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Abstract. We present new analytical results concerning the spectral distributions

for (2× 2) random real symmetric matrices which generalise the Wigner surmise.

1. Introduction

The level statistics of a quantum system represents the most significant, although not

the only [1], signature of quantum chaos. The Poisson and Wigner distributions of

dimensionless nearest-neighbour spacing, s,

p̃P (s) = exp (−s) , (1)

p̃W (s) =
πs

2
exp

(

−πs2/4
)

, (2)

are known in quantum chaos theory as two universalities that correspond to two extreme

cases of classical dynamics, namely purely regular and completely chaotic (see , e.g.,

[2]). The majority of many-body systems such as nuclei, molecules, atoms or solids (see

[1, 3, 4] and references therein) have been found to be chaotic although for such complex

systems no classical limit can be constructed.

As was first recognised by Wigner [5], the nearest-neighbour spacing distribution

(NNSD) (2) well corresponds to the eigenvalue distributions of random matrices, and

this explains the importance of the Random Matrix Theory [6] for studying statistical

properties of many-body systems. Particular attention was paid to Gaussian ensembles.

In fact, assuming that (i) the elements of the Hamiltonian matrix are independent real

variables and (ii) the matrix distribution is invariant under an orthogonal transformation
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of the basis states (see, e.g., chapter 3 in [6]), one finds that the matrix elements

are independent Gaussian variables with zero mean and with variance satisfying the

conditions σ2
ij = (1 + δij)σ

2. Imposing particular symmetries on the Hamiltonian, one

gets [7] Gaussian Orthogonal, Unitary or Symplectic Ensembles (GOE, GUE or GSE,

respectively), which are widely and successfully applied in many fields of physics (see

e.g. reviews [1, 3, 4]).

Up to now, excited atomic nuclei are considered to be the best examples of chaotic

quantum systems [1]. Starting from slow-neutron scattering experiments, which were

first described in terms of random matrices [5], a lot of nuclear structure data has

been analysed in the context of chaos. However, it was repeatedly noticed that

the experimental data do not exactly match the distribution (2) and exhibit slight

deviations [8, 9]. These deviations are thought to be caused by the fact that the real

system is not purely chaotic, but can be the quantum analog of a classical system that

is transitional between chaotic and integrable. In this context, a few phenomenological

formulae were proposed and analysed. The most famous are the Brody [8] distribution,

p̃ω(s) = (ω + 1)αsω exp
(

−αsω+1
)

, α =
[

Γ
(

ω + 2

ω + 1

)]ω+1

, (3)

which was shown to match better the experimental data [9] on both high- and low-energy

nuclear spectra, and the Berry-Robnik distribution [10]

p̃BR(s) = e(q−1)s{(1−q)2erfc(
√
πqs/2)+[2q(1−q)+(π/2)q3s]e−(π/4)q2s2} .(4)

Although the Brody distribution takes the form of Poisson for ω = 0 and Wigner for

ω = 1, it has the unrealistic property that its derivative goes to infinity at ε = 0 [11].

Moreover, the parameter ω has no clear physical meaning. On the other hand, the

distribution (4) does not give a level-repulsion for non-integrable systems. Caurier et

al [11] considered a model which allowed to simulate the transition from integrability

to chaos and succeeded to derive the asymptotic limits for small and large neighbour

spacings in the near-integrable limit.

The idea to derive a third universality class corresponding to intermediate statistics

has been actively pursued in recent years. In particular, in Refs. [12, 13], the distribution

of n nearest neighbours,

p̃(β)(n, s) =
(β + 1)n(β+1)

Γ[n(β + 1)]
s[n(β+1)−1] exp [−(β + 1)s] , (5)

was shown to be relevant to a certain class of exactly solvable models with nearest and

next-to-nearest neighbour interactions, generalizing the results obtained earlier [14, 15]

on pseudointegrable billiards and the short-range Dyson models. Remarkably, the

NNSD given by (5) with n = 1 exhibits a level repulsion ∼ sβ and falls to zero at

s as exp [−(β + 1)s]. For β = 1 it is referred to as the semi-Poisson distribution [14, 15].

In this letter we argue that one might search for an explanation of the discrepancy

between data and random matrix theory simply by generalising the random matrix

ensemble used. In fact, the Gaussian ensemble is defined by the two assumptions

(i) and (ii) mentioned above, and their applicability should be carefully checked for
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a given physical system. As far as nuclear physics is concerned, the deviations of

the experimental data on slow-neutron or (p, p′) resonances from a random matrix

description could simply arise from the non-invariance of the random matrix ensemble

under an orthogonal transformation of a basis, i.e. the assumption (ii) is violated.

In addition, it is well known that realistic interactions in many-body nuclear,

molecular or atomic systems are predominantly of one- and two-body nature, implying

that the distribution of the matrix is not only not invariant under an orthogonal

(unitary) transformation of the basis, but also that the elements of the Hamiltonian

matrix are not independent (if the number of particles is more than two), i.e. both

assumptions for a Gaussian ensemble do not hold any longer. In this context, French and

Wong [16] and Bohigas and Flores [17] independently introduced the Two-Body Random

Ensemble (TBRE), which is characterised by a Gaussian level density distribution,

rather than a semi-circle provided by a GOE [16]. The level distributions of experimental

nuclear spectra did confirm this result. The NNSD relevant for a TBRE was found

numerically to be fairly represented by the Wigner surmise [18], although recently it has

been pointed out [19] that NNSD given by (5) with n = 1 and a certain real value of β

fits better the shell–model spectrum obtained with the sd-interaction of Wildenthal [20].

Given the importance and actuality of these investigations, we present in this letter

some analytical results concerning the properties of (2×2) random symmetric matrices

for which the assumption (ii) mentioned above is not satisfied. First, we derive the

Hamiltonian distribution as a function of its eigenvalues and we calculate the NNSD

which generalises the well-known Wigner surmise [5]. We show that the model allows

to describe the transition from purely chaotic to asymptotically nearly integrable limits,

being different from the intermediate statistics mentioned above. Then, for a particular

case, we give the analytical expressions for the lowest moments of this distribution.

Finally, we propose a method to derive the moments of the eigenvalue distribution

without knowledge of an explicit expression for the distribution.

2. Generalised Wigner surmise

Let us consider a (2×2) real symmetric matrix

H =

(

H11 H12

H21 H22

)

, (6)

whose elements are independent Gaussian variables with zero mean and variance σ2
ij ,

and H12 = H21. The probability density of the matrix H is then given by

p(H) =
1

(2π)3/2
√

σ2
11σ

2
12σ

2
22

exp

[

−
(

H2
11

2σ2
11

+
H2

12

2σ2
12

+
H2

22

2σ2
22

)]

. (7)

Each matrix H can be diagonalised in an orthogonal basis and therefore H = OtDO,

with

O =

(

cos θ − sin θ

sin θ cos θ

)

,



Letter to the Editor 4

and

D =

(

Eα 0

0 Eβ

)

.

Similar to the case of GOE [21], we find that in the general case

H11 = Eα cos
2 θ + Eβ sin

2 θ

H12 = (Eα −Eβ) cos θ sin θ

H22 = Eα sin
2 θ + Eβ cos

2 θ

.

We deduce that the probability density expressed in terms of the eigenvalues and the

angle θ is

p (Eα, Eβ, θ) =
Eα − Eβ

(2π)3/2
√

σ2
11σ

2
22σ

2
12

exp











−
[

EαΣ
2 − (Eα −Eβ)

(

σ2
11 cos

2 θ + σ2
22 sin

2 θ
)]2

2σ2
11σ

2
22Σ

2











exp

[

−1

2
(Eα −Eβ)

2

(

cos2(2θ)

Σ2
+

sin2(2θ)

4σ2
12

)]

(8)

where Σ2 = σ2
11 + σ2

22 and Eα − Eβ ≥ 0.

The nearest-neighbour spacing distribution for the variable ε = Eα − Eβ = Ds,

with the mean spacing D =
∫

εp̃ (ε) dε, is given by the following integral

p̃ (ε) =
∫ π/2

−π/2
dθ
∫ ∞

−∞
dEα

∫ Eα

−∞
dEβ p (Eα, Eβ, θ) δ (ε− Eα + Eβ) , (9)

from which we obtain

p̃ (ε) =
ε

2
√

Σ2σ2
12

exp

[

−ε2 (Σ2 + 4σ2
12)

16Σ2σ2
12

]

I0

(

ε2 (Σ2 − 4σ2
12)

16Σ2σ2
12

)

(10)

where I0 is a modified Bessel function of the first kind.

The expression (10) looks like a Rayleigh-Rice distribution, well known in signal

theory [22], except for the argument of I0, which is not linear as in the usual Rayleigh-

Rice distribution but quadratic. This is why we will refer to p̃ (ε) as to a quadratic

Rayleigh-Rice distribution.

Let us consider a particular case when the diagonal matrix elements have the same

variance σ2
11 = σ2

22, which is χ times larger than the variance, σ2
12 = σ2, of the non-

diagonal matrix elements, i.e. χ = σ2
11/σ

2
12. Then the eigenvalue distribution (8) reduces

to

pχ(Eα, Eβ, θ) =
Eα − Eβ

(2πσ2)3/2χ
exp

[

−E2
α + E2

β +
1
4
(Eα−Eβ)

2(χ−2) sin2(2θ)

2χσ2

]

,(11)

while for the nearest-neighbour spacing we get

p̃χ(ε) =
ε√

2χ2σ2
exp

(

−(χ+ 2) ε2

16χσ2

)

I0

(

(χ− 2)ε2

16χσ2

)

. (12)

For χ = 2, expression (12) reduces to the Wigner surmise. The distributions p̃χ(ε) are

plotted in figure 1 for χ = 1, χ = 2 and χ = 5.
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Figure 1. Quadratic Rayleigh-Rice distributions for χ = 1 (solid line), χ = 2 (dashed

line) and χ = 5 (dotted line) with σ2 = 1.

For small values of ε, the distribution (12) goes linearly to zero,

p̃χ(ε) ∝
1√

2χ2σ2
ε , (13)

while for large ε,

p̃χ(ε) ∝























√

2

| χ− 2 | σ2
exp

(

− ε2

4χσ2

)

χ 6= 2

ε

4σ2
exp

(

− ε2

8σ2

)

χ = 2

(14)

The asymptotic behaviour has a functional dependence on ε similar to that of the Wigner

surmise, i.e. the NNSD (11) goes linearly to zero for ε → 0 and it falls down according

to exp (−ε2) for ε → ∞. However, as seen from (13)–(14), the natural dependence on

χ provides a certain scaling.

To calculate various statistical characteristics, it is often required to know certain

moments of the distribution. Thus, we have derived analytical expressions for some

moments of the distribution (12), and the lowest are given in table 1.

From (12) and the expression of the mean spacing, D (cf table 1), we have derived

the distribution of the dimensionless nearest-neighbour spacing, s = ε/D :

qχ(s) = D p̃χ(sD) . (15)

For χ = 2, one finds the Wigner distribution (2). It can be shown that for χ and

χ′ = 4/χ, the two functions qχ and qχ′ are equal.

The distributions qχ for χ = 4, χ = 30, χ = 500 and χ = 1000 are plotted in

figure 2(a-d) and compared to the Poisson (dashed), Wigner (dotted) and semi-Poisson
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Table 1. The moments up to n = 5 of the quadratic Rayleigh-Rice distribution (12)

for σ2 = 1. For n = 1, one obtains the mean spacing D. F is the hypergeometric

function [23].

Mn =
∫∞

0
εnp̃χ(ε)dε values for χ = 2 for χ = 5

n = 0 1 1 1

n = 1 4χ
√
2π(χ+ 2)−3/2F

[

3

4
, 5

4
, 1,
(

χ−2

χ+2

)2
] √

2π 1.3
√
2π

n = 2 2 (2 + χ) 8 14

n = 3 96χ2
√
2π(χ+ 2)−5/2F

[

5

4
, 7

4
, 1,
(

χ−2

χ+2

)2
]

12
√
2π 28.7

√
2π

n = 4 4
(

12 + 4χ+ 3χ2
)

128 428

n = 5 3840χ3
√
2π(χ+ 2)−7/2F

[

7

4
, 9

4
, 1,
(

χ−2

χ+2

)2
]

240
√
2π 1139.2

√
2π

(dashed-dotted) distributions. Note that the semi-Poisson distribution can be fairly

approximated for χ = 30 although its asymptotic behaviour for large s is different. As

follows from figure 2, the parameter χ allows to describe a transition of a quantum

system from a completely chaotic limit (χ = 2) to a nearly integrable one (χ → ∞ or

χ → 0). However, the integrability characterised by the Poisson distribution (1) can

never be reached (compare with the model of Caurier et al [11]).

Indeed, integrating pχ in (11) over Eβ from −∞ to Eα and over Eα from −∞ to

+∞, we obtain the angular distribution

rχ (θ) =
1

π

√

χ

2

1
[

1 + 1
2
(χ− 2) sin2 (2θ)

] . (16)

This distribution is represented in figure 3 for different values of χ. For χ = 2 it is

an exactly uniform distribution, which means that there is no privileged basis (the

orthogonal invariance holds). For high values of χ, the initial basis is nearly the

eigenbasis (the diagonal elements are much larger than the non-diagonal ones), thus

rχ takes its maximum absolute values for θ = 0 and θ = π/2, whereas for small values

of χ, the eigenstates are more likely obtained after a rotation of π/4 of the initial basis

and rχ is maximum for θ = π/4. For χ and χ′ = 4/χ the two curves are in quadrature.

We can re-express pχ(Eα, Eβ) as a function of ε and S = Eα +Eβ . Then pχ can be

factorised into a function depending on ε times a function depending on S, i.e. these

variables are independent. Moreover since S is the trace of the matrix it is a Gaussian

variable with zero mean and all its odd moments are zero. From the independence of ε

and S we deduce that the moments of the eigenvalues fulfill

〈En
α〉 = (−1)n〈En

β 〉 (17)

〈En
α〉 =

1

2n

n/2
∑

p=0

(

n
2p

)

〈S2p〉〈εn−2p〉 (18)

From (17) and (18), we can derive the moments of the eigenvalues whose distributions

are difficult to compute. Note that we deduce from (17) that the highest and the lowest
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Figure 2. Nearest neighbour spacing distributions qχ (solid line) for χ = 4 (a), χ = 30

(b), χ = 500 (c) and χ = 1000 (d). The Poisson distribution is plotted in dashed line,

the Wigner distribution in dotted line and the semi-Poisson in dashed-dotted line.

eigenvalues have opposite mean values and the same variance.

3. Conclusion

The study of the statistical properties of spectra of realistic Hamiltonians requires the

consideration of a random matrix ensemble whose elements are not independent or whose

distribution is not invariant under orthogonal transformation of a chosen basis. In this

letter we have concentrated on the properties of (2×2) real symmetric matrices whose

elements are independent Gaussian variables with zero means but do not belong to the

GOE. We have derived the distribution of eigenvalues for such a matrix, the NNSD

which generalises the Wigner surmise and we have calculated some important moments.

The asymptotic properties of the distribution obtained are functionally identical to

those of the ordinary Wigner surmise. For finite χ, the model considered here allows to

describe the transition from chaos to near integrability (the exact integrable limit is never

realized). Thus it represents a chaotic system although with a degree of disorder less

important than in the Wigner surmise. The derivation of similar analytical expressions

for matrices of larger dimensions is technically difficult. However, we believe that the

present results already justify the use of NNND of type (12) to fit the data as an
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Figure 3. Angular distributions for χ = 1 (dotted line), χ = 2 (dashed line) and

χ = 5 (solid line).

alternative to the Brody distribution. We also think that these results can be extended

to hermitian matrices.
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