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Université Paris 7 - Denis Diderot, FRANCE†

November 13, 2018

Abstract

We consider the ensemble ofN×N random symmetric matrices {AN,p}
with independent entries such that AN,p has, in average, p non-zero ele-
ments per row. We study the asymptotic behaviour of the maximal (in
magnitude) eigenvalue λmax(N) of matrices AN,p/

√
p when they are large

and sparse, i.e. in the limit N, p → ∞, p = o(N). We prove that the value
pc = logN is the critical one for λmax(∞) to be bounded.

Our arguments are based on the calculus of the tree-type graphs for
random matrices with independent entries. Asymptotic properties of
sparse random matrices essentially depend on the typical degree of a tree
vertex that we prove to be finite.
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Erdös-Rényi partial sums.

1 Introduction

The study of eigenvalue distribution of N -dimensional random matrices in the
limit N → ∞ has been initiated by E.Wigner [14]. He considered the ensemble
of real symmetric matrices

AN (x, y) = a(x, y), x, y = 1, . . . , N (1.1)
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where {a(x, y), x ≤ y, x, y ∈ N} are jointly independent random variables with
zero mean and variance 1. The celebrated semicircle (or Wigner) law states

that the distribution function of eigenvalues λ
(N)
1 ≤ . . . ≤ λ

(N)
N of the matrix

ÂN = AN/
√
N given by relation

σ(λ; ÂN ) = #{j : λ(N)
j ≤ λ}N−1 (1.2)

converges in the average as N → ∞ to the nonrandom distribution σw(λ)

σ′
w(λ) =

{

(2π)−1
√
4− λ2, if |λ| ≤ 2

0, if |λ| > 2
(1.3)

provided all even moments of a(x, y) exist and the odd ones vanish.
Wigner introduced random matrices (1.1) to model distribution of energy

levels of heavy atomic nuclei. Such a nucleus consists of large number (N ∼ 100)
of particles that interact each with other. According to this, the statistical
description naturally presumes consideration of random matrices whose entries
are random variables of the same order of magnitude (see e.g. [11]).

Recent applications of random matrices lead to various generalizations of the
Wigner ensemble {ÂN}. In particular, in the neural network theory the dilute
version of (1.1) is used to describe the system, where some randomly chosen
links between elements are broken (see e.g. [1]). Such a dilute matrix can be
determined as

AN,d(x, y) = a(x, y)dN (x, y), dN (x, y) = dN (y, x),

where ΛN ≡ {dN (x, y), x ≤ y, x, y = 1, . . . , N} is a family of independent
random variables, also independent from {a(x, y)}, with the distribution

dN (x, y) =

{

1, with probability p/N ;
0, with probability 1− p/N ;

p ≤ N. (1.4)

It is not hard to see that the AN,d has, in average, p non-zero elements per
row. Thus, {AN,d} could be regarded as the ensemble of matrices intermediate
between the discrete version of random Schroedinger operator and the Wigner
random matrices. This explains the interest to dilute random matrices from the
spectral theory point of view (see e.g. [9]).

The asymptotic properties of the eigenvalue distribution of A
(d)
N were con-

sidered in different aspects [7, 10, 12]. In particular, it was shown in [12] and
proved in [9] that the eigenvalue distribution of the matrix

A
(p)
N (x, y) = a(x, y)d̂N (x, y), d̂N (x, y) =

1√
p
dN (x, y) (1.5)

converges in probability in the limit N, p → ∞ to the semicircle distribution
σw(λ) (1.3);

p- lim
N,p→∞

σ(λ;A
(p)
N ) = σw(λ) (1.6)
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that means that the semicircle law holds for dilute random matrices.
The eigenvalue distribution function concerns a fraction of eigenvalues of the

matrix. In applications it is often important to know whether the norm of A
(p)
N

is bounded (see e.g. [5]), i.e. whether there are eigenvalues of A
(p)
N outside of

the support of σ′
w(λ) in the limit N, p → ∞.

In present paper we consider the probability distribution of the spectral norm

‖A(p)
N ‖ = max{|λ(N,p)

1 |, |λ(N,p)
N |} ≡ λ(N,p)

max ,

where λ
(N,p)
1 ≤ . . . ≤ λ

(N,p)
N are eigenvalues of A

(p)
N . We study the asymptotic

behaviour of ‖A(p)
N ‖ when matrices A

(p)
N are large and sparse, i.e. in the limit

N, p → ∞, p = o(N). Our results show that the rate pc = logN is the critical

one for the limit of ‖A(p)
N ‖ to be either bounded (in this case it is equal to 2) or

unbounded.

2 Main results and scheme of the proof

First of all, let us note that one can determine the collection of random variables
Λ ≡ {ΛN , N ∈ N} on the same probability space Ωd with the help of the
procedure due to C.Newman (see e.g. [4]). We also determine {a(x, y), x, y ∈
N} on the same Ωa.

We denote the measure and mathematical expectation corresponding to Λ
by µd and angles 〈·〉, respectively. We also denote by E{·} the mathematical
expectation with respect to the measure µa generated by the random variables
{a(x, y), x, y ∈ N}.

We assume that the random variables a(x, y) satisfy conditions:

E[a(x, y)]2k+1 = 0 ∀x, y, k ∈ N, (2.1a)

and
E[a(x, y)]2 = 1, sup

x,y
E[a(x, y)]2k = V2k < ∞ ∀k ∈ N. (2.1b)

Theorem 2.1

Assume that the random variables a(x, y) are such that there exists δ > 0
such that

V2k ≤ kδk ∀k ∈ N. (2.2)

Then in the limit N, p → ∞ such that p satisfies condition

p

(logN)1+δ′
→ ∞

with δ′ > 2δ the norm ‖A(p)
N ‖ is bounded;

p- lim
N,p→∞

‖A(p)
N ‖ = 2. (2.3)
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Remarks.
1. In fact, we prove that under conditions of theorem 2.1 the estimate

µa ⊗ µd{ω : ‖A(p)
N ‖ > 2(1 + 2ε)} ≤ exp{−ϕN (ε, δ) logN} (2.4)

holds with ϕN (εδ) = O((logN)δ). This implies boundedness of lim ‖A(p)
N ‖ with

probability 1. This fact together with (1.6) implies (2.3).
2. If there exists such U that V2k ≤ U2k, then (2.4) and (2.3) hold for all

δ′ > 0.

To show that condition p ≫ (logN)1+δ is necessary for convergence (2.3),
we consider the simplest case of Bernoulli random variables

â(x, y) =

{

1, with probability 1/2;
−1, with probability 1/2.

Theorem 2.2

Let N, p increase infinitely in the way that

p

(logN)1−δ
→ 0 (2.5)

for any positive δ > 1. Then for any given R > 0

lim
N,p→∞

µa ⊗ µd{ω : ‖Â(p)
N ‖ > R} = 1, (2.6)

where Â
(p)
N is given by (1.4), (1.5) with a(x, y) replaced by â(x, y).

Now we describe the scheme of the proof of Theorem 2.1. First of all, let us
recall that the semicircle law proved in [14] states that the moments

M
(N)
j ≡ E

∫

λjdσ(λ; ÂN ) = E
1

N
Tr Âj

N (2.7)

converges in the limit N → ∞ to the numbers

mj =

∫

λjdσw(λ), mj =

{

tk, for j = 2k;
0, for j = 2k + 1,

,

where

tk =
(2k)!

k!(k + 1)!
. (2.8)
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Regarding the average

E
1

N
Tr Âj

N =
1

N

N
∑

x=1

1

N j/2

N
∑

yi=1

Ea(x, y1)a(y1, y2) · · · a(yj−1, x) (2.9)

as a sum over pathsW (x, Yj−1) ≡ (y0 = x, y1, y2, . . . , yj−1, y0) of j steps, Wigner
observed that the leading contribution to (2.7) is given by the paths that are
related with the simple walks in the upper half-plane started and ended at zero.
Basing on this fact, he derived recurrent relations for the limiting moments

tk =

k−1
∑

l=0

tk−1−l tl, t0 = 1. (2.10)

In paper [8] the paths W (x, Yj−1) were encoded with the help of simple
connected graphs with no cycles. More precisely, it was shown that the terms of
leading contribution to (2.9) can be related with the set Tk of one rooted trees
with k edges drawn in the upper half-plane. This representation is equivalent
to the simple walks description of [14] and the number |Tk| of elements in Tk is
given by tk. Introducing some additional encoding for the trajectories W that
provide vanishing contribution, the authors have studied asymptotic behaviour

of the moments M
(N)
j for all j ≪ N1/6, N → ∞ and proved boundedness of the

limit of ‖ÂN‖. These results were recently improved in paper [13], where the
case of j ≪ N2/3 has been investigated.

Also let us note the paper [2], where the necessary and sufficient condition
for finiteness of limN→∞ ‖AN‖ are found. These conditions are rather weak and
require existence of the fourth moment of the random variables a(x, y).

The methods developed in [2] and [13] are different from that used in [8]. It
is not clear whether they are applicable to the dilute random matrices or not.
In present paper we follow the way of [14] and [8] and develop it to be applied
for the Wigner random matrices and their dilute versions as well.

There are three principal observations that we are based on:
(i) all pathsW (x, Y2k−1) with non-zero contribution can be separated uniquely

into classes Π(τ) corresponding to the trees τ ∈ Tk;
(ii) the paths that fall into the same class Π(τ) are described by graphs γ(τ)

that are obtained from τ by gluing its vertices;
(iii) the contribution of the path is given by the number of cycles in γ.
These facts allow one to estimate easily the number of graphs γ and to sum

the corresponding contributions.
In Section 3 we give precise account on the graph representation of paths in

the sum

M
(N,p)
j ≡ E〈N−1 Tr [A

(p)
N ]j〉 = 1

N

∑

x,yi

EA(x, Y2k−1)〈DN (x, Y2k−1)〉 (2.11)
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where
A(x, Yj−1) ≡ a(x, y1)a(y1; y2) · · · a(yj−1, x)

and
DN(x, Y2k−1) ≡ d̂N (x, y1) · · · d̂N (yj−1, x).

It follows from this graphical description that the terms of (2.11) that are of the
order O(p−s) are described by the graphs γ̂ that have cycles only of the length
2. We show this in Section 4.

In Section 5 we estimate the number of trees that can produce the cycles of
the length 2. Basing on relation (2.10), we develop a kind of the tree calculus and
show that the number of trees having vertices of large degree is exponentially
small with respect to the total number of trees.

In Section 6 we prove our main technical estimate

M
(N,p)
2k ≤ tk

k
∑

r,s=1

(αk)3r

N r

(βk)s(1+θk)

ps
V4s (2.12)

with θk → 0 as k → ∞. This inequality allows us to prove theorem 2.1. Theorem
2.2 is proved in Section 7.

We summarize our results and compare them with certain known facts from
probability theory and related fields in Section 8. However, let us briefly discuss
here one consequence of our results with respect to the Wigner random matrices
that correspond to the case of p = N in (1.5). It follows from (2.12) with p = N
that one can assume that moments E|a(x, y)|2m exists for m ≤ m0 and obtain

boundedness of M
(N)
2k for all k ≪ Nα, where α depends on m0. For example,

using a version of standard truncation procedure (see e.g. a version presented
in [2]), one can easily show that that α = 1/4 requires m0 = 8. This indicates a
bridge between results of [2] and [13]. Relation (2.12) explains why the higher
moments of the matrix entries a(x, y) disappear from the limiting expressions
for M2k.

3 Even partitions and trees

It is clear that conditions (2.1a) imply that the average EA(x, Yj−1) is non-zero
if and only if the path W (x, Yj−1) is even [13], i.e. if each step (yi, yi+1) counted
both in direct and inverse directions appears in W even number of times. This

immediately lead to the conclusion that M
(N,p)
2k+1 = 0.

In the case when j = 2k, an even path uniquely determines a partition π of
variables {yi, i = 0, . . . , 2k − 1} into groups. We call such a partition the even
one. The following statement links even partitions and rooted trees drawn in
the upper half-plane. Let us note that given such a tree, one can order its edges.
We adopt that the edges are enumerated from below and from the left. In other
words, we say that the edge e is less than the edge e′ when e is situated on the
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path from the root to e′ or when there is a vertex ν such that the path from ν
to e is to the left with respect to the path from ν to e′.

Proposition 3.1.

The set Π′
2k of all even partitions of the variables (y0, y1, . . . y2k−1) can be

uniquely separated into classes Π(τ) labeled by the trees τ ∈ Tk.

Proof. We are going to show that given a partition π ∈ Π′
2k, one can create a

graph g(π) that is uniquely determined by a tree τ . We construct g(π) with the
help of natural procedure that simplifies approach suggested in [8] and resembles
certain arguments of [13].

The first step is to determine the number of different groups of variables in π.
This coincides with the number of vertices in g(π). We refer to the vertex that
corresponds to the group containing y0 as to the root. Edges of g(π) correspond
to steps si ≡ (yi, yi+1), i = 0, . . . , 2k − 1.

Next, one starts to go along W = (y0, . . . , y2k−1, y0) and draws the edges of
g starting from the root and joining subsequently the vertices according to the
order dictated by appearance of steps si. One obtains closed connected graph
with directed and ordered edges.

Let us consider two vertices joined by one or more edges. Since all edges
of g are ordered, the edges between two vertices are also ordered and can be
numerated between themselves. We call the edgemarked if it has an odd number
in this inner enumeration. It is not hard to see that there are exactly k marked
edges in g.

Finally one has to go once more along g and enumerate the marked edges
according to the order of their appearance in g. Regarding the marked edges
only, one obtains the connected graph γ with k numerated edges and one root.
Let us call it the first part of the walk g. The unmarked steps of g make also
connected graph with k edges that we call the second part of g.

The graph γ has one root and k numerated edges. One can uniquely restore
the tree τ excepting the cases when the edges i and i+1 in γ have both vertices
common. In this case we accept that τ is such that these vertices are consecutive.

Proposition is proved.✷
Let us note in conclusion that graph γ(τ) is obtained from τ by gluing q ≥ 0

vertices among them. One can regard this as if γ obtained by a procedure of q
steps where on each step just one pair of vertices is glued.

Also it should be stressed that there exist partitions π 6= π′ that lead to
the same graph γ(τ). The difference between π and π′ is that they may have
different second parts of g and g′. This happens only when in γ there are cycles
of the length more than 2 with edges ”correctly” enumerated, i.e. one can go
along the the cycle and see edges with increasing numbers prescribed for the
edges of τ . We call these cycles as the correct loops. In all other cases the
second part of g is uniquely reconstructed from γ. We give precise account on
this property in Section 4.
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4 Number and contributions of partitions

It is obvious that the value of EA(x, Y2k−1) as well as that of 〈DN (x, Y2k−1)〉
does not change if one preserves the partition and moves variables yi. Therefore
one can write relation

M
(N,p)
2k =

∑

π∈Π′

k

B(π), B(π) ≡ 1

N

∑

x,yi

(π)
EA(x, Y2k−1)〈DN (x, Y2k−1)〉 (4.1)

and Σ
(π)
x,yi denotes the sum taken over variables x, y1, . . . , y2k−1 in the way such

that the partition π is preserved.
Tree representation helps to compute the contribution provided by the sum

over given even partition Σ(π). This contribution depends on the form of the
graph γ(τ) that corresponds to π.

Let us introduce several terms. Assume that in a tree τ there is a vertex ν
of degree m ≥ 2. The set of edges adjacent to ν we call the cluster of the power
m. If two vertices of the edges belonging to the same cluster are glued, then we
say that there is the cluster gluing in the tree τ . The other gluings are called
the ordinary ones.

Proposition 4.1.
Assume that γ(τ) is obtained from τ with the help of q = r+s gluings, where

s is the number of cluster gluings. Then

B(π) = B(γ) ≤ 1

N r ps

j
∏

i=1

V4ξi . (4.2)

Remark. We say that the graph γ with r + s gluings and corresponding
partition π are of the type (r, s).

The proof of Proposition 4.1 can be easily derived from two observations.
The first one is that the number of vertices in γ is equal to the number of

groups of variables in π. Thus there are (N − 1)(N − 2) · · · (N − (k − q + 1))
terms in the sum Σ(π) of (4.1).

The second observation follows from the definitions (1.4) and (1.5). It is
easy to see that if in γ there exist two vertices µ and ν such that there are ξ > 1
edges (µ, ν), then such a multiple junction provides the factor Ea2ξ〈d̂2ξN 〉 =
V2ξN

−1p1−ξ. If ξ = 1, then the factor due to this simple junction is obviously
1/N .

It is clear that if there are s gluings in one cluster, then one obtains l multiple
junctions with multiplicities ξ1, . . . , ξl such that ξ1 + . . . ξl = s+ l. Taking into
account elementary inequalities

V2ξ1 · · ·V2ξl ≤ V2ξ1+...2ξl = V2(s+l) ≤ V4s,
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one arrives at (4.2). ✷.

Proposition 4.1 shows that all the partitions of the type (r, s) provide the
same contribution. Now it remains to estimate their number. This number can
be estimated by the number N (r, s) of possibilities to make r+ s gluings in the
tree τ . We also should multiply N (r, s) by the number of different partitions
that correspond to the same graph γ of the type (r, s).

Let us note here that the cluster gluings are independent from the other
gluings in the sense that the number of possibilities to make the cluster gluing
in γ does not depend on the number of other gluings already performed. This
observation together with (4.2) shows that one can treat these two types of
gluings separately.

It is not hard to see that given a graph γ̂(τ) of type (o, s), corresponding
partition π̂ can be uniquely restored. This is because the way along γ̂ preserving
the existent order can be performed uniquely. In other words, the first and the
second parts of the graph ĝ are uniquely determined by γ̂. Thus, the number
of partitions of the type (0, s) coincides with the number Ds(τ) of possibilities
to make s cluster gluings in τ .

The picture differs for the ordinary gluings leading to the cycles of the length
greater than 2. Assume that there is a vertex ν with m > 3 edges ei and there
is a cycle of the length l ≥ 3 starting and ending at ν. If this is the correct loop,
then one can reconstruct the second part of the graph g in several ways because
one can pass the cycle for the second time between passing the edges ei. Also
each loop can be passed in two opposite directions and this makes double the
total number of possible ways.

Now let us estimate the number of partitions of the type (r, s) performed
in a tree τ that has l clusters of powers m1, . . . ,ml, respectively. Clearly, k ≤
m1 + . . .ml ≤ 2k − 2. Let us assume that there are s cluster gluings such that
in cluster i there are si gluings. Then, summarizing the arguments presented
above, one can write that

M
(N,p)
2k ≤

∑

τ∈Tk

k
∑

q=0

∑

r+s=q

1

N r



Dτ (r)

r
∑

{Rl}

Nτ ({Rl})





1

ps





s
∑

{Sl}

Dτ ({Sl})
l

∏

i=1

V4si



 .

(4.3)
In this formulaDτ (r) is the number of possibilities to make r ordinary gluings in
the tree τ , Nτ ({Rl}) is the number of different partitions that can be obtained
from the graph γ(τ) due to presence of correct loops, and Dτ ({Sl}) is the
number of possibilities to make s cluster gluings in τ . Here we have denoted
Rl = (r1, r2, . . . , rl), and Sl = (s1, s2, . . . , sl), such that r1 + r2 + . . . + rl = r.
Obviously, s1 + s2 + . . .+ sl = s. Summations go over all possible combinations
of ri ≥ 0 and si ≥ 0 satisfying conditions presented above.
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Elementary calculation shows that

Dτ (r) ≤
1

r!

(

k

2

)(

k − 1

2

)

· · ·
(

k − r + 1

2

)

≤ k2r

2rr!
. (4.4)

Next, assuming that all cycles obtained are correct, we can write that

Nτ (r) ≡
r

∑

{Rl}

Nτ ({Rl}) ≤
r

∑

{Rl}

l
∏

i=1

(mi − 2)!

(mi − 1− ri)!
. (4.5)

One can obtain the latter expression regarding the observation that if in a
cluster i there are ri correct loops, then the number of different ways to pass
them is estimated by the number of possibilities to distribute ri different balls
into mi − ri boxes. We easily derive from (4.5) that

Nτ (r) ≤
r

∑

{Rl}

l
∏

i=1

2rimri
i ≤ 2r

r
∑

{Rl}

r!

l
∏

i=1

mri
i

ri!
≤ (m1 + . . .+ml)

r = (4k)r. (4.6)

Let us turn to the number of cluster gluings. It is estimated by the product

s
∏

j=1

1

sj !

(

mj

2

)(

mj − 1

2

)

· · ·
(

mj − sj + 1

2

)

≤ 1

s!

s!

s1! · · · sj !

s
∏

j=1

m
2sj
j .

Taking into account inequality V4s1 · · ·V4sl ≤ V4s, we can write that

s
∑

{Sl}

Dτ ({Sl})
l

∏

i=1

V4si ≤
(m2

1 + . . .+m2
l )

s

s!
V4s. (4.7)

Trivial inequality for the variable Σ
(2)
k (τ) ≡ m2

1 + . . .m2
l ≤ 4k2 lead to the

estimate k2s/ps. This estimate is rather rough and is not sufficient for the proof

of theorem 2.1. In the next section we show that
∑

τ Σ
(2)
k (τ) behaves like tkk

1+δ

that reflects the almost linear character of the average tree. This fact together
with inequalities (4.5)-(4.7) implies (2.12).

5 Enumeration of trees

In this section we consider the set Tk the one-root trees τ having k edges drawn
in the upper half-plane. Let us recall that given a tree τ ∈ Tk, one can order its
edges. Let us also give several definitions.

We refer to the edges adjacent to the root as to the root edges. We define
the cluster κ as the set of m edges that have one common vertex ν. We call m
and ν the power and the center, respectively, of the cluster κ.

10



The main result of this section is given by the following statement.

Theorem 5.1.

Let us consider the set G
(m)
k ⊂ Tk of trees that have at least one cluster

with the power m ≥ 2. Then the number of such trees |G(m)
k | ≡ gk(m) satisfies

relation

gk(m) ≤ ktk

(

3

4

)m−2

. (5.1)

To prove theorem 5.1, we need the following auxiliary statement.

Lemma 5.1.

Let us consider the set T
(m)
k of trees that have m ≥ 2 root edges. Then

t
(m)
k ≡ |T (m)

k | ≤ tk−1

(

3

4

)m−2

. (5.2)

Proof. It is easy to see that

t
(m)
k =

k−m
∑

αi

tα1
tα2

· · · tαm
, (5.3)

where the sum is taken over all αi ≥ 0 such that α1 + . . .+ αm = k −m.
Let us derive first the simple estimate

t
(m)
k ≤ tk−1. (5.4)

Regarding (2.10), we can rewrite (5.3) in the form

t
(m)
k =

k−m
∑

q=0

k−m−q
∑

αi

tα1
tα2

· · · tαm−2

q
∑

αi

tαm−1
tαm

=

k−m
∑

q=0

k−m−q
∑

αi

tα1
tα2

· · · tαm−2
tq+1. (5.5)

The latter sum can be regarded as the sum over m − 1 variables αi ≥ 0,
where the term with αm−1 = 0 is absent. Then

t
(m)
k =

k−m+1
∑

αi

tα1
tα2

· · · tαm−1
−

k−m+1
∑

αi

tα1
tα2

· · · tαm−2
≡ t

(m−1)
k − t

(m−2)
k .

Thus, t
(m)
k ≤ t

(2)
k . Relation (2.10) implies equality t

(2)
k = tk−1 that gives (4.4).

11



Let us rewrite (5.3) in the form

t
(m)
k =

k−m
∑

q=0

t
(m−1)
k−q−1tq. (5.6)

If m− 1 ≥ 2, then we can apply (4.4) to t
(m−1)
k−q−1 and obtain that

t
(m)
k ≤

k−m
∑

q=0

tk−q−2tq =

tk−1 − (t0tk−2 + . . .+ tm−1tk−m−1) ≤ tk−1 − tk−2.

Expression (2.8) for tk implies that tk−2 > tk−1/4. Therefore t
(m)
k ≤ 3tk−1/4.

If m − 2 is greater than 2, then we can substitute the last inequality into

(5.6) and obtain that t
(m)
k ≤ tk−1(3/4)

2. Now it is clear that (5.2) is true.
Using similar computations, one can easily prove the following statement.

Lemma 5.2.
Let us denote by nr(s) the number of trees that can be constructed on r ≥ 1

roots with the help of s edges. Then for 2 ≤ l ≤ s

nr+l(s− l) ≤ nr+1(s− 1)

(

3

4

)l−2

≤ nr(s)

(

3

4

)l−1

. (5.7)

Proof theorem 5.1.
We start with the observation that one can construct a tree τ ∈ Tk from

the set Ek of k edges ei that are already enumerated on the way that this
enumeration will agree with the order among tree edges.

Now assume that before this procedure the edges eh, eh+1, . . . , eh+m are
joined to the same vertex and used in the construction as one cluster. According
to Lemma 4.2, this diminishes exponentially with respect to tk the number of
trees obtained on this way. Taking into account that h can vary from 1 to k−m
we obtain the estimate (5.1).✷

In conclusion let us note that (5.1) implies that the number of trees that
have the power of the maximal cluster large enough is exponentially small with
respect to tk. Therefore the number of such clusters is exponentially small with
the total number of clusters in trees τ ∈ Tk. This means that the average degree
of a tree vertex remains finite even in the limit k → ∞. We plan to study this
problem mores systematically in a separate publication.
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6 Proof of theorem 2.1.

As it follows from (5.3) and (5.7), we need to estimate the sum

Qk(s) ≡
k−1
∑

s=1

V4s

s!ps

∑

τ∈Tk

(m2
1 + . . .+m2

l )
s,

where mi are the powers of clusters of τ . Let us denote by m̂(τ) the maximal
cluster power of the tree τ ; then obviously

∑

τ∈Tk

(m2
1 + . . .+m2

l )
s ≤

∑

τ∈Tk

m̂(τ)s(m1 + . . .+ml)
s = (2k)s

∑

τ∈Tk

m̂(τ)s.

Let us consider the set of trees T ′
k such that m̂τ ≤ χ log k, where χ =

(log 4− log 3)−1. Then

(2k)s
∑

τ∈T ′

k

m̂s
τ ≤ tk(2kχ log k)s ≤ tk(2χk)

s(1+θ)

with some θ = δk that can be taken vanishing as k → ∞.
We represent the set Tk \ T ′

k as the sum of sets Gk([χ(j + log k)]) of trees
that have the maximal cluster power equal to [χ(j + log k)], j = 1, 2, . . .. Here
we denoted by [x] the maximal natural number less than or equal to x. Using
estimate (5.1), we can write that

∑

τ∈T ′

k

m̂s
τ ≤

k−[χ log k]
∑

j=1

∑

τ∈Gk(j+[χ log k])

m̂s
τ ≤

e2
k
∑

j=1

χs(log k + j)s exp{−j − log k}ktk ≤ e2(s+ 1)!(χ log k)s.

Thus, we obtain inequality (cf. (2.12))

Qk(s) ≤ p−s(βk)s(1+θ′)V4s, (6.1)

where β is a constant and θ′ can be chosen vanishing when k → ∞.
Now it is easy to derive the estimate (2.4) from (2.12). Taking into account

(6.1) and the estimate V4k ≤ (2k)2δk, we obtain inequality

M
(N,p)
2k ≤ tk

(

(1− αk3N−1)(βk1+2δ+θ′

p−1)
)−1

.

Then we can deduce that inequality

M
(N,p)
2k ≤ εtk ≤ (1 + ε)2k 4k (6.2)
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holds for all k sufficiently large and such that k ≪ N1/3 and k1+δ+θ′ ≪ p.
Regarding definition (1.2), we can write that

M
(N,p)
2k ≤ E〈

∫

|λ|≥2(1+2ε)

λ2kdσ(λ;A
(p)
N )〉 ≥ 4k(1+2ε)2kNE〈#{|λ(N,p)

j | ≥ 2(1+ε)}〉 ≥

4k(1 + 2ε)2kNµa ⊗ µd{ω : ‖A(p)
N ‖ > 2(1 + 2ε)}.

Combining these inequalities with (6.2), we derive that

µa ⊗ µd{ω : ‖A(p)
N ‖ > 2(1 + 2ε)} ≤ N

(

1 + ε

1 + 2ε

)2k

.

Choosing k such that k/ logN → ∞, we obtain that (2.4) holds. Theorem 2.1
is proved.

7 Proof of theorem 2.2

Let us consider the unit vectors ~e(j) with the components

~e(j)(x) =

{

1, if x = j,
0, if x 6= j.

We can write that

‖AN,p‖2 ≥ max j=1,...,N

∥

∥

∥
AN,p~e

(j)
∥

∥

∥

2

= max j=1,...,N

(

A2
N,p

)

(j, j), (7.1)

where
(

A2
N,p

)

(j, j) =

N
∑

y=1

|AN,p(j, y)|2 .

Let us introduce random variables

h
(N)
j =

N
∑

y=j

|AN,p(j, y)|2 , j = 1, . . . , N.

It is clear that the family
{

h
(N)
j

}N

j=1
is the set of jointly independent random

variables and that

max
j=1,...,N

(

A2
N,p

)

(j, j) ≥ max
j=1,...,N

h
(N)
j . (7.2)

Let us note that under conditions of theorem 2.2

h
(N)
j =

1

p

N
∑

y=j

d(j, y) ≡ 1

p
η
(N)
j . (7.3)
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Let us consider the probability distribution of the random variable

H(N) = max
j≤N/2

h
(N)
j .

It is clear that

PN (R) ≡ Pr {HN < R} = Pr

{

max
j≤N/2

η
(N)
j < pR

}

=

N/2
∏

j=1

(

1− Pr
{

η
(N)
j ≥ pR

})

.

It is not hard to prove that the random variables η
(N)
j considered for p ∼ logN

converge as N → ∞ to the Poissonian random variables ζj that are identically
distributed with the parameter p. Then we can write that

1− Pr
{

η
(N)
j ≥ pR

}

≤ 1− Pr {ζj = pR} = 1− ppR

(pR)!
e−p.

Let us show that if p = (log N)1−δ , then ppR [ep(pR)!]−1 decays more slowly
than 2/N and

[

1− ppR

(pR)!
e−p

]

N
2

→ 0 as N → ∞. (7.4)

Using the Stirling formula, we can write that

e−p ppR

(pR)!
∼ ep(R−1)

RpR
= exp

{

−pR

[

logR− r

r − 1

]}

.

It is easy to see that (7.4) holds that together with (7.1) and (7.2) proves relation
(2.6).

8 Summary and discussion

We consider the ensemble of random matrices AN,p with independent entries
such that AN,p has, in the average p non-zero entries per row. We study asymp-
totic behaviour of the spectral norm ‖AN,p‖ in the limit when N, p → ∞ and
p = o(N). We consider the averaged moments

M
(N,p)
2k =

1

N

N
∑

x=1

∑

{yi}

E〈AN,p(x, y1) · · ·AN,p(y2k−1, x)〉 (8.1)

and give a further development to the approach proposed in papers [8, 14].
The method is based on the relation between the even partitions π of variables
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(x, y1, . . . , y2k−1), i.e. those that make the average in (8.1) non-zero, from one
hand and the rooted trees τ ∈ Tk constructed in the upper half-plane with the
help of k edges, from the other hand.

We give the full description for the even partitions π in terms of the graphs
γ obtained from a tree τ by gluing its vertices. The magnitude of the terms
described by partition π is determined by the number of cycles in corresponding
graph γ. This allows one to estimate easily the number of different partitions

and their contributions to M
(N,p)
2k .

We show that the terms of the order p−l M
(N,p)
2k in the limit p = o(N), N →

∞ comes from those partitions π′ that are encoded by the graphs γ′ that have
cycles of the length 2 exactly. This means that the average degree of the vertex
plays the key role in asymptotic properties of large sparse random matrices.

We obtain the estimate showing that the average in certain sense tree is
of the linear structure and the relative number of possible 2-cycles increases
almost linearly with respect to k → ∞. This allows us to derive our main
result that ‖AN,p‖ remains bounded when p ∼ (logN)1+δ, δ > 0. We show
that the value pc = logN is the critical one because ‖AN,p‖ is unbounded when
p ∼ (logN)1−δ.

Our results can be compared with the classical Erdös-Rényi limit theorem
[6]. This statement concerns independent random variables ξ1, . . . , ξN and the
partial sums Xi,p = ξi+ ξi+1+ . . .+ ξi+p. It is proved that the value pc = logN
is the critical one for the X(N) = maxiXi,pp

−1 to be either bounded or not.
One can regard our theorems 2.1 and 2.2 as a limit theorems for stochastic

versions of Erdös-Rényi partial sums. This claim is supported by the fact that

random variables h
(N)
j (5.3) are determined as the sum of approximately p

random variables. Let us also note that theorem 2.1 concerns a random variable
‖AN,p‖ that is greater than X̂(N) ≡ maxj ‖AN,p~e

(j)‖. This could explain the
need of conditions (2.2) that are more restrictive than the standard conditions
of Erdös-Rényi limit theorem.

One can also trace out more subtle link between our results and the well-
known statement concerning the connectedness of random graphs (see e.g.[3]). If
one has N vertices and draws q edges joining randomly chosen vertices, then the
graph obtained will be connected in the limit N → ∞ provided q ≫ N logN . In
our terms the randomly chosen pairs (i, j) to be joined correspond to non-zero
elements in the dilute matrix AN,p. In this context, the transition from discon-
nected graph to the connected one can be regarded as analog of the transition
of AN,p from the class of the tridiagonal matrices (like discrete Schrödinger
operator) to the class of Wigner random matrices.

It should be noted that in mathematical physics literature another critical
values are found for sparse random matrices. In particular, in paper [10] it
is claimed that certain ”density-density” correlation function changes its be-
haviour at finite values of p. Numerical studies [7] show that certain spectral
characteristics of strongly dilute random matrices can depend on finite values of
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p. Therefore our results imply that there can be several different critical values
in the sparse random matrix model.

To complete the discussion, let us note that the dilute random matrices
AN,p with p replaced by N take the form of the Wigner random matrices ÂN .
Therefore technique developed in present paper can be also useful in this case.
This topic is already addressed in Section 2.
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