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Introduction

The theory of separation of variables (SoV) is the theory of special canonical transformations
and the theory of quantum separation of variables is the theory of corresponding integral
transforms. The former was already understood in this sense starting from the development
of the Hamilton-Jacobi approach for solving Liouville integrable systems. The real power of
the latter, which by now is undoubted, requires further investigation and demonstration.

The speciality of a separating transformation stems from its definition as a transform
resulting in new variables being separated or equations being decoupled from one another.
Below we give a (working) definition of SoV in the context of finite-dimensional integrable
Hamiltonian dynamics.

By separation of variables for an n-degrees-of-freedom integrable system having n inde-
pendent Poisson commuting integrals {Hj(q,p)}nj=1 we mean a canonical transformation
from the (old) Darboux variables qj , pj, j = 1, . . . , n, to new Darboux variables uj, vj,
j = 1, . . . , n, which satisfy the following separation equations:

n
∑

j=1

aij(ui, vi)Hj(q,p) = bi(ui, vi), i = 1, . . . , n. (1)

In other words, being expressed in terms of the new variables, the integrals of motion Hj

acquire the following ‘separated form’:

H = A−1B, (A)ij = aij , (B)i = bi, (H)i = Hi. (2)

The conditions that the functions aij and bi in (1) depend on the new (separation) variables
with the index i only, is crucial. It indeed means that the n equations in (1) are really
separated from one another. Therefore, they are n equations, each of one degree of freedom,
sharing only the common values of the Hamiltonians Hj

1.
The above definition includes, as even more special canonical transform, the (classical)

coordinate separation of variables when the new coordinates, say u, are the functions of the
old coordinates (q) only, and they do not depend on the momenta (p). See [18, 32, 33, 10] for
some history of this sub-class of transformations and for many examples of such situation.

General separating canonical transforms, however, have new (separation) variables which
are non-trivial functions of all 2n initial canonical variables,

uj = uj(q,p), vj = vj(q,p), j = 1, . . . , n, (3)

and which satisfy the standard Poisson brackets

{uj, uk} = {vj, vk} = {uj, vk} = 0, j 6= k, {vj, uj} = 1, j = 1, . . . , n. (4)

Examples of such separating canonical transforms are usually much more sophisticated than
those of the coordinate ones. As far as I know, the first explicit example was given by van
Moerbeke in 1976 in [48] concerning the separation of variables for the periodic Toda lattice
(see also [11]). In 1980 Kozlov [30] rewrote the classical results of Goryachev and Chaplygin
on integration in quadratures of the Goryachev-Chaplygin top as a simple canonical trans-
form. The method of SoV, viewed as a method of special canonical transformations, was

1as one can see, this definition is similar to the one defining Stäckel systems
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further developed by Komarov in a series of works on tops, including quantum separation of
variables, see [20, 21, 22]. Many further examples have been produced since 1982, with the
theory benefiting mostly from the developments of the algebraic geometric and r-matrix un-
derstanding of the method of separation of variables. This led to a rather satisfying picture
of the present state-of-art of non-coordinate separation of variables. See [54] and [16, 17] for
more details.

Notice here that in the realm of the algebraic geometry usually associated with many
Liouville integrable systems, the separation equations (1) appear as equations for a set of
separating Darboux coordinates on the spectral curve of a Lax matrix L(u), namely:

(1) ⇔ det(L(ui)− vi) = 0, i = 1, . . . , n. (5)

SoV is not unique, so that in the situation when there exist several Lax matrices for the
same integrable system, one should expect several separations. But even for the same Lax
matrix there are many different separations given by different sections 2, cf. [36, 39, 43].

In the present paper we find a new canonical transform which simultaneously separates
two classical tops: the Kowalevski top [29] and the Goryachev-Chaplygin top [13, 9]. The
latter top is integrable only for the zero value of the square integral, ℓ = 0 (which is one of
the Casimirs), so that although the canonical transform will be defined for arbitrary value
of ℓ, it will separate the Kowalevski top (and the other one) only for ℓ = 0. SoV for the
Kowalevski top for ℓ 6= 0, which would generalize the found transform, remains an unsolved
problem.

Sretenskii [55] discovered an integrable extension of the Goryachev-Chaplygin top adding
the gyrostatic term to the Hamiltonian. Komarov [24] and, independently, Yehia [57] found
the gyrostat extension of the Kowalevski top in 1987. The quantum Goryachev-Chaplygin
gyrostat was treated in [23]. For quantum Kowalevski gyrostat see [24]. Here we will always
include such gyrostatic terms (cf. the parameter c below).

In Section 1 we give definitions of the integrable systems concerned and their Lax matri-
ces. In Section 2 we recall the separation method with main results presented in Section 3. In
Section 4 we re-write the found separating transformation through the generating function.
Solution of the inverse problem is given in Section 5. Finally, some concluding remarks can
be found in the last Section.

1 Algebra e(3), tops and Lax matrices

The Poisson brackets for the e(3) generators Jk, xk, k = 1, 2, 3, are defined in the standard
way:

{Jk, Jl} = εklmJm, {Jk, xl} = εklmxm, {xk, xl} = 0, (6)

where εklm is the completely anti-symmetric tensor, ε123 = 1.
The Casimirs of the bracket (6) have the form

C1 = x1J1 + x2J2 + x3J3 = ℓ, C2 = x2
1 + x2

2 + x2
3 = 1. (7)

The Kowalevski gyrostat has the Hamiltonian H ,

H = J2 + (J3 + c)2 − 2bx1, (8)
2those usually differ by the number of non-moving poles of the Baker-Akhiezer function
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and the second integral K,

K = (J3 + c)2J2 + 2b(J3 + c)(J1x3 − J3x1)− b2x2
2 − 2bℓJ1, (9)

which are Poisson commuting:
{H,K} = 0. (10)

Here we use the following notation for the square of the vector of angular momentum:

J2 := J2
1 + J2

2 + J2
3 . (11)

The two integrals of motion, H and K, define what is called Kowalevski gyrostat. It is a
Liouville integrable system with two degrees of freedom.

Another integrable system closely related to the Kowalevski gyrostat is the Goryachev-
Chaplygin gyrostat. It is integrable only when ℓ = 0 and is defined by two Poisson commuting
integrals of motion:

Ĥ = J2
1 + J2

2 + (2J3 + c)2 − 4bx1, (12)

K̂ = (J3 + c)(J2
1 + J2

2 ) + 2bx3J1. (13)

The Kowalevski top without the gyrostatic term (c = 0) was integrated by Kowalevski
in 1889 [29]. See also [35] where a 2× 2 Lax matrix was constructed for the Kowalevski top
which is related to the separation of variables hidden in Kowalevski’s integration. There is a
large body of literature dedicated to the Kowalevski top, including the study of its geometry.
See [20, 24, 26, 14, 51, 5, 15, 8, 42, 28, 56, 47, 44, 25, 45, 46] to name just a few references.
The Goryachev-Chaplygin top and gyrostat also received much attention in the literature
starting from the discovery of this integrable top by Goryachev and Chaplygin in 1900. We
refer the reader to the works [13, 9, 30, 21, 22, 23, 52, 6, 12, 7, 27].

In parallel with the notations J1, J2 and x1, x2 we will be using their equivalent complex
versions J+, J− and x+, x−:

J± = J1 ± iJ2, x± = x1 ± ix2, (14)

with the e(3) Poisson brackets (6) replaced, correspondingly, by

{J3, J±} = ∓iJ±, {J+, J−} = −2iJ3, {J3, x±} = {x3, J±} = ∓ix±, (15)

{J+, x−} = {x+, J−} = −2ix3, {J3, x3} = {J+, x+} = {J−, x−} = 0, (16)

{xk, xl} = 0, k, l = ±, 3, (17)

and the Casimirs (7) by

2C1 = x+J− + x−J+ + 2x3J3 = 2ℓ, C2 = x+x− + x2
3 = 1. (18)

A 4 × 4 Lax matrix for the Kowalevski gyrostat was found in [51] and used in [8] to
integrate the problem in terms of Prymian theta-functions. This integration is different
from the one performed by Kowalevski. It is not obvious how to construct a separation of
variables related to such Lax matrix. With the general case still being an interesting and
challenging problem, we show here how to do it in the special case, when ℓ = 0. That is,
for this special case we construct a new separation of variables for the Kowalevski top (and
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simultaneously for the Goryachev-Chaplygin top) with separation variables belonging to the
spectral curve of the 4× 4 Lax matrix from [51].

The required Lax matrix is as follows:

L(u) = −i













c
u

− bx
−

u2

J
−

u
− bx3

u2

bx+

u2 − c
u

bx3

u2 −J+
u

J+
u

− bx3

u2

2J3+c
u

2 + bx+

u2

bx3

u2 −J
−

u
−2− bx

−

u2 −2J3+c
u













. (19)

The spectral curve Γ: det(L(u)− v) = 0, of the Lax matrix (19) has the form

Γ :

(

v2 +
H

u2
− b2

u4

)2

− 4
u4v2 +K

u4
− 4

c2u4 − b2ℓ2

u6
= 0, (20)

or,

v4 − 2v2
(

2− H

u2
+

b2

u4

)

− 4c2

u2
+

H2 − 4K

u4
+

2b2(2ℓ2 −H)

u6
+

b4

u8
= 0. (21)

As I noticed in [31] (cf. also [7]) this Lax matrix contains the 3× 3 Lax matrix L̂(u) for
the Goryachev-Chaplygin top as its (1, 1)-minor:

L̂(u) = −i







− c
u

bx3

u2 −J+
u

− bx3

u2

2J3+c
u

2 + bx+

u2

−J
−

u
−2− bx

−

u2 −2J3+c
u





 . (22)

The spectral curve Γ̂: det(L̂(u)− v) = 0, of the Lax matrix (22) has the form

v3 − i
cv2

u
−
(

4− Ĥ

u2
+

b2

u4

)

v +
4ic

u
+ i

2K̂ − cĤ

u3
+ ib2

c+ 2x3ℓ

u5
= 0. (23)

The Lax matrix (22) (and the curve (23)), for ℓ = 0, was used in [7] to construct explicit
theta-function formulas solving the dynamics of the Goryachev-Chaplygin top.

In the present paper I take one step further in studying a close connection between two
problems and show that there exist separation variables uj, vj, j = 1, 2, which are canonical

and which, for ℓ = 0, belong to both curves, Γ and Γ̂, simultaneously:

{

det(L(uj)− vj) = 0,

det(L̂(uj)− vj) = 0,
j = 1, 2, (24)

{uj, uk} = {vj , vk} = {uj, vk} = 0, j 6= k, {vj , uj} = 1, j = 1, 2. (25)

Therefore, I construct a new separation of variables which is characterized by the property
of being a simultaneous separation for both tops.

2 The method of SoV

Separation variables had been generally used to construct closed expressions for the action
variables (in terms of abelian integrals) or to get a separated representation for the action
function. Therefore, the SoV method had served for a long time an important but technical
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role in solving Liouville integrable systems of classical mechanics. A new and much more
exciting application of the method came with the development of quantum integrable sys-
tems. Because of the fact that quantization of the action variables seemed to be a rather
formidable task, quantum separation of variables became an inevitable refuge. In fact, it
has been successfully performed for many families of integrable systems (see, for instance,
survey [54]).

Starting from about 1982 the method of separation of variables gets connected with the
R-matrix formalism of the quantum inverse scattering method, developed during that time
by the Leningrad School. It was noticed by Komarov (see [52] and [54]) that for the 2 × 2
L-operators (Lax matrices) the separation variables ought to be the zeros of the off-diagonal
element of the L-operator. This observation was fully exploited by Sklyanin in [52, 53]
who developed a beautiful (pure algebraic) setting for the method within the framework
of the R-matrix technique. Since then this approach took off and led to separations for
many families of integrable systems. The method was further generalized to include higher
rank L-operators and non-standard normalizations, see the 1995 review [54] and the later
developments in [19, 37, 38, 34, 36, 39, 40, 41].

An alternative, algebraic geometric approach, which dates back to Adler and van Moer-
beke [3, 4] and Mumford [49] and includes many researchers, have been developed starting
from about the same time (see, for instance, [50, 15, 1, 2, 56, 16, 17]). It is based on thorough
studies of the geometry of lower genus (algebraic completely) integrable systems. It has also
led to many important new separations for complicated systems and tops.

Below we recall the most important formulas of the SoV method, adopting the algebraic
description and following mainly the work [36] (see also [54, 34]).

A Baker-Akhiezer function f is the eigenvector of the Lax matrix for an integrable system

L(u) f = v f, (26)

considered as a function on the spectral curve Γ : det(L(u)− v) = 0. The inverse scattering
method pins down the separation variables as poles of this function (see the first exam-
ple of this general fact in [48] and [11]). There is, however, a large freedom of similarity
transformations of the Lax matrix,

L(u) 7→ V L(u)V −1, (27)

which do not change the spectrum of L(u) but change the divisor of poles of f . This
freedom can be characterized, and therefore fixed, by introducing a normalization of the
Baker-Akhiezer function,

~α · f ≡
N
∑

i=1

αi fi = 1 , ( f ≡ (f1, . . . , fN)
t ) , (28)

which is given by a normalization (row-) vector ~α = (α1, . . . , αN). In other words, one
considers a section of the line-bundle (cf. [16, 17, 43]). A proper (separating) normaliza-
tion/section should give a divisor D =

∑n
j=1(uj, vj) of moving poles of f , consisting of n

(independent) points on the curve Γ whose coordinates are canonical variables. The canon-
icity of the separation variables is usually checked by a calculation involving a r-matrix,
but in lower genus situations it can be proved in a direct calculation. For a non-separating
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normalization/section the divisor D will usually have more points than needed, which will
not give canonical variables.

Many families of Lax matrices have a simple separating normalization when one of the
components of the Baker-Akhiezer vector is put 1 (and, hence, one looks at the common
poles of the other components), which corresponds to the following vector ~α 3:

~α0 ≡ (1, 0, . . . , 0, 0) . (29)

We will call such normalization the standard normalization. There are examples of non-
standard (dynamical) separating normalizations for the systems with elliptic r-matrix [54,
17], Calogero-Moser systems [36] and the D-type Toda lattice [34]. See also [43] where
non-standard dynamical separating normalizations were used to construct Bäcklund trans-
formations. Generally, Lax matrices with extra symmetries require non-standard separating
normalizations.

Now, assuming that we know a separating normalization ~α for an integrable system
with the Lax matrix L(u), let us derive the equations for the separation variables (uj, vj),
j = 1, . . . , n.

From the linear problem (26) and normalization (28) we derive that ~α · Lk f = vk , k =
0, . . . , N − 1, hence,

f =













~α

~α · L(u)
...

~α · LN−1(u)













−1

·













1
v
...

vN−1













. (30)

Another useful representation for the eigenvector f , which can be verified directly, is as
follows:

fj =
(L(u)− v)∧jk

(~α · (L(u)− v)∧)k
, ∀k = 1, . . . , N , (31)

where the wedge denotes the adjoint matrix. It follows from it that the poles of f are the
common zeros of the vector equation:

~α · (L(u)− v)∧ = 0 . (32)

Eliminating v from these equations, one can get a single equation for the u-components of
the separating variables as zeros of the following determinant:

B(u) = det













~α

~α · L(u)
...

~α · LN−1(u)













= 0 . (33)

Notice that this is exactly the denominator in the representation (30).
Also, from the equations (32) we can obtain explicit formulas for the v-components of

the separation variables in the form
v = A(u), (34)

with A(u) being rational functions of the entries of L(u). Let us derive those formulas.

3or to any other similar vector with the 1 elsewhere
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Define the matrices L(p), p = 1, . . . , N , with the following entries:

L
(p)
ij :=

N
∑

i1=1

· · ·
N
∑

ip−1=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Li,j Li,i1 · · · Li,ip−1

Li1,j Li1,i1 · · · Li1,ip−1

...
...

. . .
...

Lip−1,j Lip−1,i1 · · · Lip−1,ip−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, p = 2, 3, . . . , N , (35)

and put L(1) ≡ L. These matrices satisfy the recursion relation of the form

L(p) = L
(

trL(p−1)
)

− (p− 1)L(p−1)L . (36)

Introduce the matrix B(u) by the formula

B(u) :=

















~α · L(1)(u) L−1(u)
~α · L(2)(u) L−1(u)

1
2
~α · L(3)(u) L−1(u)

· · ·
1

(N−1)!
~α · L(N)(u) L−1(u)

















. (37)

With the help of this matrix we can represent the system of equations (32) as a system of
linear homogeneous equations for the vector of powers of (−v):

~α · (L(u)− v)∧ ≡ ((−v)N−1, (−v)N−2, . . . , 1) · B(u) = 0, (38)

from which we derive that

(−v)j−i =
(B∧(u))ki
(B∧(u))kj

, ∀k . (39)

The formulas (39) give plenty of representations for the rational functions A(u) in (34), all
of them being compatible on the separation variables since, because of the equality

B(u) = (−1)[N/2] det(B(u)) , (40)

the matrix B∧(uj) has rank 1. For more details see [36].

3 A new separation of variables

Consider the standard normalization vector

α0 = (1, 0, 0, 0) (41)

for the 4× 4 Lax matrix (19). Then, for ℓ = 0, the defining equations,

(L(u)− v)∧1k = 0, k = 1, 2, 3, 4, (42)

give the following polynomial B(u) for the separation variables u1 and u2:

B(u) = u4 +B2u
2 +B0 = (u2 − u2

1)(u
2 − u2

2), (43)
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B2 =
2b(J3 + c)(x3J− − x−J3) + b2(x2

− + 2x2
3)

J2
− + 2bx−

+
2b2x3x−(cJ− + bx3)

J2
−(J

2
− + 2bx−)

, (44)

B0 = b2
((J3 + c)J− + bx3)

2

J2
−(J

2
− + 2bx−)

. (45)

Note also the following useful formula for the variable B2:

B2 =
b2x2

−

J2
− + 2bx−

− 2
√
B0

aJ−

√

J2
− + 2bx−

(

x−J−J3 − (J2
− + bx−)x3

)

, (46)

which is a linear expression in terms of J3 and x3.
The corresponding rational function A(u) can be chosen as follows:

A(u) =
A−1

u
+

A−3

u3
, (47)

A−1 = ic +
ix3(J

2
− + 2bx−)

x−J−

, A−3 = ib
(J3 + c)J− + bx3

x−J−

. (48)

Now, it is easy to check the following Poisson brackets between the two functions:

{A(u), A(v)} = {B(u), B(v)} = 0,

{A(u), B(v)} = 2
u3(u2−v2)

(u4B(v)− v4B(u)) ,
∀u, v ∈ C. (49)

Using these formulas one derives that the variables u1, u2, defined by (43)–(46), and their
conjugated counterparts,

vj = A(uj), j = 1, 2, (50)

are indeed canonical (Darboux) variables:

{uj, uk} = {vj , vk} = {uj, vk} = 0, j 6= k, {vj , uj} = 1, j = 1, 2. (51)

These variables by construction satisfy (for ℓ = 0) to (42) and, therefore, to (24).
Notice here that the definitions of the separation variables do not depend on the value

of ℓ and also that the brackets (51) are true for any ℓ.

4 Generating function

Let us fix a special representation of the underlying e(3) algebra which will allow us to write
down the found canonical transformation explicitly through the generating function. It is a
kind of holomorphic representation in terms of the Darboux variables qj , pj, j = 1, 2:4

J− = q1, x− = q2, (52)

J3 = i(q1p1 + q2p2) + ℓ, x3 = iq2p1 + 1, (53)

J+ = q1p
2
1 + 2q2p1p2 − 2iℓp1 − 2ip2, x+ = q2p

2
1 − 2ip1. (54)

4cf. a holomorphic representation of sl(2)
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The meaning of this realization is in the fact that the variables J− and x− do not depend
on the momenta p and the variables J3 and x3 are linear in momenta. This together with
linearity of the variables u1u2 and u2

1+u2
2 in terms of J3 and x3 make it possible to integrate

the equations explicitly in terms of elementary functions.
Finally, the canonical transformation defined in the previous Section is given by the

following generating function F (u|q):

F (u|q) = iq1
q2

+
ic

2
log(q21 + 2bq2) + iℓ log(q2) +

ib2q2

2u1u2

√

q21 + 2bq2

+
i

2

√

q21 + 2bq2

(

2
u1u2

b
− u2

1 + u2
2

q2u1u2

)

. (55)

Therefore, the equations of the change of variables (q,p) ↔ (u,v) are written in the form

pj =
∂F (u|q)

∂qj
, vj = −∂F (u|q)

∂uj
, j = 1, 2. (56)

5 Inverse problem

The inverse problem, i.e. finding expressions for the initial e(3) variables in terms of sepa-
ration variables, also has an explicit solution which is given below:

q21 = −b2
u2
1(u

4
2v

2
2 − b2)− u2

2(u
4
1v

2
1 − b2)

4u6
1u

6
2(u1v1 − u2v2)2

(

u2
1(u

4
2v

2
2 − b2)− u2

2(u
4
1v

2
1 − b2) + 4u2

1u
2
2(u

2
1 − u2

2)
)

,

(57)

J− = q1, x− =
b(u2

1 − u2
2) (u

2
1(u

4
2v

2
2 − b2)− u2

2(u
4
1v

2
1 − b2))

2u4
1u

4
2(u1v1 − u2v2)2

, (58)

J3 =
1

2u2
1u

2
2(u1v1 − u2v2) (u

2
1(u

4
2v

2
2 − b2)− u2

2(u
4
1v

2
1 − b2))

×

×
(

ib4(u2
1 − u2

2)
2 + 2cu4

1u
4
2(u1v1 − u2v2)

(

u2
1(v

2
1 − 2)− u2

2(v
2
2 − 2)

)

+ 2cb2u2
1u

2
2(u1v1 − u2v2)(u

2
1 − u2

2) + 2ib2u2
1u

2
2(u

2
1v

2
1 − u2

2v
2
2)(u

2
1 − u2

2)

+ iu4
1u

4
2(u1v1 − u2v2)

(

v1u
3
1(v

2
1 − 4)− v2u

3
2(v

2
2 − 4) + u1u2v1v2(u1v1 − u2v2)

) )

, (59)

x3 =
2iq1u

2
1u

2
2 (u

2
1(u1v1 − ic)− u2

2(u2v2 − ic)

b (u2
1(u

4
2v

2
2 − b2)− u2

2(u
4
1v

2
1 − b2))

, (60)

J+ = − 4q1u
4
1u

4
2(u1v1 − u2v2)

b2 (u2
1(u

4
2v

2
2 − b2)− u2

2(u
4
1v

2
1 − b2))

2 ×

×
(

u3
1u

3
2v1v2(u1v1 − u2v2) + b2(u3

1v1 − u2
2v2)− icb2(u2

1 − u2
2)

− icu2
1u

2
2(u

2
1v

2
1 − u2

2v
2
2)− c2u2

1u
2
2(u1v1 − u2v2)

)

, (61)

x+ =
1

b (u2
1(u

4
2v

2
2 − b2)− u2

2(u
4
1v

2
1 − b2))

2 ×

10



×
(

−4icb2u2
1u

2
2(u

2
1 − u2

2)(u
3
1v1 − u3

2v2) + 2b2u2
1u

2
2(u

2
1 − u2

2)(u
4
1v

2
1 − u4

2v
2
2)

−2b2c2u2
1u

2
2(u

2
1 − u2

2)
2 − 2c2u4

1u
4
2(u

2
1 − u2

2)
(

u2
1(v

2
1 − 4)− u2

2(v
2
2 − 4)

)

− 4icu4
1u

4
2(u

3
1v1 − u3

2v2)
(

u2
1(v

2
1 − 4)− u2

2(v
2
2 − 4)

)

+ 2u4
1u

4
2

(

(u2
1v

2
1 − u2

2v
2
2)(u

4
1v

2
1 − u4

2v
2
2)− 4(u3

1v1 − u3
2v2)

2
) )

. (62)

6 Concluding remarks

A separation of variables for the Kowalevski gyrostat, with ℓ = 0, is found for the first time.
It appeared to separate the Goryachev-Chaplygin gyrostat as well, thereby giving another
separation for this problem.

If we put c = 0, i.e. switch off the gyrostatic term, we can compare our results with
the original Kowalevski’s and Goryachev-Chaplygin’s separations for the respective tops (in
the ℓ = 0 case). It is easy to see that the new separation is as complicated as the (simple)
Goryachev-Chaplygin separation and it is much simpler than the Kowalevski separation.

Hence, the new separation stands a good chance to be quantized.

Acknowledgements

The support of the EPSRC is gratefully acknowledged.

References

[1] M. R. Adams, J. Harnad and J. Hurtubise (1991). Coadjoint orbits, spectral curves and
Darboux coordinates. In The geometry of Hamiltonian systems (Berkeley, CA, 1989), pp.
9–21. New York: Springer.

[2] M. R. Adams, J. Harnad and J. Hurtubise (1993). Darboux coordinates and Liouville-
Arnol′d integration in loop algebras. Comm. Math. Phys. 155(2), pp. 385–413.

[3] M. Adler and P. van Moerbeke (1980a). Completely integrable systems, Euclidean Lie
algebras, and curves. Adv. in Math. 38(3), pp. 267–317.

[4] M. Adler and P. van Moerbeke (1980b). Linearization of Hamiltonian systems, Jacobi
varieties and representation theory. Adv. in Math. 38(3), pp. 318–379.

[5] M. Adler and P. van Moerbeke (1988). The Kowalewski and Hénon-Heiles motions as
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