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Nambu system associated with n-dimensional maps
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abstract

We studied that arbitrary 2-dimensional maps are Hamilton system if a initial

value of map is a ”time” variable. In this paper, we generalize this correspon-

dence, and show that an n-dimensional map is a Nambu system in which one

of initial values of the map play a role of ”time” variable.

1 Introduction

In our previous paper [SSYY], we studied 2-dimensional maps :

(xi
1, x

i
2) 7−→ (xi+1

1 , xi+1

2 )

and behaviors of point (xm
1 (x

0
1, x

0
2), x

m
2 (x

0
1, x

0
2)) maped m times repeatedly. The map is

assumed to have its inverse and being differentiable. Changing point of view, let t ≡ x0
1 be

a independent ”time” variable, λ ≡ x0
2 be a fixed parameter, X(t) ≡ xm

1 be a dependent
coordinate variable and P (t) ≡ xm

2 be also a dependent momentum variable. We denote
by J0,m Jacobi matrix of the map : (x0

1, x
0
2) 7→ (xm

1 , x
m
2 ). In this view-point, we obtained

the following result.

Theorem 1 Let H be a function of (X,P ) given by

H(X,P ) =
∫ λ

(det J0m)dλ, (1)

and satisfying
∂H

∂t
= 0.

Then the set of Hamilton’s equations

dX

dt
=

∂H

∂P
,

dP

dt
= −

∂H

∂X
(2)

hold.
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In order to support our claim we derived Hamiltonians corresponding to the Hénon, KdV
and qPIV maps in [SSYY]. This view-point is based on studies of a discrete version of
exact WKB analysis by Shudo and Ikeda.

The aim of this paper is to generalize this mechanism, in order to find a dynamical
system associated with n-dimensional map based on this view-point. In consequence, we
will show that the corresponding dynamical system is a Nambu system.

Nambu system is a generalized Hamilton dynamical system which was introduced by
Nambu, [Na, Ta]. This system is defined by (n − 1)-Hamiltonians and Nambu brackets
which reprace Poisson brackets in the ordinary Hamilton systems. Nambu brackets satisfy
some properties such as skew-symmetry, Libnitz rule, fundamental identity and linear
combination. Nambu system is useful tool, ex. deformation quantization [DFST, DF],
dispersionless KP hierarchies and self-dual Einstein equation [Gu], etc. And one of the
most famous problem is the Euler tops problem which have bi-Hamiltonian structure
studied by Nambu [Na]. And more, commutators corresponding to Nambu bracket and
algebra of it, called Nambu-Lie algebra, n-Lie algebra, n-ary Lie algebroid or Filippov
algebroid are studied in recent [DT, Fi, GM1, GM2, GM3, ILMP, Vai1, Vai2, Val].

2 n-dimensional maps

Let us consider n-dimensional maps and inverse of them:

s : (xi
1, . . . , x

i
n) 7−→ (xi+1

1 , . . . , xi+1

n ), s−1 : (xi+1

1 , . . . , xi+1

n ) 7−→ (xi
1, . . . , x

i
n),

xi+1

j := s(xi
j) ≡ gj(x

i
1, . . . , x

i
n), xi

j := s−1(xi+1

j ) ≡ g−1

j (xi+1

1 , . . . , xi+1

n ).

where gj ’s are some differentiable functions. We consider also Jacobi matrices associated
wiht this maps :

J i,i+1 :=

[

∂xi+1
j

∂xi
k

]

=



















∂xi+1
1

∂xi
1

· · ·
∂xi+1

1

∂xi
n

...
...

∂xi+1
n

∂xi
1

· · ·
∂xi+1

n

∂xi
n



















,

J i+1,i :=

[

∂xi
j

∂xi+1

k

]

=



















∂xi
1

∂xi+1
1

· · ·
∂xi

1

∂xi+1
n

...
...

∂xi
n

∂xi+1
1

· · ·
∂xi

n

∂xi+1
n



















.

The Jacobi matrix J0,m is given by a product of them,

J0,m := J0,1 · · ·Jm−1,m, Jm,0 := Jm,m−1 · · ·J1,0,

J ijJ ji = E, (E : idntity matrix).
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If we introduce notations dxi = (dxi
1, . . . , dx

i
n)

T and ∂i = (∂/∂xi
1, . . . , ∂/∂x

i
n)

T , the fol-
lowing results hold.

dxi+1 = J i,i+1dxi, dxi = J i+1,idxi+1, (3)

∂i+1 = (J i+1,i)T∂i, ∂i = (J i,i+1)T∂i+1, (4)

where T express a transposition.

Here, let us change a point of view. We consider a m times repeated map : x0 7→ xm

where xi is a set of variables (xi
1, . . . , x

i
n). We also use notations as follows :

(q1, . . . , qn) ≡ (xm
1 , . . . , x

m
n ), (λ1, . . . , λn−1, t) ≡ (x0

1, . . . , x
0
n)

qj(t) (j = 1, . . . , n) are coordinates of an n-dimensional phase space, λj (j = 1, . . . , n− 1)
are fixed parameters and t is a parameter which we consider as an independent ”time”
variable. In this view-point, the set of variables q = (q1, . . . , qn) satisfy the following
dynamical system.

Proposition 1 Let h = (h1, . . . , hn−1) be a set of functions of (q1(t), . . . , qn(t)) given by

hi =
∫ λi

(det J0m)
1

n−1dλi, i = 1, . . . , n− 1 (5)

satisfying
dhi

dt
= 0, i = 1, . . . , n− 1. (6)

Then Nambu-Hamilton equations

df

dt
= {h1, . . . , hn−1, f} (7)

hold, where f = f(q1, . . . , qn, t) is a certain function.

If f = qi then (7) is an equation of motion. In (7), Nambu brackets is defined by

{f1, . . . , fn} =
∂(f1, . . . , fn)

∂(q1, . . . , qn)
. (8)

Here we assume the existence of the inverse map s−1, such that hj ’s are considered as
functions of qj’s through λ = λ(q) = (s−1)m(q).

For simplicity, we define some symbols before proof. H is a Jacobi matrix of (h1, . . . , hn)
given by

Hq :=

[

∂hj

∂qk

]

, Hλ :=

[

∂hj

∂λk

]

, j, k = 1, . . . , n,

and H̃q is a cofactor matrix of Hq. Namely the (j, k)-element of H̃q is the (j, k)-cofactor
of Hq. Here, we set formally λn = t and

hn :=
∫ λn

(det J0m)
1

n−1dλn

Then these matrices satisfy the following Lemma.
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Lemma 1 Let us consider the Nambu-Hamilton equation given by

∂f

∂λk

= {h1, . . . , hk−1, f, hk+1, . . . , hn}, k = 1, . . . , n, (9)

where λj (1 ≤ j ≤ n, j 6= k) are fixed parameters, λk is a independent parameter, qj (1 ≤
j ≤ n) are depnendent parameters qj(λk), hj (1 ≤ j ≤ n) are hamiltonians without hk

and f, fj (1 ≤ j ≤ n) are arbitrary functions fj(q1, . . . , qn, λ1, . . . , λn).
Then, for above Jacobi matrices Hq, Hλ, J0m, the cofactor matrices H̄q and H̄λ,

following three relations hold.

1. Hλ = HqJ
0,m,

2. J0,m = H̃T
q ,

3. Hq = (det H̃q)
1

n−1 (H̃T
q )

−1.

Proof of Lemma 1 :
1. Hλ = HqJ

0,m. Using (4),









∂hj/∂λ1

...
∂hj/∂λn









= (J0,m)T









∂hj/∂q1
...

∂hj/∂qn









Hence,
HT

λ = (J0,m)THT
q .

Transposing this, therefore, the relation Hλ = HqJ
0,m hold.

2. J0,m = H̃T
q . Substituting qj to f in Nambu-Hamilton equation (9),

∂qj
∂λk

= {h1, . . . , hk−1, qj , hk+1, . . . , hn}

Then r.h.s. of this is a (k, j) cofactor, because

∂(h1, . . . , hk−1, qj, hk+1, . . . , hn)

∂(q1, . . . , , qn)
= (−1)k+j ∂(h1, . . . , hk−1, hk+1, . . . , hn)

∂(q1, . . . , qj−1, qj+1, . . . , qn)
= h̃k,j.

And l.h.s. is one of entries of J0,m. Hence we obtain J0,m = H̃T
q .

3. Hq = (det H̃q)
1

n−1 (H̃T
q )

−1. It is well known that an arbitrary n × n matrix A and its

cofactor matrix Ã satisfy the following relation.

AÃT = ÃAT = (detA)E.

Since this relation derives
det Ã = (detA)n−1,
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the matrix A can be expressed by Ã as follows :

A = (det Ã)
1

n−1 (ÃT )−1.

If A = Hq, the relation 3 holds.

Proof of Proposition 1 : We assume that maps s, s−1 and their explicit forms gj are
given.

(i) : We must show that functions hj satisfy Nambu-Hamilton equation (7) if hj are
given by (5), because hj ’s are given by explicit functions gj. Hence, we must check a
compatibility between (6) and (7). Substituting hj to (7),

dhj

dt
= {h1, . . . , hn−1, hj} = 0 if j 6= n

because Nambu bracket is a Jacobian. Therefore if the functions hj , called Hamiltonians,
are given by maps s and s−1 with (5), then hj’s satisfy Nambu-Hamilton equation.

(ii) : We will show that if Nambu-Hamilton equation is given by (7) and maps s, s−1

are given, then functions hj are given by (5). Using the three relations of Lemma 1,

Hλ = HqJ
0,m = (det H̃q)

1

n−1 (H̃T
q )

−1H̃T
q = (det J0,m)

1

n−1E.

Since r.h.s. is a diagonal matrix, we obtain hj as follow :

∂λk
hj = (det J0,m)

1

n−1 δj,k =⇒ hj =
∫ λj

(det J0,m)
1

n−1dλj

Therefore, if maps and Nambu system are given then Hamiltonian hj are given by (5).

(iii) : If maps s and s−1 has been given, then there exist Nambu system correspond-
ing to maps because of (i) and (ii). The Nambu system have Nambu-Hamilton equation
(7) and Hamiltonians (5).

The generalized Nambu-Hamilton equation (9) is not dynamical equation. If we select
one independent variable λk as a time variable, then Nambu-Hamilton dynamical equation
is given by

df

dλk

= {h1, . . . , hk−1, f, hk+1, . . . , hn}.

This equation is also Nambu-Hamilton equation, and Hamiltonians are hj , (j 6= k) but hk

is not Hamiltonian. We can choose one independent variable in parameters (λ1, . . . , λn)
on Nambu system, freely.

On the Nambu system, explicit functions gj of maps are solutions of Nambu dynamics,
because this functions

qj(t) = gmj (λ1, . . . , λk−1, t, λk+1, . . . , λn)
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are depend on (n−1)-constants and one independent variable, where gmj is a explicit form
of m time repeated maps of s.

In the special case of (det J0m) = 1, (n− 1)-constants are (n− 1)-Hamiltonians, since

hj =
∫ λj

dλj = λj.

And the map s is a canonical transformation or a n-dimensional volume preserving trans-
formation, since

dxi+1

1 ∧ · · · ∧ dxi+1

n = dxi
1 ∧ · · · ∧ dxi

n,

and
dq1 ∧ · · · ∧ dqn = dλ1 ∧ · · · ∧ dt ∧ · · · ∧ dλn = dh1 ∧ · · · ∧ dt ∧ · · · ∧ dhn.

So, (hj, t) is a set of canonical conjugate variables.
In our sense, a independent ”time” value is a initial value. This mean that the response

of changes of a initial value in discrete systems can be investigated with Nambu mechanics
in continuum systems because of this Nambu-map correspondence.

3 Example

3.1 Lotka-Volterra map

Discrete Lotka-Volterra equation :

x̄k (1 + x̄k−1) = xk(1 + xk+1), k = 1, 2, 3

have a 3-dimensional map and its inverse

x̄k = xk

1 + xk+1 + xk+1xk+2

1 + xk+2 + xk+2xk

, xk = x̄k

1 + x̄k+2 + x̄k+2x̄k+1

1 + x̄k+1 + x̄k+1x̄k

under periodic boundary condition xk+3 = xk, where x̄k = xi+1

k , xk = xi
k. Jacobi matrix

J i,i+1 is given by


























(1 + x2 + x2x3)(1 + x3)

(1 + x3 + x3x1)2
−
x2(1 + x2 + x2x3)

(1 + x1 + x1x2)2
x3(1 + x2)

1 + x2 + x2x3

x1(1 + x3)

1 + x3 + x3x1

(1 + x3 + x3x1)(1 + x1)

(1 + x1 + x1x2)2
−
x3(1 + x3 + x3x1)

(1 + x2 + x2x3)2

−
x1(1 + x1 + x1x2)

(1 + x3 + x3x1)2
x2(1 + x1)

1 + x1 + x1x2

(1 + x1 + x1x2)(1 + x2)

(1 + x2 + x2x3)2



























and its Jacobian and inverse are the following

det J i,i+1 = 1, det J i+1,i = 1

because J i,i+1J i+1,i = E. Now, we will consider the simplest case m = 1. Setting up
variables as follows,

(h1, h2, t) = (λ1, λ2, λ3) = (x0

1, x
0

2, x
0

3), (q1, q2, q3) = (x1

1, x
1

2, x
1

3),

satisfy the following Nambu system.
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• Equations of motion

dq1
dt

=
∂(h1, h2)

∂(q2, q3)
,

dq2
dt

= −
∂(h1, h2)

∂(q1, q3)
,

dq3
dt

=
∂(h1, h2)

∂(q1, q2)
,

• Hamiltonians

h1 = q1
1 + q3 + q3q2
1 + q2 + q2q1

, h2 = q2
1 + q1 + q1q3
1 + q3 + q3q2

,

• Solutions

q1(t) = h1

1 + h2 + h2t

1 + t+ h1t
, q2(t) = h2

1 + t+ h1t

1 + h1 + h1t
, q3(t) = t

1 + h1 + h1h2

1 + h2 + h2t
,

• Explicit forms of equations of motion

dq1
dt

=
−q1(1 + q1 + q1q3)

(1 + q2 + q2q1)(1 + q3 + q3q2)
,

dq2
dt

=
q2(1 + q2)(1 + q1 + q1q3)

(1 + q2 + q2q1)(1 + q3 + q3q2)
,

dq3
dt

=
(1 + q3)(1 + q1 + q1q3)

(1 + q2 + q2q1)(1 + q3 + q3q2)
.
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