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Intelligent systems in the context of surrounding environment
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We investigate the behavioral patterns of a population of agents, each controlled by a simple
biologically motivated neural network model, when they are set in competition against each other
in the Minority Model of Challet and Zhang. We explore the effects of changing agent characteris-
tics, demonstrating that crowding behavior takes place among agents of similar memory, and show
how this allows unique ‘rogue’ agents with higher memory values to take advantage of a majority
population. We also show that agents’ analytic capability is largely determined by the size of the
intermediary layer of neurons.

In the context of these results, we discuss the general nature of natural and artificial intelli-
gence systems, and suggest intelligence only exists in the context of the surrounding environment
(embodiment).

Source code for the programs used can be found at http://neuro.webdrake.net/.

PACS numbers: 87.19.La, 07.05.Mh, 05.65.+b, 87.18.Sn

I. INTRODUCTION

Much research has been done into the computational
possibilities of neural networks. Yet the engineering and
industrial applications of these models have often eclipsed
their use in trying to come to an understanding of natu-
rally occurring neural systems.

Whereas in engineering we often use single neural net-
works to attack a single problem, in nature we see neural
systems in competition. Humans, for example, invest in
the stock market, attempt to beat their business rivals,
or, in extreme examples, plan wars against each other.
We are, as Darwin identified a century and a half ago, in
competition for natural resources; our neural systems—
i.e. our brains—are among the main tools we have to help
us succeed in that competition.

In collaboration with Chialvo, one of the authors of this
paper has developed a neural network model that pro-
vides a biologically plausible learning system [1], based
essentially around ‘Darwinian selection’ of successful be-
havioral patterns. This simple ‘minibrain’—as we will
refer to it from now on—has been shown to be an ef-
fective learning system, being able to solve such prob-
lems as the exclusive-or (xor) problem and the parity
problem. Crucially, it has also been shown to be easily
able to un-learn patterns of behavior once they become
unproductive—an extremely important aspect of animal
learning—while still being able to remember previously
successful responses, in case they should prove useful in
the future. These capabilities, combined with the sim-
plicity of the model, provide a powerful case for biological
feasibility.

In choosing a competitive framework for this neural
network, we follow the example of Metzler, Kinzel and
Kanter [2], using the delightfully simple model of com-
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petition within a population provided by the Minority
Model of Challet and Zhang [3] (itself based on the ‘El
Farol’ bar problem created by Arthur [4]). In this game, a
population of agents has to decide, independently of each
other, which of two groups they wish to join. Whoever is
on the minority side ‘wins’ and is given a point. By com-
bining these two models—replacing the fixed strategies
of agents in Challet and Zhang’s model with agents con-
trolled by the Minibrain neural system—we have a model
of neural systems in competition in the real world.

This is not the first model of coevolution of strategies in
a competitive game—a particularly interesting example
is Lindgren and Nordahl’s investigation of the Prisoner’s
Dilemma, where players on a cellular grid evolve and
mutate strategies according to a genetic algorithm [5].
However, we believe that the biological inspiration for
the Minibrain model, and its demonstrated capacity for
fast adaption, makes our model of special interest.

The structure of this paper is as follows: we begin with
a discussion of what we mean when we talk about ‘intel-
ligence’, noting how historical influences have shaped our
instinctive ideas on this subject in potentially misleading
ways; in particular, we take issue with the suggestion that
a creature’s intelligence can be thought of as separate
from its physical nature. We suggest that intelligence
can only be measured in the context of the surrounding
environment of the organism being studied: we must al-
ways consider the embodiment of any intelligent system.

This is followed by the account of the computer exper-
iments we have conducted, in which we investigate the
behavioral patterns produced in the Minibrain/Minority
Model combination, and the ways in which they are af-
fected by changing agent characteristics. We show how
significant crowding behavior occurs within groups of
agents with the same memory value, and demonstrate
how this can allow a minority of high-memory agents
to take advantage of the majority population and ‘win’
on a regular basis—and, by the same token, condemn a
population of largely similar agents to continually losing.

http://arxiv.org/abs/nlin/0201046v1
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Indeed, perhaps the most startling implication of this
model is that, in a competitive situation, having a ‘strat-
egy’ might well prove worse than simply making random
decisions.
These results are in strong contrast with those of Met-

zler, Kinzel and Kanter, whose paper inspired these ex-
periments. In their simulations, a homogeneous popula-
tion of perceptron agents relaxes to a stable state where
all agents have an average 50% success rate, and overall
population performance is better than random [2]. The
perceptrons learn, in effect, to produce an efficient mar-
ket system, and do not suffer from the crowding effect
produced by minibrain agents. By the same token, how-
ever, it seems unlikely that a superior perceptron could
win on a similar scale to a superior Minibrain.
We conclude with further discussion of the nature of

intelligence, suggesting a conceptual approach that we
believe will enable easier investigation of both natural
and artificially created intelligent systems. Having al-
ready suggested that we must consider ‘embodied’ in-
telligences, we provide criteria for cataloguing that em-
bodiment, consisting of hardwired parts—the input and
output systems of the organism, the feedback mechanism
that judges the success or failure of behavioral patterns—
alongside a dynamic decision-making system that maps
input to output and updates its methodology according
to the signals received from the feedback system.

II. WHAT IS ‘INTELLIGENCE’?

The E. Coli bacterium has a curious mode of behavior.
If it senses glucose in its immediate surroundings, it will
move in the direction of this sweet nourishment. If it
does not, it will flip over and move a certain distance in
a random direction, before taking stock again, and so on
and so on until it finds food.
Bacteria are generally not considered to be ‘intelligent’.

Yet this is a systematic response to environmental stim-
uli, not necessarily the best response but nevertheless a
working response, a ‘satisficing’ response. The E. Coli
bacterium is responding in an intelligent way to the prob-
lem of how to find food. How do we square this with our
instinctive feeling that bacteria are not intelligent? Are
our instincts mistaken? How, instinctively, do we define
intelligence?
Historically, philosophers have often proposed the idea

of a separation between ‘body’ and ‘mind’. The human
mind, from this point of view, is something special, some-
thing distinct, something not bound up in the messy busi-
ness of the real world. It’s this, we are told, that sepa-
rates us from the animals: we have this magical ability to
understand, to think, to comprehend—the ability to view
the world in a rational, abstract way and thus arrive at
some fundamental truth about how the universe works.
The idea of separate compartments of reality for body

and mind has lost its stranglehold over our way of think-
ing, but its influence lingers on in our concept of intelli-

gence. Our minds, our consciousness, may be the result
of physical processes, but we still cling to the idea that
we have the ability to discover an abstract reality, and
it’s this idea that informs our notion of ‘intelligence’. An
intelligent being is one that can see beyond its own per-
sonal circumstances, one that is capable of looking at the
world around it in an objective fashion. Given enough
time, it can (theoretically) solve any problem you care to
put before it. It is capable of rising above the environ-
ment in which it exists, and comprehending the nature
of True Reality.
Naturally, this has informed our ideas about artificial

intelligence. An artificially intelligent machine will be
one that works in this same environmentally uninhibited
manner. If we tell it to drive a car, it will be able (given
time to teach itself) to drive a car. If we tell it to cook a
meal, it will be able to cook a meal. If we tell it to prove
Fermat’s Last Theorem . . . All of these, of course, assume
that we have given it some kind of hardware with which
to gather input and make output to the relevant system,
whether car, kitchen or math textbook—assume, indeed,
that we have these systems present at all—and it’s this
necessity that causes us to realize that in fact, the mind
and its surrounding environment (including the physical
body of the individual) are inseparable. Our brains are
the product of evolution; they are not an abstract, in-
finite system for solving abstract, infinite problems, but
rather a very particular system for solving the very par-
ticular problems involved in coping with the environmen-
tal pressures about us. In this respect, we’re no different
from the E. Coli bacterium we discussed earlier: the en-
vironments we inhabit are different, and consequently so
are our behavioral patterns, but on a conceptual level
there is nothing to choose between us.
Intelligence only exists in the context of its surround-

ing environment. So, if we are to attempt to create an
artificial intelligence system, we must necessarily also de-
fine a world in which it will operate. And the question
of how intelligent that system is can only be answered
by examining how good it is at coping with the problems
this world throws up, by its ability to utilize the data
available to it to find working solutions to these prob-
lems.

III. ‘MINIBRAIN’ AGENTS IN THE MINORITY
MODEL

The ‘minibrain’ neural system, developed by one of
the authors in collaboration with Chialvo [1], is an ex-
tremal dynamics-based decision-making system that re-
sponds to input by choosing from a finite set of outputs,
the choice being determined by Darwinian selection of
good (i.e. successful) responses to previous inputs (neg-
ative feedback). We use the simple layered version of
this model, consisting of a layer of input neurons, a sin-
gle intermediary layer of neurons, and a layer of output
neurons; each input neuron is connected to every inter-
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FIG. 1: Architecture of minibrain agents. Every input neu-
ron is connected to every intermediary neuron, and every in-
termediary neuron is connected to every output neuron. For
our setup, we have two outputs, and 2m inputs, where m is
the agent’s memory.

mediary neuron by a synapse, and similarly each interme-
diary neuron is connected to every output neuron. Every
synapse is assigned a ‘strength’, initially a random num-
ber between 0 and 1.
Competing against each other in the Minority Model,

each agent receives data about the past, and gives as out-
put which of the two the groups—we label them 0 and
1—that it wishes to join. We follow the convention of
Challet and Zhang’s version of the game, that this knowl-
edge is limited to knowing which side was the minority
(i.e. winning) group at each turn in a finite number of
past turns [3], so that agent input can be represented by
a binary number of m bits, where m is the agent’s mem-
ory. So, for example, if in the last three turns group 0
lost, then won, then won again, this would be represented
by the binary number 110, where the left-most bit rep-
resents the most recent turn, and each bit is determined
by the number of the losing (majority) group that turn
(we choose these settings in order to match the way our
computer code is set up).
In order to preserve symmetry of choice between the

two groups, an agent with a memory of m turns will
have 2m input neurons, with the first of the ith pair of
neurons firing if the bit representing the result i turns
ago is 0, the second neuron of the ith pair firing if the
result was 1. For example, if an agent with a memory
of 3 (and hence with 6 input neurons) is given the past
110 as we discussed above, then the second, fourth and
fifth input neurons will fire. Fig. 1 gives a picture of this
architecture (to avoid over-complicating the diagram, not
all connections are shown).
To determine the intermediary neuron that fires, we

take for each the sum of the strengths of the synapses
connecting it to the firing input neurons. The interme-
diary neuron with the greatest such sum is the one that
fires. Then, the output neuron that fires (0 or 1) is the
one connected to the firing intermediary neuron by the
strongest synapse.
Each turn, the synapses used are ‘tagged’ with a chem-

ical trace. If the output produced that turn is satisfac-

FIG. 2: Success rates of a mixed population of minibrain
agents against their memory. Agents have 48 intermediary
neurons.

tory (in this setup, if the agent joins the minority group),
no further action is taken. If the output is not satisfac-
tory, however, a global feedback signal (e.g. the release
of some hormone) is sent to the system, and the tagged
synapses are ‘punished’ for their involvement in this bad
decision by having their strengths reduced (in our model,
by a random number between 0 and 1). As we noted in
the Introduction, this Darwinian selection of successful
behavioral patterns has already been shown to be an ef-
fective learning system when ‘going solo’ [1]; how will it
cope when placed in competition?
Fig. 2 shows the success rates of agents of different

memory values. A group of 251 agents has an even spread
of memory values between 1 and 8; each agent has 48 in-
termediary neurons. The figure shows their success rates
over a period of 2× 104 turns.
To a certain extent, these results reflect those found

by Challet and Zhang when they explore the behavior
of a mixed population of fixed-strategy agents [3], inas-
much as performance improves with higher memory but
tends to saturate eventually. Standard deviation within
each memory group is much lower for minibrain agents,
however, suggesting crowding behaviour within memory
groups, and we will later show that this does indeed oc-
cur.
Disappointingly, we see that not one agent achieves as

much as a 50% success rate—they would all be better off
tossing coins to make their decisions. The even spread
of memory values throughout the population means that
agents with higher memory values cannot take full ad-
vantage of their extra knowledge: the crowding behavior
between agents with the same memory cancels out most
of the positive effects. It’s no good having lots of data on
which to base your decision if lots of other people have
that same data—everyone will come to the same conclu-
sion and, in the Minority Model, that means losing.
Necessarily, then, one of the conditions for an agent to

succeed—i.e. to beat the coin-tossing strategy—is that
there must be few other agents with the same amount of
memory. This is demonstrated starkly in Fig. 3, display-
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FIG. 3: Success rate of a single agent of memory 3, versus a
250-strong population of memory 2. Agents have 48 interme-
diary neurons.

FIG. 4: Success rate of a single agent of memory 8, versus a
250-strong population of memory 4. Agents have 48 interme-
diary neurons.

ing the results for a population of 251 agents of whom
one has a memory of 3, the rest only 2.
The astonishing success of this ‘rogue’ agent (it makes

the right decision approximately 99.8% of the time)
shows clearly just how important a factor this crowd-
ing behavior is in the success (or failure) of agents. The
fact that this agent is the only one receiving the extra
data means that he can use it to his advantage. Con-
trast this with the other agents who, for all their careful
thinking, fail miserably because almost all of them think
alike—entirely independently—almost all of the time.
This example leads us to ask the more general ques-

tion: given a population of agents who all have memory
m, can we always find such a ‘rogue’, an agent capable
of understanding and thus beating the system? That it
is not merely a matter of agent memory is amply demon-
strated in Fig. 4, where we see a population of memory
4 pitted against a rogue with a memory of 8.
Despite its high memory value (twice that of the ma-

jority population) the rogue agent is unable to beat the

FIG. 5: Success rates of single agents of memory 5, versus a
250-strong population of memory 4, in simulations with 64,
96, 128 and 256 intermediary neurons per agent.

coin-tossing strategy. Why is this? A higher memory
value should, by our earlier results, always be an advan-
tage. Certainly, since we have respected symmetry of
choice between agent outputs, it should not be a disad-
vantage. What factor is it that prevents this agent from
making full use of the memory available to it, memory
which surely has within it useful data patterns that pre-
dict the behavior of the agents with memory 4, and thus
should allow the rogue agent the success we expect it to
achieve?

The answer becomes clear when we examine the nature
of the input that each agent receives—a binary number of
lengthm, wherem is the value of the agent’s memory. So,
it follows that the total possible number of inputs will be
2m. For an agent with memory 4, this means 16 possible
inputs. For an agent with memory 8, the total number
of possible inputs is 256. Compare this to the number
of intermediary neurons possessed by each agent (48, in
all the simulations we’ve run so far) and we realize that,
while this is an adequate number for an agent receiving
16 different possible inputs, it is wholly inadequate for an
agent having to deal with some 256 possible inputs. The
number of intermediary neurons restricts the maximum
performance of an agent by placing a limit on the amount
of memory that can be effectively used.

Bearing this condition in mind, we run a new set of
games, again with a majority population of memory 4,
but this time with a rogue of memory 5, and with the
number of intermediary neurons given to each agent vary-
ing in each of these games. Fig. 5 shows the results of
games where agents have intermediary layers of, respec-
tively, 64, 96, 128 and 256 neurons.

The implications are clear—it is the number of inter-
mediary neurons, as well as the amount of memory, that
control whether or not a rogue agent can succeed, and, if
it does, by how much. A higher memory value will always
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be an advantage, but the degree to which it is advanta-
geous will be determined by the number of intermediary
neurons possessed. Memory, obviously, determines how
much information an agent can receive; the intermediary
neurons are what provide agents’ analytic capability.
Our computer simulations suggest that in situations

such as the ones already discussed, with a majority pop-
ulation of memory m, it is the intermediary neurons,
rather than the amount of memory possessed, that con-
trol the ability of a rogue agent to succeed. A memory
of m + 1 is all that is required, provided the rogue has
enough intermediary neurons to be able to use it effec-
tively.
We can muddy the waters, so to speak, by giving

the majority population an evenly distributed spread of
memory values (perhaps from 1 to m) rather than a sin-
gle value. Where a single memory value is used, the
crowding behavior observed within memory groups will
easily allow rogue agents to predict the minority group.
With a series of different, smaller groups in competition,
it becomes significantly less easy to make accurate pre-
dictions, and rogue agent success rates fall significantly.
Herding sheep is fairly easy; jumping into the middle of
a brawl is dangerous for anyone, even a world champion
martial artist.
All things considered, it seems as though this may be

the key point in determining agent success. An agent can
only be truly successful if it has plenty of ‘prey’ whose
weaknesses it can exploit. If the behavior of the prey is
highly unpredictable, or the prey are capable of biting
back, the agent’s chances of success are vastly reduced.

IV. ANALYSIS OF CROWDING BEHAVIOR
WITHIN MEMORY GROUPS

We have on several occasions referred to crowding
behavior of minibrain agents within the same memory
group. In this section, we give a brief mathematical anal-
ysis of what causes this to arise.
We begin with a simple case, assuming that all agents

have the same memory value. Obviously, because of the
nature of the game, a majority of these agents will behave
in the same way each turn. What we show, however, is
that this majority is significantly more than would be
found if the agents were deciding randomly as to which
group to join. Were agents to employ this strategy, the
mean size of the (losing) majority group would be only a
little over 50%.
We define by 0 ≤ xi(I) < 0.5 the proportion of agents

in the minority group given input I, where the subscript
i is the number of times input I has occurred before. If
an input has not been seen before by agents, it follows
that they will decide randomly which group to join, and
so we have x0(I) ≃ 0.5 for all possible inputs I.
If an input has been seen before, it follows that those

agents in the minority group on that occasion— i.e. those
who were successful—will make the same decision as last

time. Those who were unsuccessful last time will make
a random decision as to which group to join: we can
expect, on average, half of them to change their minds,
half to stay with their previous choice.
The effect of this, ironically, is that this last group—

the unsuccessful agents who keep with their previous
choice—will probably (in fact, almost certainly) form the
minority group this time round. And so we can define a
recurrence relation,

xi+1(I) ≃
1

2
(1− xi(I))

determining the expected proportion of agents joining
the minority group for each occurrence of input I. This
allows us to develop a more general equation,

xi+1(I) ≃ ϕ(i, I)

where

ϕ(i, I) =
1

3

(

2i + (−1)i−1

2i

)

+
(−1)i

2i+1
(1− x0(I))

Observe that this holds for i = 0, as a little calculation
reveals x1(I) ≃ 1

2 (1− x0(I)) = ϕ(0, I). Now, assume
the equation holds for i = n − 1, with n any positive
integer, so xn(I) ≃ ϕ(n− 1, I).
By the recurrence relation,

xn+1(I) ≃
1

2
(1− xn(I)) =

1

2
(1− ϕ(n− 1, I))

=
1

2

[

1−

{

1

3

(

2n−1+(−1)n−2

2n−1

)

+
(−1)n−1

2n
(1−x0(I))

}]

=
1

2

[

1

3

(

3×2n−1
−2n−1+(−1)n−1

2n−1

)

+
(−1)n

2n
(1−x0(I))

]

=
1

2

[

1

3

(

2n + (−1)n−1

2n−1

)

+
(−1)n

2n
(1− x0(I))

]

=
1

3

(

2n + (−1)n−1

2n

)

+
(−1)n

2n+1
(1− x0(I))

= ϕ(n, I)

Hence, xn+1(I) ≃ ϕ(n, I), and so by the induction
hypothesis xi+1(I) ≃ ϕ(i, I) for all i ≥ 0.
It follows, then, that as i → ∞, so xi(I) →

1
3 , and so,

with repeated exposure to the input I, we will find that
on average 2

3 of the agents will produce the same output.
As a result, the average majority size per turn (regardless
of input given) will also tend to 2

3 as the agents become
saturated by all the possible inputs.
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FIG. 6: Mean size of majority each turn in games with uni-
form agent memory, against different choices for this memory
value. Agent population per game is 251, but majority size is
given proportionally. Agents have 48 intermediary neurons.

This can be observed in Fig. 6, which shows the average
proportion of agents joining the majority group each turn
in eight different games involving single memory value
populations, the first involving agents of memory 1, the
second with agents of memory 2, and so on up to the
final game, with agents of memory 8. Each game takes
place over a time period of some 5× 103 turns.
As memory increases, so the number of possible inputs

also increases, meaning there is less repeated exposure
to individual inputs, and hence less crowding for a given
time period. Within a time-scale of 5 × 103 turns, the
behavior of agents with longer memories is random more
often than not, and so the mean size of majority is sim-
ilar to that of agents making random decisions. As the
number of turns increases, so we can expect the mean
size of the majority to tend to 2

3 for all memory values,
not just the lowest.
What implications does this have for games involving

a mixed population of agents, such as that displayed in
Fig. 2? Overall, the same principles will apply. Repeated
exposure to the same input will produce the same crowd-
ing effect. But we note that the inputs given to this
system—eight-digit binary numbers—are interpreted dif-
ferently by different agents. For agents with lower mem-
ories, many of these ‘different’ inputs are interpreted as
being the same! For example, the inputs 11010010 and
11001011 are the same to an agent with a memory of 3
or less. So—as is demonstrated by Fig. 6—the crowding
effect surfaces earlier in agents with lower memory val-
ues, and hence they are adversely affected to a greater
degree.
The agents with higher memory values fail to beat the

50% success rate, however, because there are too many
of them—any insights they might have into the crowding
behavior of the lower memory groups are obscured by
the actions of their fellow high-memory agents. Thus,
the kind of behavior we see in Fig. 2: the lower memory
agents perform the worst, with the success rate increasing
towards some ‘glass ceiling’ as agent memory increases.

FIG. 7: Success rates of rogue agents of memory 5–8, versus
a majority population with memory 1–3, in games involving
single punishment and ‘infinite’ punishment of unsuccessful
synapses. Total agent population is 251. Agents have 256
intermediary neurons.

It’s only unique ‘rogue’ agents, who don’t have a large
group of fellows, who can see the crowding effect and
thus beat the system.

Even such rogue agents cannot succeed by any great
margin in the case where they are pitted against a spread
of memory values. The crowding behavior of the indi-
vidual groups is obscured by the large number of them
and predictions become difficult; the rogue has to work
out, not just in which direction the crowding within each
group will go, but how much crowding will be taking
place in each group—a difficult task indeed!

If we increase the crowding, we also increase the rogue’s
chances of success. Fig. 7 shows the results from two
different games involving 251 agents. Five of them are
‘rogue’ agents with memory values of, respectively, 4, 5,
6, 7 and 8. The rest have an even spread of memory
values from 1 to 3. In order to allow the higher mem-
ory values to be useful, we give agents 256 intermediary
neurons. The difference between the games is that in
the first, when punishing unsuccessful synapses, we em-
ploy the principle that has been used throughout this
paper—synapses are punished once. In the second game,
the punishment does not stop until the agent has learned
what would have been the correct output. The result is
that, when an input has been seen before, we will have
100% agreement within memory groups.

We can see here how the increased crowding caused by
‘infinite’ punishment allows the rogues to take advantage
and be successful. A higher memory value is required for
substantial success, but substantial success is possible—
at the expense of the lower memory groups, whose success
rates are substantially decreased by the extra crowding
behavior they are forced to produce. The rogue agents in
the game with single punishment, by contrast, are barely
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able to do better than a 50% success rate—though they
can evidently glean some data from the crowding be-
havior displayed by the lower memory groups, it’s not
sufficient for any great success and they are only barely
able to beat the expected success rate were they to make
purely random decisions.
This is a striking result, to say the least. The inevitable

consequence of an analytic strategy is a predisposition to
failure. Challet and Zhang [3] and W. B. Arthur [4] have
already shown that fixed strategies can prove to be a
disadvantage compared to random decisions; this occurs
when the number of available strategies is small com-
pared to the number of agents. The crowding behav-
ior that results from minibrain agents’ imperfect analy-
sis will inevitably reduce the number of strategies in use,
thus dooming themselves to worse-than-random results.
We can see this at work in the real world, every

day. Many strategies—whether for investments, business
strategies, forming a relationship, or any of the myriad
problems we have to solve—fail, because they are based
on common knowledge, and as such, will be similar to
most other people’s strategies. We are often told, ‘Every-
body knows that . . . ’, but few people realize the negative
side of following such advice: since everybody knows it,
everybody will come to the same conclusions as you, and
so your strategy will be unlikely to succeed. Perhaps the
best recent example is the internet boom-and-bust: so
many people thought the internet was the place to in-
vest, the market overheated, and many companies went
belly-up.
As this paper was being prepared, a report was broad-

cast on UK television about an experiment in which a
four-year-old child, picking a share portfolio, was able to
outdo highly experienced City traders on the stock mar-
ket. In such systems, with everyone’s imperfect analysis
competing against everyone else’s, it seems highly likely
that random decisions sometimes really are the best; the
Minibrain/Minority Model combination would appear to
confirm this.

V. ‘INTELLIGENCE’ RECONSIDERED

Another interesting conclusion to be drawn from the
computer experiments here described is that, given some
particular Minibrain agent, there is no way of deciding
if it will be successful or not unless we know about the
other agents it will be competing with.
In a sense this is not surprising. We know, for exam-

ple, that to be a high-flier at an Ivy League university
requires considerably more academic ability than most
other educational institutions. The athlete coming last
in the final of the Olympic 100m can still run faster than
almost anyone else in the world. We know that in these
contexts the conditions to be the ‘best’ are different, but
there is surely still an overall comparison to be made
between the whole of humanity. Or is there? Recall
our suggestion in the introduction to this paper that the

question of how intelligent a system is can only be an-
swered by examining how good it is at coping with the
problems its surrounding environment throws up. To re-
turn to Minibrain agents: by the concepts we discussed
earlier, it is agents’ intelligence, and not just their success
rate, that is dependent on their fellows’, as well as their
own, characteristics; indeed, the two measures—success
and intelligence—cannot be separated.

Contrast this with how we have identified a whole
range of factors—memory, the number of intermediary
neurons, the amount of punishment inflicted on unsuc-
cessful synapses—that affect the manner in which an
agent performs. There are objective comparisons that
can be made between agents. While we might accept
that any measure of ‘intelligence’ we can conceive of will
only hold in the context of the Minority Model, surely it
is not fair to suggest that the only valid measure of in-
telligence is success rate in the context of the population
of agents we place within that world?

Before we rush off to define our abstract ‘agent IQ’,
however, it’s worth noting that all the measures of hu-
man, as well as Minibrain, intelligence that we have put
in place are in fact measures of success in particular con-
texts. When a teacher calls a pupil a ‘stupid boy’, he is
not commenting on the child’s intelligence in some ab-
stract sense, but rather the child’s ability to succeed at
the tasks he is set in the school environment. (Einstein
was considered stupid in the context of a school envi-
ronment where dyslexia and Asperger’s syndrome were
unknown.) When we say that human beings are more
intelligent than other animals what we in fact mean is
that human beings are more successful at manipulating
their environment to their own benefit. High-fliers at Ivy
League universities are considered intelligent because of
their academic success. Olympic athletes are considered
intelligent in the context of their sport because they are
capable of winning consistently.

Even human IQ tests, long thought to provide an ab-
stract and objective measure of intelligence, work in this
fashion, being a measure of an individual’s success in
solving logical problems. More recently these tests have
been shown to discriminate against certain individuals
based on their cultural background—a further indication
of their non-abstract, non-objective nature—and in ad-
dition to this, psychologists are now proposing that there
are other forms of intelligence, for example emotional in-
telligence or ‘EQ’, which are just as important to indi-
vidual success as intellectual ability.

Were abstract measures of intelligence possible, it
would be reasonable to ask: ‘Who was more intelligent,
Albert Einstein or Ernest Shackleton?’ As it turns out,
this question is impossible to answer. Shackleton proba-
bly lacked Einstein’s capacity for scientific imagination,
Einstein probably didn’t know a great deal about arctic
survival, but both were highly successful—and thus by
implication intelligent—in the context of their own cho-
sen way of life. The same is true of our hypothetical Ivy
League student and Olympic runner. We suggest that no
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other possible measure of intelligence is truly satisfactory.

It is not an entirely easy concept to take on board.
In particular, it conflicts with our instinctive sense of
what it means to be ‘intelligent’. Casually—and not so
casually—we talk about people’s intelligence in the con-
text of their understanding, their conceiving, their aware-
ness. In other words, we talk about it in the context of
their consciousness. In their paper ‘Consciousness and
Neuroscience’ [6], Francis Crick and Cristoph Koch re-
fer to the philosophical concept of a ‘zombie’, a creature
that looks and acts just like a human being but lacks con-
scious awareness. Using the concepts of intelligence we
have been discussing, this creature is just as intelligent
as a real human.

Yet, on closer examination, this is not such an unrea-
sonable idea. Such a ‘zombie’ is probably scientifically
untenable, but it should be noted that our measures of
‘intelligence’ do not measure consciousness, at least not
explicitly. A digital computer can solve logical problems,
for example, and it seems very unlikely that such com-
puters are conscious. The ‘emotional intelligence’ we re-
ferred to earlier almost certainly has some unconscious
elements to it: our ability to respond to a situation in an
appropriate emotional manner tends to be an instinctive,
more than a conscious, response. Lizards, it is thought,
lack a conscious sense of vision but they can still catch
prey, find a mate and so on, using their visual sense to
do so. In fact, most of the organisms that exist on Earth
are probably not conscious. Consciousness, most likely,
is a product of brain activity that is a useful survival aid,
a useful aid for success. An aid for success, and thus for
intelligence, rather than a requirement.

How, then, should we approach the question of what
is an intelligent system? In their description of the
construction of the Minibrain neural system, Bak and
Chialvo note: ‘Biology has to provide a set of more or
less randomly connected neurons, and a mechanism by
which an output is deemed unsatisfactory . . . . It is ab-
surd to speak of meaningful brain processes if the purpose
is not defined in advance. The brain cannot learn to de-
fine what is good and what is bad. This must be given
at the outset. From there on, the brain is on its own’ [1].
These concepts provide us with a way of thinking about
intelligent systems in general, whether naturally occur-
ring biological systems or man-made artificial intelligence
systems.

An intelligent system might be thought of as consisting
of the following parts:

(i)A hardwired set of inputs and outputs, which the sys-
tem cannot change. It can perhaps change which of them
it takes notice of and which of them it uses, but its op-
tions are fixed and finite.

(ii)A decision-making system. Given an input, a sys-
tematic process is applied to decide what output to make.
This can range from the purely deterministic (e.g. a
truth-table of required output for each given input) to
the completely random. The E Coli bacterium’s behav-
ior in response to the presence or otherwise of glucose—

either moving in the direction of the food or, if none is to
be found, in a random direction—is a perfect example.

(iii)A hardwired system for determining whether a
given output has been successful, and sending appropriate
feedback to the system. Again, the nature of this can vary.
In our computer experiments, success is defined as being
in the minority group. For the E. Coli bacterium, success
is finding food. Possible types of feedback range from the
positive reinforcement of successful behavior practiced by
many neural network systems, to the negative feedback
of the Minibrain model. The E. Coli bacterium provides
perhaps the most extreme example: if it doesn’t find food
within a certain time period, it will die!

The last of these is perhaps the most difficult to come
to terms with, simply because as human beings, we in-
stinctively feel that it is a conscious choice on our part
as to whether many of our actions have been successful
or not. Nevertheless, the ultimate determination of suc-
cess or failure must rest with hardwired processes over
which the decision-making system has no control. If
nothing else, we are all subject to the same considera-
tion as E. Coli : if our actions do not provide our physi-
cal bodies with what they need to survive, they, and our
brains and minds with them, will perish.

We should, perhaps, include an extra criterion that for
a system to be truly intelligent, the feedback mechanism
must in some way affect the operation of the decision-
making system, whether it is punishing ‘bad’ synapses in
the Minibrain neural network, changing the entries in a
truth-table, or killing a bacterium. A system that keeps
making the same decision regardless of how consistently
successful that decision is, isn’t being intelligent. With
this in mind, we might consider systems such as E. Coli
(i.e. systems which employ one single strategy, and when
it becomes unsuccessful simply stop) to be minimally
intelligent systems. They’re nowhere near as smart as
other systems, natural and artificial, but at least they
know when to quit.

Intelligence, we suggest, is not an abstract concept.
The question of what is intelligent behavior can only be
answered in the context of a problem to be solved. So
in the search for artificial intelligence, we must neces-
sarily start with the world in which we want that in-
telligence to operate; we cannot begin by creating some
‘consciousness-in-a-box’ to which we then give a purpose,
but must first establish what we want that intelligence to
do, before building the systems—input-output, decision-
making, feedback—that will best achieve that aim. Com-
puter programmers already have an instinctive sense of
this when they talk about, for example, the ‘AI’ of a com-
puter game. (Purpose: to beat the human player. No
longer the deterministic strategies of Space Invaders—
many modern computer games display a great subtlety
and complexity of behavior.) This is not to denigrate
attempts to build conscious machines. Such machines
would almost certainly provide the most powerful forms
of artificial intelligence. But we are still a long way from
understanding what consciousness is, let alone being able
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to replicate it, and as we have noted here, consciousness
is not necessarily needed for intelligent behavior.
The experiments discussed in this paper involve ‘toy’

models. Comparing the Minibrain neural system to the
real human brain is like comparing a paper airplane to a
jumbo jet [1]. But paper airplanes can still fly, and there
are still lessons to be learned. These ‘toy’ experiments
provide us with a context to begin identifying what it
means to be intelligent. We have been able to suggest
criteria for identifying intelligent systems that avoid the
controversial issues of consciousness and understanding,

and a method of determining how intelligent such sys-
tems are that rests on one simple, useful and practical
question: how good is this system at doing what it’s
meant to do? In other words, we and others have begun
to demystify the subject of intelligence and maneuver it
into a position where we can begin to ask precise and
well-defined questions. Paper airplanes can fly for miles
if they’re launched from the right places.
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