. The induc-
ing construction is ubiquitous.

1. Introduction

In the literature of theoretical high-energy physics one finds statements such as
“matrix algebras converge to the sphere”, and “these vector bundles on the matrix
algebras are the monopole bundles that correspond to the monopole bundles on
the sphere”. I have provided suitable definitions and theorems [12, 13] that give
a precise meaning to the first of these statements (and I am developing stronger
versions); but I have not yet provided precise meaning to the second statement,
though I laid much groundwork for doing this in [14]. To quantitatively compare
vector bundles on an ordinary space, such as the sphere, with “vector bundles”,
i.e., projective modules, over a related noncommutative “space”, it is technically
desirable to have a description of the ordinary vector bundles that is as congenial
to the methods of noncommutative geometry as possible. This means, for example,
avoiding any use of local coordinates, and working with the modules of continuous
cross-sections of a bundle rather than with the points of the bundle itself.

The purpose of this paper is to give such a congenial approach for the case
of equivariant vector bundles over homogeneous spaces of compact connected Lie
groups. (This includes the monopole bundles over the 2-sphere.) So this paper
can be viewed as largely expository, with its novelty being primarily in our presen-
tation of the known results, and the relative simplicity that our approach brings
to this topic. (Compare with [11, 8, 16, 1].) We are able to work entirely just
in terms of functions on the Lie group. The only differential geometry that we
need is that which involves how elements of the Lie algebra give vector fields on
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the group that can differentiate functions. Beyond this, our treatment is quite
self-contained, and very algebraic in nature (somewhat along the lines found in
Chapter 1 of [7] – see the comment near the top of page 86 of [7] as to why this
kind of approach is appropriate). The main new result is Theorem 8.4 in which we
give necessary and sufficient conditions for the Hodge-Dirac operator correspond-
ing to a not-necessarily torsion-free connection to be formally self-adjoint. Notable
is our use of “standard module frames” in various places where traditionally one
would have used local arguments involving coordinate charts. Various steps of our
development can be generalized in various directions, but for simplicity of exposi-
tion we do not explore these generalizations. I expect to use the material presented
here for my study of the quantitative relations between ordinary and “quantum”
vector bundles, along the line that can be inferred from [14].

In Section 2 of this paper we introduce equivariant vector bundles over homo-
geneous spaces and their modules of continuous cross-sections, while in Section 3
we give a concrete description of the algebra of module endomorphisms of a cross-
section module. Section 4 is devoted to discussing the tangent bundle of a homo-
geneous space through its module of cross-sections. Sections 2 to 4 form in part a
more leisurely version of section 13 and proposition 14.3 of [14]. In Section 5 we
discuss connections on equivariant vector bundles, while in Section 6 we discuss
the Levi–Civita connection for an invariant Riemannian metric on a homogeneous
space. Finally, Section 7 is devoted to the Clifford bundle over the tangent space
of a homogeneous space with Riemannian metric, in preparation for the discus-
sion of the Hodge–Dirac operator that we give in Section 8. One notable aspect
of Section 8 is that we give simple examples of non-torsion-free connections whose
Hodge-Dirac operators are nevertheless formally self-adjoint. I have not seen this
possibility discussed in the literature.

I have tried to put in enough detail so that this paper will be accessible to those
who have not previously met vector bundles and Dirac operators.

Equivariant vector bundles are very closely related to the induced representations
that were so central to much of the research of George Mackey. The inducing
construction appears everywhere in this paper. As an undergraduate I had the
pleasure of taking a year-long course on projective geometry taught by George
Mackey, and a decade later his research on induced representations became of great
importance for my own research.

I developed part of the material presented here during part of a ten-week visit
at the Isaac Newton Institute in Cambridge, England, in the Fall of 2006. I am
very appreciative of the quite stimulating and enjoyable conditions provided by the
Newton Institute.

2. Induced vector bundles

In this section we assume that G is a compact group, and that K is a closed
subgroup of G. Then G acts on the coset space G/K, which has its natural compact
quotient topology from G. We let A = C(G/K), the C∗-algebra of continuous
functions on G/K with pointwise operations and supremum norm ‖ · ‖∞. We will
not specify whether the functions have values in R or C, as either it will be possible
to infer which from the context, or it does not matter for what is being discussed.
We will often view A as the subalgebra of C(G) consisting of functions f that satisfy
f(xs) = f(x) for x ∈ G, s ∈ K. We will in general let λ denote the action of G by
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left-translation on various types of functions on G (or G/K). In particular, we let
λ denote the action of G on A, defined by (λyf)(x) = f(y−1x) for f ∈ A, y, x ∈ G.

When G is a Lie group, so that G/K is a smooth manifold [19], everything in
this section has an evident version for smooth functions, but we will not state these
versions, although we will use them in later sections.

Let (π,H) be a finite-dimensional representation of K. Since K is compact we
can equip the vector spaceH with a π-invariant inner product. Thus we will assume
throughout that (π,H) is an orthogonal or unitary representation. We set

Ξπ = {ξ ∈ C(G,H) : ξ(xs) = π−1
s (ξ(x)) for x ∈ G, s ∈ K}.

Here C(G,H) denotes the vector space of continuous functions from G to H. It
is easily checked that Ξπ is in fact a module over A for pointwise operations. In
non-commutative geometry it is often most convenient to put module actions on
the right, so that operators can be put on the left. We will follow this practice
here for ordinary vector bundles, as done also in [6], since it is convenient here also.
Thus we view Ξπ as a right A-module. For consistency we must then write scalars
on the right of elements of H, and we have (ξf)(x) = ξ(x)f(x) for ξ ∈ Ξπ, f ∈ A,
x ∈ G.

The left action of G on itself gives an action of G on C(G,H), and it is easily
verified that this action carries Ξπ into itself. We denote this action again by λ,
so that (λyξ)(x) = ξ(y−1x). Then we have the “covariance relation” λy(ξf) =
(λyξ)(λyf). With abuse of terminology we set:

Definition 2.1. The A-module Ξπ with its G-action is called the equivariant vector
bundle over G/K induced from (π,H).

We observe that for ξ ∈ Ξπ and s ∈ K we have (λsξ)(e) = ξ(s−1) = πs(ξ(e)),
where e is the identity element of G. Thus as long as we remember how Ξπ is
a space of functions on G, we can in this way recover the original representation
(π,H) from Ξπ with its G-action.

The inner product on H determines a canonical bundle metric (often called a
Riemannian or Hermitian metric) on Ξπ, that is, an A-valued inner product [9],
defined by

〈ξ, η〉A(x) = 〈ξ(x), η(x)〉H .

We take our inner product on H to be linear in its second variable. It is easy to
check that the A-valued inner product on Ξπ is G-invariant in the sense that

λy(〈ξ, η〉A) = 〈λyξ, λyη〉A.

OnG/K there is a uniqueG-invariant probability measure. Integrating functions
on G/K against this measure is the same as viewing the functions as defined on
G and integrating them against the Haar measure on G that gives G unit mass.
Throughout this paper whenever we integrate over G/K or G it is with respect to
these normalized measures.

On Ξπ we can define an ordinary inner product, 〈·, ·〉, by

〈ξ, η〉 =

∫

G/K

〈ξ, η〉A.

The action λ of G on Ξπ preserves this inner product. The completion of Ξπ for
this inner product is the Hilbert space for Mackey’s induced representation of G
from the representation (π,H) of K, with the representation of G just being the
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extension of λ to the completion. The pointwise action of A on Ξπ extends to an
action on the completion, and this action can be viewed as Mackey’s “system of
imprimativity” for the induced representation.

It can be shown that Ξπ is the space of continuous cross-sections of the usual
equivariant vector bundle induced from (π,H). But we do not need this fact,
though our development can be useful in proving this fact. A theorem of Swan
[17, 6] says that the module of continuous cross-sections will always be a projective
module (finitely generated, but in this paper whenever we say “projective” we
always also mean “and finitely generated”), and conversely. We include here a
direct proof, taken from [14] but with antecedents in [10], that Ξπ is a projective
module. One important feature of the proof is that, as we will explain, it provides
a way of obtaining a projection p in a matrix algebra Mn(A) for some n, such
that Ξπ is isomorphic to the right A-module pAn. Such projections are crucial for
quantifying the relation between vector bundles on compact metric spaces that are
close together for Gromov–Hausdorff distance, as seen in [14].

Proposition 2.2. For G, K and (π,H) as above, the induced module Ξπ is a
projective A-module.

Proof. Find a finite-dimensional orthogonal or unitary representation (π̃, H̃) of G

such that H is a subspace of H̃ and the restriction of π̃ to K, acting on H, is π.
Such representations (π̃, H̃) exist according to the Frobenius reciprocity theorem,

which has an elementary proof in our context [2]. Note that C(G/K, H̃) is a free A-

module, with basis coming from any basis for H̃. Define Φ from Ξπ to C(G/K, H̃)
by

(Φξ)(x) = π̃x(ξ(x))

for x ∈ G. Clearly Φ is an injective A-module homomorphism. Let P be the
orthogonal projection from H̃ onto H, and define a function p from G to L(H̃), the

algebra of linear operators on H̃, by

p(x) = π̃xP π̃
∗
x.

It is easily seen that p is a projection in the algebra C(G/K,L(H̃)). Furthermore,

this algebra acts as endomorphisms on the free A-module C(G/K, H̃) in the evident
pointwise way, and it is easy to check [14] that p is the projection onto the range
of Φ. Thus the range of Φ, and so Ξπ , is projective. �

We remark that the actual vector bundle corresponding to Ξπ can be viewed as
assigning to each point ẋ of G/K the range subspace of p(x). Notice that for a

given (π,H) there may be many choices for the representation (π̃, H̃) above, and
so many choices of the projection p.

In case G is a Lie group, it is known that finite-dimensional representations (as
homomorphisms between Lie groups) are real-analytic, so smooth. Consequently
the projection p of the above proof is smooth, and this shows that the subspace
Ξ∞
π of smooth elements of Ξπ is a projective module over C∞(G/K).
Let A be any unital C∗-algebra, and let Ξ be a right A-module. Assume that Ξ

is equipped with an A-valued inner product [9]. A finite sequence {ηj} of elements
of Ξ is said to be a standard module frame for Ξ if the “reproducing formula”

ξ =
∑

ηj〈ηj , ξ〉A
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holds for all ξ ∈ Ξ. (It is easily seen, p. 46 of [14], that if Ξ has a standard module
frame, {ηj}

n
j=1, then Ξ is a projective A-module, and the matrix p = {〈ηj , ηk〉A}

in Mn(A) is a projection such that Ξ ∼= pAn.) We can construct standard module

frames for the induced vector bundles Ξπ as follows. For (π̃, H̃) as used above, let

{ej} be an orthonormal basis for H̃. For each j define ηj by ηj(x) = P π̃−1
x ej for

x ∈ G. Each ηj is easily seen to be in Ξπ. Then for ξ ∈ Ξπ we have

(
∑

ηj(x)〈ηj , ξ〉A)(x) =
∑

P π̃−1
x ej〈P π̃

−1
x ej, ξ(x)〉H

= P
∑

(π̃−1
x ej)〈(π̃

−1
x ej), ξ(x)〉H = Pξ(x) = ξ(x),

where we have used that {π̃−1
x ej} is equally well an orthonormal basis for H̃. Thus

{ηj} has the reproducing property, and so is a standard module frame for Ξπ . (We
remark that it may happen that ηj = 0 for certain j’s.) We will make good use of
standard module frames in some of the next sections.

3. Endomorphism bundles

In this section we will give a description of the endomorphism bundles of induced
bundles. This description will be useful in our later discussion of connections. We
will continue to work just with continuous functions and cross-sections, and we will
leave it to the reader to notice that when G is a Lie group everything said in this
section has a smooth version. We will need these smooth versions in later sections.

As before, let (π,H) be a finite-dimensional orthogonal or unitary representation
of K, and let Ξπ be the induced bundle. We want to describe EndA(Ξπ) in terms
of (π,H). Let {ηj} be a standard module frame for Ξπ. For any T ∈ EndA(Ξπ)
and any ξ ∈ Ξπ we have

Tξ = T
(

∑

ηj〈ηj , ξ〉A

)

=
∑

(Tηj)〈ηj , ξ〉A

=
(

∑

〈Tηj, ηj〉E

)

ξ,

where for ζ, η ∈ Ξπ we let 〈ζ, η〉E denote the “rank-one” operator on Ξπ defined
by 〈ζ, η〉Eξ = ζ〈η, ξ〉A. Then 〈·, ·〉E is an inner product on Ξπ with values in
E = EndA(Ξπ). It is linear in the first variable, and elements of E pull out of
the first variable as if they were scalars [9]; we view Ξπ as a left E-module. The
calculation above shows that for any T ∈ E we have T =

∑

〈Tηj , ηj〉E . Thus E is
spanned by the “rank-one” operators.

For any ζ, η, ξ ∈ Ξπ we have

(〈ζ, η〉Eξ)(x) = ζ(x)〈η(x), ξ(x)〉H = 〈ζ(x), η(x)〉0(ξ(x)),

where now 〈·, ·〉0 denotes the usual ordinary rank-one operator on H given by two
vectors. Since we just saw that the “rank-one” operators 〈ζ, η〉E span E, we see
now that every operator in E is given by a function in C(G,L(H)), as we would
expect. Furthermore, for any x ∈ G and s ∈ K we have

〈ζ(xs), η(xs)〉0 = 〈π−1
s (ζ(x)), π−1

s (η(x))〉0 = π−1
s 〈ζ(x), η(x)〉0πs.

It follows that if T ∈ C(G,L(H)) represents an element of E then T (xs) =
π−1
s T (x)πs. But a simple direct check shows that any T satisfying this property

gives an element of E. Thus we have obtained
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Proposition 3.1. We can identify EndA(Ξπ) with

Eπ = {T ∈ C(G,L(H)) : T (xs) = π−1
s T (x)πs for x ∈ G, s ∈ K},

where the action of such a T on ξ ∈ Ξπ is given just by (Tξ)(x) = T (x)(ξ(x)).

There is an evident action, say α, of K on L(H), given by αs(τ) = πsτπ
−1
s ,

and we see that Eπ is just the “induced algebra over G/K for the action α”. As
such, Eπ is an A-module. But it is also an A-module just from the fact that A is
commutative so that A is contained in the center of Eπ, and we notice that these
two A-module structures coincide.

4. The tangent bundle

We now assume that G is a compact connected Lie group with Lie algebra g. We
assume again that K is a closed subgroup of G, which need not be connected, and
we denote its Lie algebra (for its connected component of the identity element e) by
k. Then G/K is a compact smooth manifold [19]. We seek an attractive realization
of its tangent bundle, as a projective A-module, where now we set A = C∞(G/K),
with functions being real-valued. We use below some standard facts [7, 19] about
Lie groups and their Lie algebras. This section and the next two have a number of
points of contact with section 5 of [1].

Much as before, we view C∞(G/K) as a subalgebra of C∞(G). The action
λ of G on C∞(G) and C∞(G/K) gives an infinitesimal action of g, defined for
X ∈ g by (λXf)(x) = (Xf)(x) = Dt

0(f(exp(−tX)x)), where we write Dt
0 for

(d/dt)|t=0. This gives a Lie algebra homomorphism from g into the Lie algebra
Der(C∞(G)) of derivations of the algebra C∞(G), and so into Der(C∞(G/K)).
(See proposition 2.4 of chapter 0 of [18].) The derivations λX of C∞(G/K) are often
called the fundamental vector fields for C∞(G/K). Since C∞(G) is commutative,
Der(C∞(G)) is a module over C∞(G), and a basis for g gives a module basis for
Der(C∞(G)), that is, Der(C∞(G)) is a free C∞(G)-module. We can thus realize
the elements of Der(C∞(G)), which is the module of smooth cross-sections of the
tangent bundle of G, as elements of C∞(G, g), where the action of W ∈ C∞(G, g)
on C∞(G) is given by

(λW f)(x) = Dt
0(f(exp(−tW (x))x)).

Accordingly, we denote C∞(G, g) by T (G), for “tangent space”.
Now for f ∈ A = C∞(G/K) and W ∈ T (G) we need to have W (xs) =W (x) for

x ∈ G and s ∈ K if we want λW f ∈ A. Furthermore, if for some x1 ∈ G we have
W (x1) ∈ Adx1

(k), then Ad−1
x1

(W (x1)) ∈ k, so that

(λW f)(x1) = Dt
0(f(exp(−tW (x1))x1)

= Dt
0(f(x1 exp(−tAd

−1
x1

(W (x1))) = Dt
0(f(x1)) = 0.

Conversely, if (λW f)(x1) = 0 for all f ∈ A, then W (x1) ∈ Adx1
(k).

Choose an Ad-invariant inner product, 〈·, ·〉g, on g, which we fix for the rest
of this paper. Let m denote the orthogonal complement to k in g. Let P be the
orthogonal projection of g onto m. For any W ∈ T (G) define W̃ by W̃ (x) =

Adx(P (Ad
−1
x (W (x)))). Then W (x)− W̃ (x) ∈ Adx(k) for all x, and so W − W̃ acts

on A as the 0-derivation. This and the earlier calculations suggest that we consider
(4.1)

{W ∈ C∞(G, g) :W (x) ∈ Adx(m) and W (xs) =W (x) for all x ∈ G, s ∈ K}.
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And indeed it is easily seen that any such W , acting as derivations of C∞(G) by
the earlier formula, carries A into itself, and that every smooth vector field on G/K
is represented in this way. However, it is inconvenient that the range space of the
W ’s is not constant on G. But

exp(W (x))x = x exp(Ad−1
x (W (x))),

and if W is as in 4.1 then Ad−1
x (W (x)) ∈ m for all x. When we also take into

account the effect on the right K-invariance, we are led to:

Notation 4.2. With notation as above, set

T (G/K) = {W ∈ C∞(G,m) :W (xs) = Ads−1(W (x)) for x ∈ G, s ∈ K}.

We let elements of T (G/K) act as derivations of C∞(G/K) by

(δW f)(x) = Dt
0(f(x exp(tW (x)))),

where we have also left behind the earlier minus sign. It is clear that T (G/K) is a
module over A for pointwise operations. We recognize T (G/K) as just the induced
bundle for the representation Ad restricted to K on m. It is easy to check that
T (G/K) does give derivatives in all tangent directions at any point of G/K. We
can then to use the fact that T (G/K) is an A-module to show that it does contain
all the smooth vector fields on G/K. Thus it does represent the space of smooth
cross-sections of the tangent bundle of G/K, though we will not explicitly need this
fact. This description of the tangent bundle can be found, for example, in [16, 5, 1].

For X ∈ g the corresponding fundamental vector field on G/K is given, in the
form used for (4.1), by

X(x) = Adx(P Ad−1
x (X)).

Then in the form used for the definition of T (G/K) this fundamental vector field,

which we now denote by X̂, is given by

X̂(x) = −P Ad−1
x (X).

(See section 0.3 of [16].) Since the map from elements of g to vector fields is a Lie
algebra homomorphism, we have

[X̂, Ŷ ](x) = −P Ad−1
x ([X,Y ]),

where the brackets on the left denote the commutator of X̂ and Ŷ as operators
on A. Also, a quick calculation shows that λyX̂ = (AdyX)∧ for y ∈ G. We

remark that X̂ may well take value 0 at some points of G/K — we are confronting
the fact that the tangent bundle of G/K may well not be a trivial bundle. It

may even happen that for certain X ’s in g we have X̂ ≡ 0. We warn the reader
that for general V,W ∈ T (G/K) the commutator [V, W ] as derivations of A is
again an element of T (G/K) but it is usually not given by any pointwise formula.
The torsion-free condition shows how to express this commutator in terms of the
Levi-Civita connection or other torsion-free connections as we will see later.

The restriction to m of our chosen inner product on g determines a chosen G-
invariant Riemannian metric on G/K, specializing what was done in Section 2 . If
{Xj} is an orthonormal basis for g, then one can chase through the discussion at

the end of the previous section to see that {X̂j} is a standard module frame for
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T (G/K) for this Riemannian metric. But this is also easy to verify directly: For
any W ∈ T (G/K) and x ∈ G we have
(

∑

X̂j〈X̂j ,W 〉A

)

(x) =
∑

−(P Ad−1
x Xj)〈−P Ad−1

x Xj, W (x)〉g

= P
∑

(Ad−1
x Xj)〈Ad

−1
x Xj , W (x)〉g = PW (x) =W (x),

since {Ad−1
x Xj} is equally well an orthonormal basis for g. Of course, again we

may have X̂j ≡ 0 for some j’s.

5. Connections

In this section we will give a description of all G-invariant connections on an in-
duced bundle. By a connection (or covariant derivative) on the space Ξ of smooth
cross-sections of a vector bundle on a manifold M we mean [7, 6] a linear trans-
formation ∇ from the space T (M) of smooth tangent-vector fields on M to linear
transformations on Ξ such that for W ∈ T (M), ξ ∈ Ξ and f ∈ C∞(M) we have
the Leibniz rule

∇W (ξf) = (∇W ξ)f + ξ(δW f)

and the rule

∇Wf (ξ) = (∇W ξ)f.

For the case we have been considering, in which M = G/K and Ξ is an induced
vector bundle Ξπ, there is a canonical connection, ∇0, defined by

(∇0
W ξ)(x) = Dt

0(ξ(x exp(tW (x)))).

To see that ∇0
W ξ is indeed in Ξπ we calculate that for x ∈ G and s ∈ K

(∇0
W ξ)(xs) = Dt

0(ξ(xs exp(tW (xs)))) = Dt
0(ξ(xs exp(tAd

−1
s (W (x)))))

= Dt
0(ξ(x exp(t(W (x)))s)) = π−1

s ((∇0
W ξ)(x)),

as needed. The other properties stated above for the definition of a connection are
easily verified by similar calculations.

There is a standard definition [7] of what it means for a connection ∇ on an equi-
variant vector bundle to be invariant for the group action, and when this definition
is applied to our induced bundles Ξπ over G/K, it requires that

λy(∇W ξ) = ∇λyW (λyξ)

for all y ∈ G, W ∈ T (G/K) and ξ ∈ Ξπ. It is straightforward to check that the
canonical connection ∇0 is G-invariant.

Let ∇ be any connection on Ξπ, and set L = ∇ − ∇0. It is easily checked
that LW ∈ EndA(Ξπ) for each W ∈ T (G/K), and so LW can be represented as
a function in Eπ according to Proposition 3.1. We mentioned in Section 3 that
Eπ is an A-module because A is commutative. It is easily checked that L is an
A-module homomorphism from T (G/K) to Eπ, and that, conversely, if L is any
A-module homomorphism from T (G/K) to Eπ then ∇0 + L is a connection on
Ξπ. This is just the well-known fact that the set of connections forms an affine
space over HomA(T (G/K),EndA(Ξπ)). If ∇ is G-invariant, then, because ∇0 also
is G-invariant, so is L, in the sense that λy(LW ξ) = LλyW (λyξ) for all y ∈ G,
W ∈ T (G/K) and ξ ∈ Ξπ. When we view LW as a function in Eπ, invariance gives

LW (y−1x)ξ(y−1x) = (λy(LW ξ))(x) = (LλyW (λyξ))(x) = LλyW (x)ξ(y−1x).
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Since this is true for all ξ, we see that for all y ∈ G we have

λyLW = LλyW

as functions on G. In particular LW (y−1) = (λyLW )(e) = LλyW (e), so that L is
determined once we know LW (e) for all W ∈ T (G/K). Note further that since
LW ∈ Eπ, we have by invariance

LλsW (e) = LW (es−1) = πsLW (e)π−1
s

for s ∈ K.
Suppose now that {Xj} is an orthonormal basis for g, so that {X̂j} is a standard

module frame for T (G/K), as seen near the end of Section 4. Then

LW (e) =
∑

LX̂j
(e)〈X̂j ,W 〉A(e),

so that LW (e) is determined once we know LX̂j
(e) for all j. But X̂(e) = 0 if

X ∈ k. Thus in the above expression we only need to sum over a basis for m.
Equivalently, LW (e) is determined once we know LX̂(e) for all X ∈ m. Notice that

on m the map X 7→ X̂ is injective. Define γL on m by γL(X) = LX̂(e), so that L is
determined by γL. Then γL is a real-linear transformation from m to L(H). Recall

that λy(X̂) = (Ady(X))ˆ. Then from the property of LW (e) obtained at the end
of the previous paragraph we have

γL(Ads(X)) = πsγL(X)π−1
s

for s ∈ K and X ∈ m. The following theorem has its roots at least back in Nomizu
[11]. See also section X.2 of [8] and section 0 of [16].

Theorem 5.1. With notation as above, the map L 7→ γL gives a bijection between
the set of G-invariant connections on Ξπ and the set of linear operators γ from m

to L(H) with the property that

γ(Ads(X)) = πsγ(X)π−1
s

for all s ∈ K and X ∈ m.

Proof. We have shown above that every invariant connection ∇ gives rise to L =
∇ − ∇0, and L gives rise to γL, which in turn determines L and so ∇. We must
show, conversely, that any γ as in the statement of the theorem gives rise to an
L ∈ HomA(T (G/K), Eπ) such that γ = γL, and so gives rise to the connection

∇ = ∇0 + L, which is G-invariant. We first define L on each X̂ for X ∈ g by

LX̂(x) = γ(P (Ad−1
x (X))).

It is easy to check that LX̂ ∈ Eπ, that is, that

LX̂(xs) = π−1
s LX̂(x)πs

for x ∈ G and s ∈ K. We then choose a standard module frame {X̂j} for T (G/K),

and set LW =
∑

LX̂j
〈X̂j ,W 〉A. It is then easy to check that this L has the desired

properties, and that γL = γ. �

In the presence of a bundle metric on a vector bundle, a connection is said to be
compatible with the bundle metric if the Leibniz rule

δW (〈ξ, η〉A) = 〈∇W ξ, η〉A + 〈ξ,∇W η〉A
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holds. It is easy to verify that the canonical connection ∇0 on Ξπ is compatible
with the bundle metric that we have been using. If ∇ is another connection on Ξπ
that is compatible, and if we set L = ∇−∇0, then we see that L must satisfy

0 = 〈LW ξ, η〉A + 〈ξ, LW η〉A.

This says that L, as a function with values in L(H), must in fact have its values in
the subspace Lsk(H) of skew-symmetric or skew-Hermitian operators on H. When
L is G-invariant and we define γL as above by γL(X) = LX̂(e), this then says

exactly that γL must have its values in Lsk(H). Thus we obtain:

Corollary 5.2. With notation as above, the map L 7→ γL gives a bijection between
the set of G-invariant compatible connections on Ξπ and the set of linear operators
γ from m to Lsk(H) with the property that

γ(Ads(X)) = πsγ(X)π−1
s

for all s ∈ K and X ∈ m.

6. The Levi–Civita connection

For a connection ∇ on a tangent bundle itself it makes sense to talk about its
torsion [7, 6], which for a connection ∇ on T (G/K) is the bilinear form T∇ defined
by

T∇(V,W ) = ∇V (W )−∇W (V )− [V,W ]

for V,W ∈ T (G/K), with values in T (G/K). Then the Levi–Civita connection
associated to a Riemannian metric on the tangent space is by definition, for our
case of T (G/K), the (necessarily unique) connection∇ which is compatible with the
Riemannian metric and has T∇ ≡ 0. Since our Riemannian metric is G-invariant,
we can expect its Levi–Civita connection to be G-invariant also.

Let us calculate the torsion of the canonical connection ∇0 on T (G/K). Now
for any connection ∇ it is not difficult to verify that T∇ is A-bilinear. (See §8 of
chapter 1 of [7].) Thus for the reasons seen earlier, it is sufficient to calculate with
fundamental vector fields. Now to begin with, for X,Y ∈ g we have

(∇0
X̂
(Ŷ ))(x) = Dt

0Ŷ (x exp(−tP Ad−1
x (X)))

= Dt
0(−P (Adexp(tP Ad−1

x (X) Ad
−1
x (Y ))) = −P ([P Ad−1

x (X),Ad−1
x (Y )]).

If a connection ∇ is G-invariant, then it is easily seen that T∇ is also, in the sense
that

λy(T∇(V,W )) = T∇(λyV, λyW ).

Then it suffices to calculate at e. Accordingly

T∇0(X̂, Ŷ )(e) = −P ([PX, Y ]) + P ([PY,X ])− [X̂, Ŷ ](e).

SinceX → X̂ is a Lie algebra homomorphism, [X̂, Ŷ ](e) = [X,Y ]∧(e) = −P ([X,Y ]),
and so if we let Q = I − P ,

T∇0(X̂, Ŷ )(e) = P ([PY,X ]− [PX, Y ] + [X,Y ]) = P ([PY,X ] + [QX, Y ])

= P (−[X,PY ] + [QX,PY ] + [QX,QY ]) = −P ([PX,PY ]),

since [QX,QY ] ∈ k so that P ([QX,QY ]) = 0. From this we find easily that for
V,W ∈ T (G/K) we have

T∇0(V,W )(x) = −P [V (x),W (x)] .
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We thus see that T∇0 ≡ 0 exactly if [m,m] ⊆ k, which is exactly the condition
for G/K to be a symmetric space [7, 5], since the involutive transformation on g

which is the identity on k and the negative of the identity on m is then a Lie algebra
homomorphism. We thus find the well-known fact (see section 3.5 of [5]) that ∇0

is the Levi–Civita connection exactly if G/K is a symmetric space.
If G/K is not a symmetric space, then the Levi–Civita connection will be of the

form ∇0 + L. We can again work at e, and one soon sees that if we define L0 at e
by

(L0
X̂
(Ŷ ))(e) = (1/2)P ([PX,PY ])

and extend L0 to G/K by

(L0
X̂
(Ŷ ))(x) = (L0

λ−1

x X̂
(λ−1
x Ŷ ))(e),

noting that λ−1
x (X̂) = (Ad−1

x (X)) ˆ , and finally extend L0 to T (G/K) by using
a standard module frame of fundamental vector fields as done earlier, then L0 ∈
HomA(T (G/K),EndA(T (G/K)), and

(T∇0+L0(X̂, Ŷ )(e) = (T∇0(X̂, Ŷ ))(e) + (L0
X̂
(Ŷ ))(e) − (L0

Ŷ
(X̂))(e)

= −P ([PX,PY ]) + (1/2)P ([PX,PY ])− (1/2)P ([PY, PX ]) = 0.

Thus ∇0+L0 has torsion 0. We see that the γ for L0 as in Theorem 5.1 is defined
by

γX = (1/2)P ◦ adX

for all X ∈ m as an operator on m. (Compare with theorem X.2.10 of [8] and
lemma 0.4.3 of [16].) It is easily seen that γX ∈ Lsk(m) because the inner product
on g was chosen to be Ad-invariant, so that adZ is a skew-symmetric operator on
g for every Z ∈ g. From Corollary 5.2 it follows that ∇0 + L0 is compatible with
the canonical Riemannian metric on T (G/K), so that ∇0 + L0 is the Levi–Civita
connection for that Riemannian metric. When one carries through the calculations
with the fundamental vector fields one finds that L0 is given for general V,W ∈
T (G/K) by

(L0
VW )(x) = (1/2)P ([V (x),W (x)]).

One easily checks directly that L0 ∈ HomA(T (G/K),EndA(T (G/K))) when L0 is
defined in this way, that L0 is G-invariant, and is skew-symmetric. But it does not
seem so easy to check directly that ∇0 + L0 has 0 torsion, or even to guess that
the above formula is the correct one for L0, without working with the fundamental
vector fields. In summary:

Theorem 6.1. With notation as above, the Levi–Civita connection for the canon-
ical metric on G/K is ∇0 + L0 where ∇0 is the canonical connection on T (G/K)
and L0 is defined by

(L0
VW )(x) = (1/2)P ([V (x),W (x)]).

If [m,m] ⊆ k, then L0 ≡ 0.
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7. The Clifford-algebra bundle

We can form the Clifford algebra, Clif(m), over m with respect to the inner
product on m (coming from that on g). By definition [5, 6] m sits as a vector sub-
space of Clif(m) and generates Clif(m) as a unital algebra. We follow the common
convention in Riemannian geometry that the defining relation for elements of m is

X · Y + Y ·X = −2〈X,Y 〉m1,

where we denote the product in Clif(m) by “·”. One can view Clif(m) as a defor-
mation of the exterior algebra over m in the direction of the inner product. Any
isometric operator on m extends uniquely to an algebra automorphism of Clif(m).
Since the action Ad of K on m is by isometries, it extends to an action of K as
algebra automorphisms of Clif(m). We denote this action again by Ad.

The tangent space at each point of G/K is isomorphic to m, and we can form the
smooth cross-section algebra of the bundle of the corresponding Clifford algebras.
We denote it by Clif(T (G/K)). We seek an explicit description of this algebra in
terms of our explicit description of T (G/K). Since Clif(T (G/K)) should be an
A-module algebra and contain T (G/K) as a submodule that generates it, we are
led to set

Clif(T (G/K)) = {ϕ ∈ C∞(G,Clif(m)) : ϕ(xs) = Ad−1
s (ϕ(x)) for x ∈ G, s ∈ K}.

This is, of course, yet another “induced” algebra. It contains A = C∞(G/K) in its
center in the evident way, it contains T (G/K), and it is an algebra generated by
T (G/K) with the expected Clifford-algebra relations, namely

V ·W +W · V = −2〈V,W 〉A.

Since our canonical connection is compatible with the Riemannian metric on
T (G/K), it extends to a connection on Clif(T (G/K)), which we denote again by
∇0. It can be defined directly by

(∇0
Wϕ)(x) = Dt

0(ϕ(x exp(tW (x))).

This clearly satisfies the Leibniz rule

∇0
W (ϕ · ψ) = (∇0

Wϕ) · ψ + ϕ · (∇0
Wψ)

for ϕ, ψ ∈ Clif(T (G/K)), that is, ∇0
W is a derivation of Clif(T (G/K)) for each

W ∈ T (G/K). Note that when this ∇0
W is restricted to A ⊂ Clif(T (G/K)) it gives

δW . Since the Riemannian metric on T (G/K) is invariant for the left action λ of G
on T (G/K) by translation, λ extends to an action of G by algebra automorphisms
on Clif(T (G)), which we again denote by λ. It is of course given by (λyϕ)(x) =
ϕ(y−1x), and when restricted to A ⊂ Clif(T (G/K)) it gives the original action of
G on A.

The standard Dirac operator for a Riemannian manifold is defined in terms of the
Levi–Civita connection, and so if G/K is not a symmetric space, we should consider
instead the connection ∇0 +L0 defined in the previous section. Recall that L0

W (x)
is a skew-symmetric operator on m for each W ∈ T (G/K) and x ∈ G. Now any
skew-symmetric operator, say R, on m, as the generator of a one-parameter group
of isometries of m, and so of automorphisms of Clif(m), determines a derivation of
Clif(m), which just extends the action of R on m. Then L0

W defines a derivation of
Clif(T (G/K)), which we denote again by L0

W . It is defined by

(L0
Wϕ)(x) = L0

W (x)(ϕ(x)),
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where L0
W (x) here denotes the extension of L0

W (x) on m to a derivation of Clif(m).
Since the sum of two derivations is a derivation, ∇0

W + L0
W acts as a derivation

on Clif(T (G/K)). It is easily checked that ∇0 + L0 is then an A-linear map from
T (G/K) into the algebra of derivations of Clif(T (G/K)). This is the “Levi–Civita
Clifford connection” that is used when trying to define the Dirac operator for the
λ-invariant Riemannian metric on G/K.

We note that for any L which is skew-symmetric the above construction works
for L in place of L0, that is, the construction works for any connection on T (G/K)
that is compatible with the Riemannian metric. We have not yet used the torsion
= 0 condition.

8. The Hodge–Dirac operator

To define the usual Dirac operator on G/K for its canonical Riemannian metric
(which depends on the Ad-invariant inner product on g that has been chosen),
one must deal with the issues of whether G/K is spin or spinc, and with the
bookkeeping details coming from whether G/K is of even or odd dimension. We
will not pursue these aspects in this paper (so see [5, 6, 16, 1, 15]). But one always
has the generalized Dirac operator that is often called the Hodge–Dirac operator.
(See 9.B of [6], except that here we work over R rather than C.)

We work first with smooth functions, before putting on a Hilbert-space structure.
We need a representation of Clif(T (G/K)) to serve as “spinors”. We take the left-
regular representation of Clif(T (G/K)) on itself. So our Dirac operator will be an
operator on S = Clif(T (G/K)). We recall that we have required the sections of
Clif(T (G/K)) to be smooth.

Let ∇ be any connection on T (G/K) compatible with the Riemannian metric
on G/K, and extend it to Clif(T (G/K)) as done in the previous section. For
ϕ ∈ S define dϕ by dϕ(W ) = ∇Wϕ for W ∈ T (G/K). Thus we can view dϕ as
an element of S ⊗ T ∗(G/K), where T ∗(G/K) denotes the cross-section module of
the cotangent bundle. But by means of the Riemannian metric we can identify
T ∗(G/K) with T (G/K). When dϕ is viewed as an element of S ⊗ T (G/K), we
denote it, with some abuse of notation, by gradϕ. Let c denote the product on the
algebra S = Clif(T (G/K)), viewed as a linear map from S ⊗ S to S. We view
T (G/K) as a subspace of S, and so we view S ⊗ T (G/K) as a subspace of S ⊗ S.
In this way we view gradϕ as an element of S ⊗ S, to which we can apply c. We
can then define an operator, D, on S by

(8.1) Dϕ = c(gradϕ)

for all ϕ ∈ S. When ∇ is the Levi–Civita connection, this will be our Hodge–Dirac
operator, but we do not yet assume that ∇ has torsion 0.

Let us obtain a more explicit formula for gradϕ, and so for D. Consider a

standard module frame {Wj} for T (G/K), for example {X̂j} where {Xj} is an
orthonormal basis for g. Then for any V ∈ T (G/K) we have

dϕ(V ) = ∇V ϕ = ∇P

Wj〈Wj ,V 〉Aϕ =
∑

(∇Wj
ϕ)〈Wj , V 〉A,

and so we have

gradϕ =
∑

(∇Wj
ϕ)⊗Wj .
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When we apply the Clifford product c to this formula for gradϕ, but also use our
earlier “dot” notation for the Clifford product, we find that

(8.2) Dϕ =
∑

(∇Wj
ϕ) ·Wj .

We emphasize that D is independent of the choice of standard module frame, as can
easily be seen directly form the fact that (U, V ) 7→ (∇Uϕ) · V is clearly A-bilinear.
Thus we can choose different frames at our convenience to do computations. A first
instance of this appears in the next paragraph.

Suppose that the connection ∇ is λ-invariant. We saw in the previous section
that this implies that its extension to S satisfies λy(∇Wϕ) = ∇λyW (λyϕ). Let us
see that this implies that D commutes with λ. For a given standard module frame
{Wj} we have

D(λyϕ) =
∑

∇Wj
(λyϕ) ·Wj =

∑

(λy(∇λ−1

y Wj
ϕ)) · λy(λ

−1
y Wj)

= λy

(

∑

(∇λ−1

y Wj
ϕ)

)

· (λ−1
y Wj) = λy(Dϕ),

where we have used the easily verified fact that {λ−1
y Wj} is again a standard module

frame. Thus

Dλy = λyD

for all y ∈ G.
The elements of A = C∞(G/K) act as pointwise multiplication operators on

S, and it is important to calculate their commutators with D. For f ∈ A let Mf

denote the corresponding operator on S. Then by the Leibniz rule for ∇

[D,Mf ](ϕ) =
∑

(∇Wj
(ϕf)) ·Wj − (

∑

(∇Wj
ϕ) ·Wj)f

= ϕ ·
(

∑

Wj(δWj
f)
)

.

But much as above

df(V ) = δV f = δP

Wj〈Wj ,V 〉Af

=
∑

(δWj
f)〈Wj , V 〉A =

〈

∑

Wj(δWj
f), V

〉

A
,

so that
∑

Wj(δWj
f) is the usual gradient, gradf , of f . That is:

Proposition 8.3. For f ∈ A and ϕ ∈ S we have

[D,Mf ]ϕ = ϕ · gradf ,

the product being that in Clif(T (G/K)) = S.

We now want a Hilbert space structure on S. As on any Clifford algebra, there
is a canonical normalized trace, τ , on Clif(m), determined by the properties that
τ(1) = 1 and that if {Yj}

q
j=1 is a set of mutually orthogonal elements of m then

τ(Y1 · . . . ·Yq) = 0. Note in particular that τ(X ·Y ) = −〈X,Y 〉m for any X,Y ∈ m.
(One way to see the existence of τ is to consider an orthonormal basis for m and
to decree that τ is 0 on all of the corresponding basis elements [5, 6] for Clif(m)
except 1.) On Clif(m) there is the standard involutory automorphism carrying X
to −X for X ∈ m, and the standard involutory anti-automorphism that reverses
the order of products. We let ∗ denote the composition of these two, so that ∗ is
an anti-automorphism of Clif(m) that carries X to −X for X ∈ m. It is involutory



A GLOBAL VIEW OF EQUIVARIANT BUNDLES AND DIRAC OPERATORS 15

since its square is an automorphism that is the identity on m ⊂ Clif(m). On Clif(m)
we define an ordinary inner product, 〈·, ·〉c, by

〈ϕ, ψ〉c = τ(ϕ∗ · ψ)

for ϕ, ψ ∈ Clif(m). It is easy to verify that for any orthonormal basis for m the
corresponding basis for Clif(m) is orthonormal for this inner product, and that
the inner product is, in fact, positive definite. Both the left and right regular
representations of Clif(m) on itself are easily seen to be ∗-representations for this
inner product. In particular, elements of m act, on left and right, as skew-symmetric
operators.

We apply all of the above structures to S = Clif(T (G/K)). We obtain an
involution on S defined by (ϕ∗)(x) = (ϕ(x))∗, and we obtain an A-valued inner
product, 〈·, ·〉A, on S defined by

〈ϕ, ψ〉A(x) = 〈ϕ(x), ψ(x)〉c

for ϕ, ψ ∈ S. The left and right regular representations of Clif(T (G/K)) on S are
then “∗-representations”, that is, for any θ ∈ S we have

〈θ · ϕ, ψ〉A = 〈ϕ, θ∗ · ψ〉A,

and similarly for θ acting on the right. Finally, we can define an ordinary inner
product on S by

〈ϕ, ψ〉 =

∫

G/K

〈ϕ, ψ〉A(x)dx.

When S is completed for this inner product we obtain our Hilbert space of “spinors”
for the corresponding “Hodge-Dirac” operator. We denote this Hilbert space by
L2(S, τ). We can now view the Hodge-Dirac operator as an unbounded operator
on L2(S, τ) with domain S.

One reason for the importance of the torsion = 0 condition, or at least a weak
version of it, is in determining whether D is formally self-adjoint, that is,

〈Dϕ, ψ〉 = 〈ϕ, Dψ〉

for all ϕ, ψ ∈ S. For any U ∈ T (G/K) let TU∇ be the A-endomorphism of T (G/K)
defined by TU∇ (V ) = T∇(U, V ). Then TU∇ is given by a function on G who values
are operators on m, according to Proposition 3.1. Thus we can define trace(TU∇ )
pointwise as a function in A. Equivalently, trace(TU∇ ) =

∑

j〈T∇(U,Wj),Wj〉A for

one (hence every) standard module frame {Wj} for T (G/K).

Theorem 8.4. Let ∇ be any G-invariant connection on T (G/K) compatible with
our chosen Riemannian metric on G/K. Let D be the Hodge-Dirac operator defined
as above for ∇, viewed as an unbounded operator on L2(S, τ) with domain S. Then
D is formally self-adjoint if and only if

trace(TU∇ ) = 0

for all U ∈ T (G/K), where T∇ is the torsion of ∇.

Proof. As one might suspect, the proof is a complicated version of “integration by
parts” or the divergence theorem. We somewhat follow the pattern of the proof
in section 3.2 of [5] or of proposition 9.13 of [6]. Let {Wj} be a standard module
frame for T (G/K). We use first the Leibniz rule for ∇ extended to S, and then the



16 MARC A. RIEFFEL

fact that ∇ is compatible with the Riemannian metric, in order to calculate that
for ϕ, ψ ∈ S we have

〈Dϕ, ψ〉A − 〈ϕ, Dψ〉A =
∑

j

(〈(∇Wj
ϕ) ·Wj , ψ〉A − 〈ϕ, (∇Wj

ψ) ·Wj〉A

=
∑

j

(−〈∇Wj
ϕ, ψ ·Wj〉A − 〈ϕ, ∇Wj

(ψ ·Wj)− ψ · (∇Wj
Wj)〉A

=
∑

j

(−δWj
(〈ϕ, ψ ·Wj〉A) + 〈ϕ, ψ · (∇Wj

Wj)〉A).

For given ϕ and ψ the function V 7→ 〈ϕ, ψ · V 〉A is A-linear, and so by the self-
duality of T (G/K) for its Riemannian metric there is a U ∈ T (G/K) such that
〈ϕ, ψ · V 〉A = 〈U, V 〉A for all V ∈ T (G/K). By letting ψ = 1 and ϕ = U (viewed
as elements in Clif(T (G/K))) we see that any U arises in this way. The above
displayed expression is then equal to

∑

j

−δWj
(〈U,Wj〉A) + 〈U,∇Wj

Wj〉A = −
∑

j

〈∇Wj
U,Wj〉A .

We thus see that D is formally self-adjoint exactly if
∫
∑

j〈∇Wj
U,Wj〉A = 0 for

all U ∈ T (G/K) and one, hence every, standard module frame {Wj}.
Now by the definition of T∇

〈∇Wj
U,Wj〉A = 〈∇UWj − T∇(U,Wj) − [U,Wj ] , Wj〉A.

Notice then that, by the A-bilinearity of the inner product,
∑

〈Wj ,Wj〉A is indepen-
dent of the choice of standard module frame, and that {Wj(x)} is a frame for m for
any x ∈ G, so that we can evaluate the sum by using a frame for m that consists of
an orthonormal basis for m. From this we see that

∑

〈Wj ,Wj〉A ≡ dim(m).
Consequently, by the compatibility of ∇ with the Riemannian metric, for any
U ∈ T (G/K) we have

0 = δU (
∑

j

〈Wj ,Wj〉A) =
∑

j

〈∇UWj ,Wj〉A + 〈Wj ,∇UWj〉A = 2
∑

j

〈∇UWj ,Wj〉A.

Consequently
∑

j〈∇UWj ,Wj〉A = 0 . (We remark that this fact depends on the
pointwise argument just above, and that the analogous argument can fail for mod-
ules over a non-commutative A that contains proper isometries.) Thus

∑

j

〈∇Wj
U,Wj〉A = −

∑

j

〈T∇(U,Wj),Wj〉A −
∑

j

〈[U,Wj ],Wj〉A .

Let ∇t = ∇0 + L0, the Levi-Civata connection. We can apply the above equation
to ∇t and use that ∇t is torsion-free to get an espression for the last term above.
In this way we find that

〈∇Wj
U,Wj〉A = −

∑

j

〈T∇(U,Wj),Wj〉A +
∑

j

〈∇t
Wj
U,Wj〉A .

We will show shortly that
∫

G/K

∑

j

〈∇t
Wj
U,Wj〉A = 0
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for all U . This will show that D is formally self-adjoint if and only if

0 =

∫

∑

j

〈T∇(U,Wj),Wj〉A =

∫

trace(TU∇ )

for all U . But the integrand of these latter integrals is clearly A-linear in U , so when
we replace U by fU for any f ∈ A the f comes outside the inner product. Since f
is arbitrary, this means that the integral is 0 for all U exactly if the integrand itself
is 0 for all U , and that is the condition in the statement of the theorem.

Thus we have basically reduced the proof of the theorem to treating ∇t. We
remark that, because∇t is the Levi-Civita connection,

∑

j〈∇
t
Wj
U,Wj〉A = div(U),

so that in effect we need to prove the divergence theorem
∫

div(U) = 0. Since ∇t

is compatible with the Riemannian metric, we have

〈∇t
Wj
U,Wj〉A = δWj

(〈U,Wj〉A) − 〈U,∇t
Wj
Wj〉A .

Now for any X ∈ g and any f ∈ A we have δX̂(f) = λXf , and
∫

G

(λXf)(x)dx = 0

because λXf is the uniform limit of the quotients

(λexp(−tX)f − f)/t

as t converges to 0 (see lemma 1.7 of chapter 0 of [18], where one needs L to be
invariant), and the integral over G of each of these quotients is clearly 0 by the
left-invariance of Haar measure. Thus if we choose our standard module frame to
be Wj = X̂j for an orthonormal basis {Xj} for g, we see that for each j

∫

G/K

δX̂j
(〈U, X̂j〉A) = 0.

Consequently
∫

G/K

∑

j

〈∇t
X̂j
U, X̂j〉A =

∫

G/K

∑

j

〈U,∇t
X̂j
X̂j〉A .

Since we want this to be 0 for all U, it is clear that we need to show that
∑

j

∇t
X̂j
X̂j = 0 .

Now ∇t = ∇0 + L0, and for any W ∈ T (G/K) we have

(L0
WW )(x) = (1/2)P [W (x),W (x)] = 0 .

Thus we only need to show that
∑

j ∇
0
X̂j
X̂j = 0. But

(
∑

j

∇0
X̂j
X̂j)(x) = −

∑

j

P [P Ad−1
x Xj , Ad

−1
x Xj] .

Note that {Ad−1
x Xj} is an orthonormal basis for g for each x. Now (X,Y ) 7→

P [PX, Y ] is bilinear, and so it is easily seen that the value of
∑

j P [PXj, Xj ] does
not depend on the choice of orthonormal basis. We can then choose our basis such
that X1, . . .Xp is a basis for m while Xp+1, . . . , Xn is a basis for k. Then for j ≤ p
we have PXj = Xj so that the corresponding terms in the sum are 0, while for
j > p we have PXj = 0 so that again the corresponding terms in the sum are 0.

�
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We can use this to show that even though the canonical connection is often not
torsion-free, we have:

Corollary 8.5. The Hodge-Dirac operator for the canonical connection ∇0 is for-
mally self-adjoint.

Proof. We apply the criterion of Theorem 8.4 to the canonical connection. From
our calculation of T∇0 in Section 6 we see that for any U ∈ T (G/K) we have
TU∇0(x) = −P ◦ adU(x) . We can use an orthonormal basis X1, . . . , Xp for m in
calculating the trace. Extend this basis by an orthonormal basis Xp+1, . . . , Xn for
k. Then for any U(x) = Y ∈ m we have

trace(P ◦ adY ) =

p
∑

〈P [Y,Xj ], Xj〉m =

n
∑

〈[Y,Xj ], Xj〉g = trace(adY on g)

since [Y,Xj ] ∈ m if Xj ∈ k so they are orthogonal. But for each j we have
〈[Y,Xj], Xj〉 = 〈Y, [Xj , Xj ]〉 = 0, and so trace(adY on g) = 0. Thus ∇0 sat-
isfies the criterion of Theorem 8.4, and so its Hodge-Dirac operator is formally
self-adjoint. �

I have not seen mentioned in the literature the possibility that some non-torsion-
free connections can nevertheless have formally self-adjoint Dirac operators.

A simple further calculation using the fact that LU is a skew-adjoint operator
and so has trace 0, gives:

Corollary 8.6. Let ∇ be a connection compatible with our chosen Riemannian
metric, and let L = ∇ − ∇0. Then the Hodge-Dirac operator for ∇ is formally
self-adjoint if and only if for one (hence every) standard module frame {Wj} for
T (G/K) we have

∑

j

LWj
Wj = 0 .

For the essential self-adjointness of Dirac operators see, for example, section 9.4
of [6] and section 4.1 of [5].

Let us now consider the operator norm of [D,Mf ] for f ∈ A. We saw earlier
that [D,Mf ]ϕ = ϕ · gradf for ϕ ∈ S, and that gradf ∈ T (G/K). Let R denote

the right-regular representation of S on itself and so on L2(S, τ). Now the norm
of any bounded operator, T , on an inner-product space satisfies the C∗-condition
‖T ‖2 = ‖T ∗T ‖, so for any ψ ∈ S we have ‖Rψ‖

2 = ‖R∗
ψRψ‖. When we use this

for ψ = V ∈ T (G/K), and recall that elements of T (G/K) act as skew-symmetric
operators for the Clifford product, we see that

‖RV ‖
2 = ‖R∗

VRV ‖ = ‖ −RV ·V ‖ = ‖R〈V,V 〉A‖.

But simple arguments show that for any g ∈ A we have ‖Rg‖ = ‖g‖∞. When we
apply all of this for V = gradf we obtain

‖Rgradf
‖2 = ‖〈gradf , gradf 〉A‖∞,

so that ‖Rgradf
‖ = ‖ gradf ‖∞ for the evident meaning of this last term. But a

standard argument (e.g., following definition 9.13 of [6]) shows that if we denote by
ρ the ordinary metric on a Riemannian manifold M coming from its Riemannian
metric, then for any two points p and q of M we have

ρ(p, q) = sup{|f(p)− f(q)| : ‖ gradf ‖∞ ≤ 1}.
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On applying this to G/K, using what we found above for the Dirac operator, we
obtain, for ρ now the ordinary metric on G/K,

ρ(p, q) = sup{|f(p)− f(q)| : ‖[D,Mf ]‖ ≤ 1}.

This is the formula on which Connes focused for general Riemannian manifolds
[3, 4] as it shows that the Dirac operator contains all the metric information (and,
in fact, much more) for the manifold. This is his motivation for advocating that
metric data for “non-commutative spaces” be encoded by providing them with a
“Dirac operator”.

We showed earlier that our D commutes with the action λ of G. This is exactly
the manifestation in terms of D of the fact that the action of G on G/K is by
isometries for the Riemannian metric and its ordinary metric.

It would be interesting to understand how all of the above relates to Connes’
action principle for selecting the Dirac operator from among all of the spectral
triples that give a specified Riemannnian [4]. (See also theorem 11.2 and section
11.4 of [6].) Of course, on the face of it Connes’ action principle is just for spin-
manifolds while many homogeneous spaces are not spin.
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tors on coset spaces, J. Math. Phys. 44 (2003), no. 10, 4713–4735, arXiv:hep-th/0210297.
MR 2008943 (2004i:58046)
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