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Abstract. A method for introducing the higher order terms in the potential

expansion to study the continuous limits of the Toda hierarchy is proposed

in this paper. The method ensures that the higher order terms are differ-

ential polynomials of the lower ones and can be continued to be performed

indefinitly. By introducing the higher order terms, the fewer equations in the

Toda hierarchy are needed in the so-called recombination method to recover

the KdV hierarchy. It is shown that the Lax pairs, the Poisson tensors, and

the Hamiltonians of the Toda hierarchy tend towards the corresponding ones

of the KdV hierarchy in continuous limit.

1. Introduction

The continuous limits of discrete systems are one of the remarkably important re-

search areas in soliton theory [1, 2, 3, 4]. In recent years, more attention was focused

on the continuous limit relations between hierarchies of discrete systems and hi-

erarchies of soliton equations [5, 6, 7, 8, 9]. The so-called recombination method,
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i.e., properly combining the objects (such as the vector fields) of discrete systems,

was first proposed to study the continuous limit of the Ablowitz-Ladik hierarchy

[5] and the Kac-van Moerbeke hierarchy [6]. Morosi and Pizzocchero also used the

recombination method to study the continuous limits of some integrable lattices in

their recent works [7, 8, 9]. Up to now, there has not been much work concerning

the continuous limit relations between lattices and differential equations, which have

different numbers of potentials. Furthermore, to the best of our knowledge, there

is no work which successfully gives a way to introduce the higher order terms in

potential expansion to study the continuous limit relations between hierarchies of

lattices and hierarchies of soliton equations. Illumined by Gieseker’s conjecture [10],

we will propose a method for finding the higher order terms in potential expansion

to study the continuous limit relation between the Toda hierarchy and the KdV

hierarchy by the recombination method.

In 1996, Gieseker proposed a conjecture [10]:

Conjecture. Denote w(n, t) and v(n, t), where n ∈ Z and t ∈ R, are the two

potentials of the Toda hierarchy, and let f be a function of x ∈ R and t ∈ R. There

are Φi(f)’s, which are the differential polynomials of f , so that if we define

w(n, t) = −2 + f(x, t)h2 + h2
L∑

i=1

Φi(f(x, t))h
i, (1.1a)

v(n, t) = 1 + f(x, t)h2 − h2
L∑

i=1

Φi(f(x, t))h
i, (1.1b)

where h is the small step of lattice and x = nh, then by taking suitable linear

combinations of the equations of Toda hierachy under the definition (1.1), we can

produce asymptotic series whose leading terms in h are the KdV hierarchy if L is

large enough.

In [10], Gieseker proposed a way to introduce Φi(f) by using the Toda lattice

wt = v − Ev = v − v(1), vt = v(E(−1)w − w) = v(w(−1) − w), (1.2)

where the shift operator E is defined by

(Ef)(n) = f(n+ 1), f (k)(n) = E(k)f(n) = f(n+ k), n, k ∈ Z.

For instance, in order to find Φ1(f), substituting the definition (1.1) into the equation

(1.2) and expanding the shift terms out by Taylor’s theorem

df

dt
+

dΦ1(f)

dt
h = −

df

dx
h−

d2f

2dx2
h2 +

dΦ1(f)

dx
h2 +O(h3), (1.3a)
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df

dt
−

dΦ1(f)

dt
h = −

df

dx
h+

d2f

2dx2
h2 −

dΦ1(f)

dx
h2 +O(h3). (1.3b)

Combining the above two equations we know

df

dt
= −

df

dx
h+ O(h3), (1.4)

then by the chain rule we have

dΦ1(f)

dt
= −

dΦ1(f)

dx
h+O(h2), (1.5)

Notice the above equation and the equation (1.3a) one can get

dΦ1(f)

dx
=

1

4

d2f

dx2
, (1.6)

by integration it yields

Φ1(f) =
1

4

df

dx
. (1.7)

We can see that the integration must be used in this process for finding Φi(f).

As a consequence, there is a problem that whether this process can be continued

indefinitely and the Φi(f)’s, found in this process, are the differential polynomials

of f .

The Gieseker’s conjecture were proved in the following three cases of (1.1) [11]:

(a) L = 0, f(x, t) =
1

2
q(x, t);

(b) L = 1, f(x, t) =
1

2
q(x, t), Φ1(f) =

1

8
qx;

(c) L = 2, f(x, t) =
1

2
q(x, t), Φ1(f) =

1

8
qx, Φ2(q) = −

1

32
q2.

It was found that the fewer equations in the Toda hierarchy are needed in the

recombination method for the case (c) to give the KdV hierarchy than for the case

(a).

In this paper, we will give a new method to introduce Φi(f) required in (1.1)

instead of the Gieseker’s process in order that we can derive the continuous limit

relation between the Toda hierarchy and the KdV hierarchy by the recombination

method. Following our approach for finding Φi(f), one can easily see that the Φi(f)’s

are all differential polynomials of f . Compared with the previous work in [11], we
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will show that the fewer equations in the Toda hierarchy are needed in the recombi-

nation method for giving the KdV hierarchy if higher order terms are introduced in

the potential expansion (1.1). We will also present that the Lax pairs, the Poisson

tensors, and the Hamiltonians of the Toda hierarchy tend towards the corresponding

ones of the KdV hierarchy in continuous limit.

2. Basic notation and some known results

For latter use, we list some notation and results in [11]. Let us consider the following

discrete isospectral problem [12, 13],

Ly = (E + w + vE(−1))y = λy, (2.8)

where w = w(n, t) and v = v(n, t) depend on integer n ∈ Z and real variable t ∈ R,

and λ is the spectral parameter.

The equation in the Toda hierarchy associated with (2.8) can be written as the

following Hamiltonian equation [12]
(

w

v

)

tm

= JKm+1 = J
δHm+1

δu
, m = 0, 1, ..., (2.9)

where δ
δu

= ( δ
δw
, δ
δv
)
T
, and the Poisson tensor J and the Hamiltonians Hi are defined

by

J ≡

(
0 J12

J21 0

)
≡

(
0 (1− E)v

v(E(−1) − 1) 0

)
,

Ki ≡

(
Ki,1

Ki,2

)
=

δHi

δu
=

(
−b

(1)
i

ai
v

)
, i = 0, 1, ..., (2.10)

H0 =
1

2
ln v, Hi = −

bi+1

i
, i = 1, 2, ...,

with a0 =
1
2
, b0 = 0, and

b
(1)
i+1 = wb

(1)
i − (a

(1)
i + ai), a

(1)
i+1 − ai+1 = w(a

(1)
i − ai) + vbi − v(1)b

(2)
i , (2.11)

for i = 0, 1, .... The Lax pairs for the mth equation of the Toda hierarchy (2.9) are

given by (2.8) and

ytm = Amy =
m∑

i=0

(−vb
(1)
i E(−1) − ai)(E + w + vE(−1))m−iy, m = 0, 1, .... (2.12)
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The equations (2.9) have the bi-Hamiltonian formulation

GKi−1 = JKi, i = 1, 2, ..., (2.13)

G ≡

(
vE(−1) − v(1)E w(1− E)v
v(E(−1) − 1)w v(E(−1) −E)v

)
,

where G is the second Poisson tensor. The Toda hierarchy also has a tri-Hamiltonian

formulation and a Virasoro algebra of master symmetries [14, 15]. The first four

covariants Ki’s are

K0 =

(
0
1
2v

)
, K1 =

(
1
0

)
, K2 =

(
w

1

)
, K3 =

(
v + v(1) + w2

w + w(−1)

)
.

(2.14)

The Schrödinger spectral problem is given by

Ly = (∂2
x + q)y = −λy. (2.15)

which is associated with the KdV hierarchy [13]

qtm = B0Pm = B0
δHm

δq
, m = 0, 1, ..., (2.16)

where the vector field possesses the bi-Hamiltonian formulation with two Poisson

tensors B0 and B1

B0Pk+1 = B1Pk, k = 0, 1, ..., (2.17)

B0 = ∂ ≡ ∂x, B1 =
1

4
∂3 + q∂ +

1

2
qx, H i =

4b̄i+2

2i+ 1
, i = 0, 1, ...,

with b̄0 = 0, b̄1 = 1, and

b̄i+1 = (
1

4
∂2 + q −

1

2
∂−1qx)b̄i, i = 0, 1, ...,

where ∂−1∂ = ∂∂−1 = 1. The first three covariants Pk’s read as

P0 = 2, P1 = q, P2 =
1

4
(3q2 + qxx). (2.18)

The well-known KdV equation is the second one:

qt2 =
1

4
(3q2 + qxx)x. (2.19)
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The Lax pairs for the mth equation of the KdV hierarchy (2.16) are given by (2.15)

and

ytm = Amy =

m∑

i=0

(−
1

2
bi,x + bi∂)(∂

2 + q)m−iy, m = 0, 1, .... (2.20)

Let us consider the Toda hierarchy on a lattice with a small step h. We inter-

polate the sequences (w(n)) and (v(n)) with two smooth functions of a continuous

variable x, and relate w(n) and v(n) to f(x) by using (1.1). Suppose

E(k)w(n) = −2 + f(x+ kh)h2 + h2
L∑

i=1

Φi(f(x+ kh))hi,

E(k)v(n) = 1 + f(x+ kh)h2 − h2
L∑

i=1

Φi(f(x+ kh))hi, k ∈ Z.

In [11], we got the following result.

Proposition 1 Under the relation (1.1) with f(x, t) = 1
2
q(x, t), the Lax operator

of the Toda hierarchy goes to the Lax operator of the KdV hierarchy in continuous

limit, i.e., we have

L = Lh2 +O(h3), (2.21)

Lemma 1 Under the relation (1.1), we have

Ki =

(
−b

(1)
i

ai
v

)
=

(
αi

γi

)
+O(h), i = 0, 1, ..., (2.22)

where αi and γi are given by

α0 = 0, α1 = 1, γ0 =
1

2
, γ1 = 0, (2.23a)

αi = (−1)(i−1)C i−1
2i−2, γi = (−1)iC i

2i−2, i = 2, 3, .... (2.23b)

Define J̃ =

(
0 J̃21

J̃12 0

)
by requiring that JJ̃ = I. Then the following lemma

is true.
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Lemma 2 Under the relation (1.1), we have

TKi ≡ J̃GKi = Ki+1 + δi+1K0, i = 0, 1, ..., (2.24)

where

δi = −2(αi + γi) = (−1)i
2

i
C i−1

2i−2, i = 1, 2, .... (2.25)

Proposition 2 Under the relation (1.1) with f(x, t) = 1
2
q(x, t), the Poisson tensors

of the Toda hierarchy go to those of the KdV hierarchy in continuous limit,

J = −B0

(
0 1
1 0

)
h +O(h2), Wij +Wkl = −B1h

3 +O(h4), (2.26)

where W ≡ 1
4
GJ̃G+G = (Wij), 1 ≤ i, j ≤ 2, and

(i, j, k, l) ∈ {(1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 2, 2), (2, 1, 2, 2)} .

3. Higher order potential expansion and the con-

tinuous limits of the Toda hierarchy

Now, we give a new method to introduce Φi(f) required in (1.1) and derive the

continuous limits of the Toda hierarchy under the relation (1.1) with f(x, t) =
1
2
q(x, t).

Lemma 3 Define the operator as

T ≡ J̃G =

(
T11 T12

T21 T22

)
. (3.27)

Then under the relation (1.1) with f(x, t) = 1
2
q(x, t), the operator T has the following

expansions for its entries:

T11 = −2 +
1

2
h2q +O(h3), T12 = 2 + h∂ + (

1

2
∂2 + q)h2 +O(h3),

T21 = 2− h∂ + (
1

2
∂2 −

1

2
∂−1qx)h

2 +O(h3), T22 = −2 +
1

2
h2∂−1q∂ +O(h3).
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Proof. The result can be found in [11] (see the proof of Lemma 3 in [11]).

Lemma 4 Under the relation (1.1) with f(x, t) = 1
2
q(x, t), we have the following

expansions,

Ki ≡

(
Ki,1

Ki,2

)

=




αi +Ψi,1,0(q)h
2 + h2

L∑
j=1

hj(ζi,1Φj +Ψi,1,j(q,Φ1, ...,Φj−1))

γi +Ψi,2,0(q)h
2 + h2

L∑
j=1

hj(ζi,2Φj +Ψi,2,j(q,Φ1, ...,Φj−1))


 +O(hL+3),

(3.28)

for i = 0, 1, 2, ..., where αi and γi are given in Lemma 1,

ζ0,1 = 0, ζ0,2 =
1

2
, ζ1,1 = 0, ζ1,2 = 0,

ζi+1,1 = −2ζi,1 + 2ζi,2 + αi − 2γi, ζi+1,2 = 2ζi,1 − 2ζi,2 + αi −
1

2
δi+1, i = 0, 1, ...,

(3.29)

Ψi,1,j(q,Φ1, ...,Φj−1) stands for the term which is a differential polynomial of q, Φ1,

..., Φj−1, and etc.

Proof. Define ci = −vb
(1)
i , i = 0, 1, .... Using the identity [12]

k∑

i=0

(aiak−i + bick−i) = 0, k = 1, 2, ...,

we can show by the mathematical induction that ai, bi, ci, i = 0, 1, ..., are polyno-

mials of w, v, w(−1), v(−1), w(1), v(1), .... According to the definition of Ki in (2.10),

we conclude that Ki has the expansion formula (3.28). Notice Lemma 1 and Lemma

2, we can prove (3.29) by the mathematical induction.

Lemma 5 Define the combination coefficients βk,i, 0 ≤ i ≤ k + 1, k = 0, 1, ..., as

follows

β0,0 = 2, β0,1 = 1, β1,0 = −2, β1,1 = 2, β1,2 = 1,
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βk+1,i = βk,i−1, 1 ≤ i ≤ k + 2, βk+1,0 =

k+1∑

i=0

βk,iδi+1, (3.30)

then we have

k+1∑

i=0

βk,iαi = 0,

k+1∑

i=0

βk,iγi = 0, k = 1, 2, ....

Proof. It is easy to check the case when k = 1. If the lemma is true for k, then

k+1∑

i=0

βk,iKi = O(h)

(
1
1

)
,

so according to Lemma 2, we have

k+2∑

i=0

βk+1,iKi = J̃G

k+1∑

i=0

βk,iKi = O(h)

(
1
1

)
,

which completes the proof.

Lemma 6 Let βk,i be defined by (3.30). Then we have

k+1∑

i=0

βk,i(ζi,2 − ζi,1) = (−4)k, k = 1, 2, .... (3.31)

Proof. It is easy to check the case when k = 1. If the lemma is true for k, then we

have (according to Lemma 1 and Lemma 4)

k+2∑

i=0

βk+1,i(ζi,2 − ζi,1) =
1

2

k+1∑

i=0

βk,iδi+1 +
k+2∑

i=1

βk,i−1(ζi,2 − ζi,1)

=
1

2

k+1∑

i=0

βk,iδi+1 +
k+1∑

i=0

βk,i(−4ζi,2 + 4ζi,1 −
1

2
δi+1 + 2γi)

= −4

k+1∑

i=0

βk,i(ζi,2 − ζi,1) + 2

k+1∑

i=0

βk,iγi,

Note Lemma 5, and the proof is completed.
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Proposition 3 Given an integer m > 0, let βk,i be defined by (3.30), and set

Φ2k−1 = (−1)k2−2k−1

[
−
1

2
∂Pk + 2

k+1∑

i=0

βk,i(Ψi,1,2k−1 −Ψi,2,2k−1)

]
,

Φ2k = (−1)k2−2k−1

[
1

2
Pk+1 − (

1

2
∂2 +

3

2
q)
1

2
Pk − ∂

k+1∑

i=0

βk,i(ζi,2Φ2k−1 +Ψi,2,2k−1)

+2

k+1∑

i=0

βk,i(Ψi,1,2k −Ψi,2,2k)

]
, (3.32)

for k = 1, 2, ..., m − 1. Then under the relation (1.1) with L = 2m − 2, f(x, t) =
1
2
q(x, t) and (3.32) we have

P̃m ≡

m+1∑

i=0

βm,iKi =
1

2
Pmh

2m

(
1
1

)
+O(h2m+1), (3.33)

and
(

w

v

)

tm

+
1

h2m−1
JP̃m =

1

2
(qtm − B0Pm)h

2

(
1
1

)
+O(h3). (3.34)

Proof. It is easy to check the case when m = 1, If the equation (3.33) is valid for

m, then we have (according to Lemma 4)

T P̃m = J̃G

m+1∑

i=0

βm,iKi (3.35)

= J̃G

[
1

2
Pmh

2m

(
1
1

)
+ h2m+1

m+1∑

i=0

βm,i

(
ζi,1Φ2m−1 +Ψi,1,2m−1

ζi,2Φ2m−1 +Ψi,2,2m−1

)

+h2m+2

m+1∑

i=0

βm,i

(
ζi,1Φ2m +Ψi,1,2m

ζi,2Φ2m +Ψi,2,2m

)
+O(h2m+3)

]
, (3.36)

note the definition of Φ2m−1 and Φ2m in (3.32), we obtain (due to (3.31))

−2

m+1∑

i=0

βm,i(ζi,1Φ2m−1 +Ψi,1,2m−1) + 2

m+1∑

i=0

βm,i(ζi,2Φ2m−1 +Ψi,2,2m−1) +
1

2
∂Pm = 0,

(3.37)
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and

(
1

2
∂2 +

3

2
q)
1

2
Pm + ∂

m+1∑

i=0

βm,i(ζi,2Φ2m−1 +Ψi,2,2m−1)

−2

m+1∑

i=0

βm,i(ζi,1Φ2m +Ψi,1,2m) + 2

m+1∑

i=0

βm,i(ζi,2Φ2m +Ψi,2,2m) =
1

2
Pm+1. (3.38)

Combining the above two equations (3.37) and (3.38), and noting the equation

(2.17), we have

(
1

2
∂2 −

1

2
∂−1qx +

1

2
∂−1q∂)

1

2
Pm − ∂

m+1∑

i=0

βm,i(ζi,1Φ2m−1 +Ψi,1,2m−1)

+2
m+1∑

i=0

βm,i(ζi,1Φ2m +Ψi,1,2m)− 2
m+1∑

i=0

βm,i(ζi,2Φ2m +Ψi,2,2m) =
1

2
Pm+1. (3.39)

So we get

T P̃m =
1

2
Pm+1h

2m+2

(
1
1

)
+O(h2m+3). (3.40)

On the other hand (according to Lemma 2),

T P̃m = J̃G

m+1∑

i=0

βm,iKi =
m+1∑

i=0

βm,i(Ki+1 + δi+1K0) = P̃m+1. (3.41)

The equation (3.34) is the corollary of the equation (3.33) and Proposition 2. The

proof is finished.

We give an example here. For m = 3, using Proposition 3, we can get

Φ1 =
1

8
qx, Φ2 = −

1

32
q2, Φ3 = −

1

384
qxxx, Φ4 =

1

254
(q3 + qqxx + q2x),

(3.42)

then under the relation (1.1) with L = 4, f(x, t) = 1
2
q(x, t) and the above Φi’s we

have

−10K0 + 4K1 − 2K2 + 2K3 +K4 =
1

2
P3h

6

(
1
1

)
+O(h7).

In the previous work in [11], we must combine K0, K1, ..., K6 for giving P3 under

the relation (1.1) with L = 0. In general, K0, K1, ..., K2m are needed to be combined
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for giving Pm under the relation (1.1) with L = 0 [11]. Proposition 3 shows us that

almost only half of them, i.e.,K0,K1, ...,Km+1, are needed to give Pm by introducing

Φi(f) (3.32). Furthermore, according to the recursion formula for Φi(f) (3.32) it is

easy to see that all the Φi(f)’s, introduced by (3.32), are differential polynomials of

f , and our process for finding Φi(f) can be continued indefinitly.

In what follows, we will derive the continuous limit relations between the Hamil-

tonians, the Lax pairs of the Toda hierarchy and those of the KdV hierarhcy, re-

spectively.

Lemma 7 If there is a relation between w̃(n), n ∈ Z, and q(x), x ∈ R

w̃(n) = q(s1)(x)q(s2)(x) · · · q(sm)(x)hl, (3.43)

where h is the step of lattice, x = nh, si, 1 ≤ i ≤ m and l are nonnegtive integers,

and denote S̃ as the operator which stands for submitting the relation (3.43) into a

polynomial of w̃, w̃(−1), w̃(1), ..., and then expanding in Taylor series, then we have

the formula

δ

δq
◦ S̃ = hlZ̃ ◦ S̃ ◦

δ

δw̃
, (3.44)

where Z̃ stands for a differential operator.

The proof for Lemma 7 is given in Appendix A.

Proposition 4 Given an integer m > 0, set

H̃m ≡

m+1∑

i=0

βm,iHi −

m+1∑

i=1

βm,i

αi+1

i
, (3.45)

under the relation (1.1) with L = 2m− 2, f(x, t) = 1
2
q(x, t) and (3.32), we have

∫
S(H̃m)dx =

1

2
h2m+2

∫
Hmdx+O(h2m+3), (3.46)

where S is an operator which stands for submitting the relation (1.1) with L =

2m − 2, f(x, t) = 1
2
q(x, t) and (3.32) into a polynomial of w, v(n), w(−1), v(−1),

w(1), v(1), ..., and then expanding in Taylor series.
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Proof. According to Lemma 7, under the relation (1.1) with L = 2m− 2, f(x, t) =
1
2
q(x, t) and (3.32), (since Φi’s are differential polynomials of q), we have

δ

δq
◦ S =

∞∑

j=0

(−∂)j
∂

∂q(j)
◦ S

=

∞∑

j=0

(−∂)j
∑

k∈Z

[
(
∂S(w(k))

q(j)
)S ◦

∂

∂w(k)
+ (

∂S(v(k))

q(j)
)S ◦

∂

∂v(k)

]

=
1

2
h2

∞∑

j=0

(−∂)j
∑

k∈Z

(kh)j

j!
S ◦ (

∂

∂w(k)
+

∂

∂v(k)
) + h3Z ◦ S ◦ (

δ

δw
−

δ

δv
)

=
1

2
h2S ◦ (

δ

δw
+

δ

δv
) + h3Z ◦ S ◦ (

δ

δw
−

δ

δv
),

where Z stands for a differential operator, and we do not care about its concrete

form. Note Lemma 1 and the definition of Hi in (2.10), we can have the expansion

S(H̃m) =

∞∑

i=2

H̃m,ih
i,

where H̃m,i

∣∣∣
q=0

= 0, and according to Proposition 3, we have

δ

δq
◦ S(H̃m) =

∞∑

i=2

hi δH̃m,i

δq

=

[
1

2
h2S ◦ (

δ

δw
+

δ

δv
) + h3Z ◦ S ◦ (

δ

δw
−

δ

δv
)

]m+1∑

i=0

βm,iHm

=
1

2
h2m+2 δHm

δq
+O(h2m+3).

Then one can get [12]

H̃m,i ∈ Const. + Image(∂), 2 ≤ i ≤ 2m+ 1.

As we mentioned above, there is no constant item in each H̃m,i, i ≥ 2, (i.e.,

H̃m,i

∣∣∣
q=0

= 0), so
∫

H̃m,idx = 0, 2 ≤ i ≤ 2m+ 1.

Just using the same deduction, we conclude
∫

H̃m,2m+2dx =
1

2

∫
Hmdx,

which completes the proof.
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Lemma 8 Under the relation (1.1) with f(x, t) = 1
2
q(x, t), we have

Ak = αk − γk +

∞∑

i=2

Ak,ih
i, k = 0, 1, ..., (3.47)

where

Ak,2i|q=0 = 0, Ak,2i+1|q=0 = ξk,2i+1∂
2i+1, i = 1, 2, ..., (3.48)

ξk,2i+1is a constant, and αk and γk are given in Lemma 1.

Proof. For k = 0 and k = 1, we have

A0|q=0 = −
1

2
, A1|q=0 = 1 +

∞∑

j=0

1

(2j + 1)!
h2j+1(−∂)2j+1.

If the lemma is valid for k − 1, note αk = −2αk−1 + 2γk−1 (see Lemma 1), we have

Ak|q=0 = Ak−1(E + w + vE(−1))− vb
(1)
k E(−1) − ak

∣∣∣
q=0

=

[
αk−1 − γk−1 +

∞∑

i=0

ξk−1,2i+1h
2i+1∂2i+1

]
∞∑

j=1

2

(2j)!
h2j∂2j

+αk

∞∑

j=0

1

j!
hj(−∂)j − γk

≡ αk − γk +
∞∑

i=0

ξk,2i+1h
2i+1∂2i+1.

Lemma 9 Define

Ãk ≡
k+1∑

i=1

βk,iAi−1 k = 1, 2, .... (3.49)

Then under the relation (1.1) with f(x, t) = 1
2
q(x, t), we have

Ãk =
∞∑

i=2

Ãk,ih
i, (3.50)

where

Ãk,2i|q=0 = 0, Ãk,2i+1|q=0 = ξ̃k,2i+1∂
2i+1, i = 1, 2, ..., (3.51)

ξ̃k,2i+1is a constant.
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Proof. According to Lemma 8, we only need to prove

k+1∑

i=1

βk,i(αi−1 − γi−1) = 0. (3.52)

It is easy to check the cases: k = 1 and k = 2, and for k ≥ 3, note Lemma 5, we

have

k+1∑

i=1

βk,i(αi−1 − γi−1) =
k+1∑

i=1

βk−1,i−1(αi−1 − γi−1) =
k∑

i=0

βk−1,i(αi − γi) = 0,

which completes the proof.

Proposition 5 Given an integer m > 0, under the relation (1.1) with L = 2m− 2,

f(x, t) = 1
2
q(x, t) and (3.32), we have

Ãm ≡
m+1∑

i=1

βm,iAi−1 = −Amh
2m−1 +O(h2m). (3.53)

Proof. It is valid for m = 1, 2. According to Proposition 3, we have

[Ãm, L] =

m+1∑

i=1

βm,i

dw

dti−1
+

m+1∑

i=1

βm,i

dv

dti−1
E(−1)

= J12

m+1∑

i=1

βm,iKi,2 + J21

m+1∑

i=1

βm,iKi,1E
(−1)

= −B0Pmh
2m+1 +O(h2m+2)

= −[Am, L]h
2m+1 +O(h2m+2). (3.54)

Under the relation (1.1) with L = 2m− 2, f(x, t) = 1
2
q(x, t) and (3.32), Proposition

1 and Lemma 9 together imply

L = Lh2 +

∞∑

i=3

Lih
i, Ãm =

∞∑

i=2

Ãm,ih
i, (3.55)

where Li and Ãm,i are differential operators. Comparing the terms of h4 in (3.54),

we know

[Ãm,2, L] = 0, (3.56)
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According to [16], Ãm,2 can be represented by

Ãm,2 =

∞∑

j=0

ηm,2,j(L)
j, (3.57)

where ηm,2,j are constants. Note Lemma 9, we have

Ãm,2|q=0 = 0 =
∞∑

j=0

ηm,2,j(∂
2)j. (3.58)

Then one can get ηm,2,j = 0 for all j, and

Ãm,2 = 0. (3.59)

Comparing the terms of h5 in (3.54), we know

[Ãm,3, L] = 0, (3.60)

then Ãm,3 can be represented by [16]

Ãm,3 =

∞∑

j=0

ηm,3,j(L)
j, (3.61)

where ηm,3,j are constants. Note Lemma 9, and we have

Ãm,3|q=0 = ξ̃m,3∂
3 =

∞∑

j=0

ηm,3,j(∂
2)j. (3.62)

Then one can get ηm,3,j = 0 for all j, and

Ãm,3 = 0. (3.63)

In the same way, we conclude

Ãm,i = 0, i = 2, ..., 2m− 2. (3.64)

Comparing the terms of h2m+1 in (3.54), we know

[Ãm,2m−1, L] = −[Am, L], (3.65)

then Ãm,2m−1 + Am can be represented by [16]

Ãm,2m−1 + Am =
∞∑

j=0

ηm,2m−1,j(L)
j , (3.66)
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where ηm,2m−1,j are constants. Note Lemma 9 and (2.20), we have

(
Ãm,2m−1 + Am

)∣∣∣
q=0

= ξ̃m,2m−1∂
2m−1 + ∂2m−1 =

∞∑

j=0

ηm,2m−1,j(∂
2)j. (3.67)

Then we get ηm,2m−1,j = 0 for all j and

Ãm ≡

2m∑

i=1

βm,iAi−1 = −Amh
2m−1 +O(h2m). (3.68)

Thus the proof is completed.

4. Conclusions and remarks

In this paper, by introducing the higher order terms in the potential expansion, we

have proved that there is the continuous limit relation between the Toda hierarchy

and the KdV hierarchy. Compared with the [11], the fewer members of the Toda

hierarchy are needed to recover the KdV hierarchy by the recombination method.

For example, Proposition 3 shows that under the potential expansion (1.1) with

f(x, t) = 1
2
q(x, t) and (3.32), we can combine K0, K1, ..., Km+1, to get Pm in

continuous limit. However, under the lower finite potential expansion, for example

(1.1) with f(x, t) = 1
2
q(x, t) and L = 0, we need K0, K1, ..., Km, ..., K2m, to recover

Pm through the continuous limit process [11].

Compared with the [10], a new method for introducing Φi(f) in the potential

expansion (1.1) was presented in this paper. Moreover, from the recursion formula

for Φi(f) (3.32), it is easy to see that the Φi(f)’s, introduced in our construction,

are all differential polynomials of f , and our process for determining Φi(f) can be

continued indefinitly. However, this can not be obtained in [10], since the Φi(f)’s

are obtained by integration there.

It was also shown that the Lax pairs, the Poisson tensors, and the Hamiltonians

of the Toda hierarchy tend towards the corresponding ones of the KdV hierarchy in

continuous limit
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Appendix A. Proof of Lemma 7

Denote w̃i = q(s1) · · · q(si−1)q(si+1) · · · q(sm), for i = 1, ..., m, then we have

δ

δq
◦ S̃ =

∞∑

j=0

(−∂)j
∂

∂q(j)
◦ S̃

=
∞∑

j=0

(−∂)j
∑

k∈Z

(
∂S̃(w̃(k))

∂q(j)

)
S̃ ◦

∂

∂w̃(k)

= hl

m∑

i=1

∞∑

j=si

(−∂)j
∑

k∈Z

(kh)j−si

(j − si)!

(
ekh∂S̃(w̃i)

)
S̃ ◦

∂

∂w̃(k)

= hl

m∑

i=1

∞∑

j=0

(−∂)j+si
∑

k∈Z

(kh)j

j!

(
ekh∂S̃(w̃i)

)
S̃ ◦

∂

∂w̃(k)

= hl

m∑

i=1

(−∂)si
∞∑

j=0

∑

k∈Z

j∑

p=0

(−kh)j

p!(j − p)!

(
∂pekh∂S̃(w̃i)

)
∂j−p ◦ S̃ ◦

∂

∂w̃(k)

= hl

m∑

i=1

(−∂)si
∞∑

p=0

∑

k∈Z

∞∑

j=p

(−kh)j

p!(j − p)!

(
∂pekh∂S̃(w̃i)

)
∂j−p ◦ S̃ ◦

∂

∂w̃(k)

= hl

m∑

i=1

(−∂)si
∞∑

p=0

(
∂pekh∂S̃(w̃i)

)∑

k∈Z

∞∑

j=0

(−kh)j+p

p!j!
∂j ◦ S̃ ◦

∂

∂w̃(k)

= hl

m∑

i=1

(−∂)si
∞∑

p=0

(−kh)p

p!

(
∂pekh∂S̃(w̃i)

)∑

k∈Z

∞∑

j=0

(−kh)j

j!
∂j ◦ S̃ ◦

∂

∂w̃(k)

= hl

m∑

i=1

(−∂)si
∞∑

p=0

(−kh)p

p!

(
∂pekh∂S̃(w̃i)

)
S̃ ◦

∑

k∈Z

E(−k) ◦
∂

∂w̃(k)

= hl

m∑

i=1

(−∂)si
∞∑

p=0

(−kh)p

p!

(
∂pekh∂S̃(w̃i)

)
S̃ ◦

δ

δw̃(k)

≡ hlZ̃ ◦ S̃ ◦
δ

δw̃
.

The proof for Lemma 7 is finished.
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