
ar
X

iv
:n

lin
/0

20
40

46
v1

  [
nl

in
.C

D
] 

 1
8 

A
pr

 2
00

2

Deterministic diffusion in flower shape billiards

Takahisa Harayama
ATR Adaptive Communications Research Laboratories,

2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

Rainer Klages
Max Planck Institute for Physics of Complex Systems,
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We propose a flower shape billiard in order to study the irregular parameter dependence of chaotic
normal diffusion. Our model is an open system consisting of periodically distributed obstacles of
flower shape, and it is strongly chaotic for almost all parameter values. We compute the parameter
dependent diffusion coefficient of this model from computer simulations and analyze its functional
form by different schemes all generalizing the simple random walk approximation of Machta and
Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to
the simple random walk model, on lattice gas simulation methods, or they start from a suitable
Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of
crucial importance to reproduce the precise parameter dependence of the diffusion coefficent.
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I. INTRODUCTION

One of the central themes in the theory of nonequi-
librium statistical mechanics is to assess the importance
of deterministic chaos for understanding transport pro-
cesses such as diffusion [1,2]. Simple model systems ap-
pear to be most suited for studying the detailed relation
between microscopic chaos and macroscopic transport.
Along this line of research, the parameter dependent
diffusion coefficients of strongly chaotic dynamical sys-
tems have been investigated for one- and two-dimensional
mappings [3–7], periodic Lorentz gases [8], and billiards
in an external field [9]. That diffusion coefficients can
be fractal functions of control parameters was first ob-
served in a simple one-dimensional mapping generalizing
a random walk on the line [5]. The origin of this frac-
tality may be attributed to the topological instability of
orbits under parameter variation that affects the param-
eter dependence of the diffusion coefficient in a nontrivial
way. Based on the analysis of such simple systems, it was
conjectured that fractal diffusion coefficients are rather
generic for low-dimensional fully chaotic dynamical sys-
tems exhibiting some spatial periodicity [5,6]. Indeed,
recently it was found that in case of billiards in an exter-
nal field the diffusion coefficient again exhibits a highly
irregular structure [9].
The standard periodic Lorentz gas is one of the typical

models for studying deterministic normal diffusion (see,
e.g., Refs. [1,2] and further references therein). That it is
strongly chaotic and exhibits normal diffusion was proven
by Bunimovich and Sinai [10]. Machta and Zwanzig have
calculated the diffusion coefficient of this model from
computer simulations at some parameter values, and they
have matched their results to a simple analytical random

walk approximation [11]. That the diffusion coefficient in
the standard periodic Lorentz gas is indeed a non-trivial
function of the parameter was first reported in Ref. [8].
Here the analysis by Machta and Zwanzig was refined
by suggesting two methods for systematically correcting
their random walk approximation. However, whether the
numerically detected irregularities in the diffusion coeffi-
cient were of a fractal nature remains an open question.
More recently, a third approximation scheme was pro-
posed by deriving a Green-Kubo formula that exactly
generalizes the Machta-Zwanzig approximation [12]. Ap-
plying all these methods led to the conclusion that in-
cluding long-term correlations, or memory effects, was
indispensable to reproduce the precise functional form
of the parameter dependent diffusion coefficient for the
standard periodic Lorentz gas.
One of the essential problems in the analysis of dif-

fusion in the standard periodic Lorentz gas is that the
parameter range of normal diffusion is very limited. In
this small region, the irregular behavior of the parame-
ter dependent diffusion coefficient shows up on very fine
scales and appears to be rather smooth within the range
of precision available from computer simulations [8,13].
Consequently, the question about the existence of a frac-
tal diffusion coefficient is very difficult to answer for this
model. As the main reason for this behavior it might
be suspected that the topological instability of the stan-
dard periodic Lorentz gas under parameter variation is
not strong enough to generate more pronounced irregu-
larities in this region. The main purpose of this paper
is therefore to propose a billiard without external field
which is very similar to the standard periodic Lorentz
gas, but which has a geometry, and an associated range
of control parameters exhibiting normal diffusion, with
stronger topological instabilities. This way, we intend to
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learn more about the emergence of possible fractal struc-
tures for diffusion coefficients in billiards. As we will
show, our model indeed generates a considerably stronger
irregular parameter dependence of the diffusion coeffi-
cient than in the standard Lorentz gas. By applying the
set of approximation methods mentioned above we argue
that long-range dynamical correlations, or memory ef-
fects of orbits, are again at the origin of this irregularity,
as in case of simple one- and two-dimensional maps.
Our paper is composed of seven sections: In section II,

we introduce the flower shape billiard. Numerical results
depicting the non-trivial parameter dependence of the
diffusion coefficient are shown in section III. In section
IV,V, and VI, we briefly review the different approaches
to understand the parameter dependence of diffusion co-
efficients in deterministic dynamical systems, i.e., the
Machta-Zwanzig approximation, Klages-Dellago correc-
tion methods, as well as the approach based on a suitable
Green-Kubo formula for diffusion, and we apply them to
the flower shape billiard. Summary and conclusions are
contained in section VII.

II. THE FLOWER SHAPE BILLIARD

The two-dimensional class of billiards we consider here
consists of a point particle of mass m moving in a plane
such that its Hamiltonian is

H =
1

2m
p2x +

1

2m
p2y , (1)

where x and y denote the Cartesian coordinates of the po-
sition in the plane while px and py are the corresponding
momenta. The point particle undergoes elastic collisions
with obstacles that are fixed in the plane. All the obsta-
cles have the same shape, and their centers are situated
on a triangular lattice according to

qc = mcℓ1 + ncℓ2 , (2)

as defined in terms of the fundamental translation vectors
of the triangular lattice

ℓ1 = (0, 1) (3)

and

ℓ2 =

(√
3

2
,
1

2

)

, (4)

where mc and nc are integers.
If all the pairs of integers are selected, we fill the

whole triangular lattice with hard wall obstacles, and the
billiard is invariant under the group of spatial transla-
tions generated by the vectors Eq. (2). Accordingly, the
whole lattice can be mapped onto a so-called Wigner-
Seitz cell with periodic boundary conditions. The ele-
mentary Wigner-Seitz cell of the triangular lattice is a
hexagon of area

AWS = |ℓ1 × ℓ2| =
√
3

2
. (5)
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FIG. 1. The modified Lorentz gas as composed of a point

particle moving freely in the spaces between the flower-shaped
obstacles, which scatters elastically with the obstacles. In our
case, mass m = 1 and velocity v = 1. All figures are without
units.

In this paper, we propose an open billiard consisting
of flower shape obstacles instead of disks, which belongs
to the general class of periodic Lorentz gases whose nor-
mal diffusion has been proven by Bunimovich and Sinai
[10]. The mixing property and the extension of such bil-
liards to higher-dimensional gases have been studied by
Chernov [14]. As shown in Fig. 1, the space between the
obstacles forms the two-dimensional domain of the bil-
liard where the point particle moves freely and collides
with the obstacles obeying the law of elastic reflection.
A single scatterer of our billiard is defined as follows:

First, we consider the inner hexagon whose vertices are
on the middle points of the sides of the hexagon of the
elementary Wigner-Seitz cell, as depicted by the dotted
lines in Fig. 2. Next, we join six arcs which have the
same radii and touch the inner hexagon. Then we ob-
tain the flower-shaped obstacle shown in Fig. 2. Note
that the radius r of one arc which consists in a petal of
the flower-shaped obstacle can be changed from 1/(4

√
3)

to infinity. According to this construction, the position
space forms a two-dimensional torus. The motion of the
point particle in the infinite lattice is unbounded so that
transport by diffusion is a priori possible. Indeed, we will
show that the diffusion of point particles in the billiard of
the flower-shaped obstacles is normal. When the dynam-
ics is reduced to the Wigner-Seitz cell, the position of the
particle inside this cell must be supplemented by a lattice
vector of the type of Eq. (2) in order to determine the
actual position of the particle in the infinite lattice. This
lattice vector changes in discrete steps at each crossing
of the border of the elementary Wigner-Seitz cell.
A billiard whose obstacles are disks, or, in higher di-

mensions, spheres, is called a periodic Lorentz gas, and
this model serves as a typical example for studying deter-
ministic diffusion [10,11,14,15]. The diffusion coefficient
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of this standard periodic Lorentz gas has been studied
in various ways both analytically and numerically, where
recent work focused particularly onto its density depen-
dence (see Refs. [8,12] and further references therein).
However, the density of this model cannot be varied much
because of the condition of finite horizon, which prohibits
collision-free ballistic motion and thus guarantees the ex-
istence of normal diffusion [10]. Consequently, the diffu-
sion coefficient exists in a very limited range of param-
eters only, and whether the diffusion coefficient of the
standard periodic Lorentz gas is a fractal function of the
density of scatterers appears to be an open question.

FIG. 2. Definition of a flower-shaped obstacle. The bigger
hexagon (bold lines) is the elementary Wigner-Seitz cell. The
arc always touches the smaller hexagon (dotted lines), which
prohibits any infinite horizon.

Let us introduce the Liouville equilibrium invariant
measure given by

dµe = I(x, y)δ(H − E)dxdydpxdpy, (6)

where I(x, y) is the indicator function of the billiard do-
main, and E is the energy of the point particle. Aver-
ages over this invariant measure are denoted by < · >.
This measure is normalizable for the reduced dynamics
in an elementary Wigner-Seitz cell where the area of the
billiard domain takes a finite value. In this finite case,
the Liouville invariant measure is a probability measure
which defines the microcanonical ensemble of equilibrium
statistical mechanics. The flower shape billiard belongs
to the class of dispersing billiards whose hyperbolicity
has been proven by Sinai [16]. Consequently, it is known
that the motion of the point particle in the elementary
Wigner-Seitz cell of our billiard is hyperbolic in the sense
that all orbits are unstable of saddle type with nonvan-
ishing Lyapunov exponents, and time averages are equal
to averages over the Liouville equilibrium invariant mea-
sure.

III. CURVATURE DEPENDENCE OF THE

DIFFUSION COEFFICIENT

Since the system of flower-shaped obstacles is fully
chaotic, and by working in the regime of finite horizon, we
may expect that diffusion is normal in the sense that the

position is asymptotically a Gaussian random variable
with a variance growing linearly in time. Consequently,
the diffusion coefficient exists and is finite [10,14]. In-
deed, we checked numerically that the variance is pro-
portional to time after sufficiently long time evolution.
The diffusion coefficient D is given by the Einstein for-

mula,

D = lim
t→∞

1

4t
< {q(t)− q(0)}2 > , (7)

and according to this formula the diffusion coefficient was
calculated from computer simulations in the flower shape
billiard where the curvature κ of the petals is varied from
0 to its maximum 4

√
3. The results are depicted in Fig. 3.

In this figure, we observe a non-trivial structure depend-
ing on the curvature κ of the arc defining the petal of the
flower-shaped obstacles.

0.00

0.04

0.08

0.12

0.16

D

0 1 2 3 4 5 6 7
 κ

D
 κ6.2 6.7

0.086

0.094

FIG. 3. Diffusion coefficient D (solid line) versus the cur-
vature κ of the petal of the flower-shaped obstacles. The
diffusion coefficient inceases approximately linearly for small
enough κ until reaching a global maximum. Inset: Zoom on
the curve of the diffusion coefficient for larger κ showing the
irregularity of this curve on fine scales.

The gross features of the curvature dependence for the
diffusion coefficient can qualitatively be explained as fol-
lows: When the curvature of the petal of the flower-
shaped obstacle is zero, the inner hexagon shown by the
dotted lines in Fig. 2 connects to the six hexagons sur-
rounding it. In this case, the point particle remains for-
ever localized in compact domains bounded by the three
neighbouring hexagons. For this specific value of the con-
trol parameter, the motion of the point particle is com-
pletely predictable because the compact domain is an
equilateral triangle, and the system is integrable.
When the curvature becomes positive, the point parti-

cle can run away from the compact domain, and diffusion
occurs. As already explained, at all positive curvatures
of the petal, even if they are very small, the motion of
the point particle is fully chaotic and the horizon is finite,
hence diffusion is expected to be normal. The diffusion
coefficient starts to increase from zero according to the
linear increase of the curvature of the petal, and related
to the fact that the space between petals also increases.
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When the radius of the petal is equal to RL =
√
3/4 ≃

0.433, which is the distance between the center of the
hexagon and the tangent point to the hexagon, the ob-
stacle becomes a disk of radius RL, that is, for this pa-
rameter value our billiard is precisely the same as the con-
ventional periodic Lorentz gas. This point corresponds
to the curvature κ ≃ 2.309 in Fig. 2.
When the radius r of the curvature of the petal de-

creases below RL, the point particle is much more likely
to be trapped in the space between two obstacles. This
appears to be due to the formation of wedges between
any two petals of a flower shape obstacle.
The inset of Fig. 3 depicts a zoom on the curve show-

ing the fine structure on smaller scales with respect to
curvature. We remark that the apparently continuous
fluctuations therein are within the numerical errors, that
is, we confirmed the convergence of our results within a
precision of order 10−4 by taking an average over 1010 ini-
tial conditions. Unfortunately, with our computational
power it is impossible to check whether this oscillatory
behavior persists on even finer scales.

IV. MACHTA-ZWANZIG APPROXIMATION

FOR DIFFUSION COEFFICIENTS

In Ref. [11], Machta and Zwanzig have obtained a sim-
ple analytical approximation for the diffusion coefficient
of the periodic Lorentz gas which yields asymptotically
correct results in the limit of small gaps between disks.
In this case, the particle is for a long time somewhat
trapped in the triangular regions between three adjacent
scatterers. Hence, the particle is supposed to loose the
memory of its past itinerary due to the multiple scatter-
ing in the trap region, and the transition probabilities
to the neighbouring triangular cells are assumed to be
equivalent. As was shown in Ref. [11], the average rate
τ−1 of such transitions can be calculated from the frac-
tion of phase space available for leaving the trap divided
by the total phase space volume of the trap leading to

τ = πA/(3W ) , (8)

where A is the area of the trap and W the width of the
gap between the disks.
The flower shape billiard has similar types of traps

as the periodic Lorentz gas. Accordingly, the Machta-
Zwanzig approximation can be applied to the flower
shape billiard as well, and Eq. (8) holds again for the
average trapping time. Hence, we only need to calculate
the area of the trap and the gap between the petals from
simple geometrical considerations yielding

A =
3
√
3

4
− 3h

[√
3h+

√

r2 − h2

]

(9)

and

W =
1

2
−
[√

3h+
√

r2 − h2

]

, (10)

where

h =
1

2

(√
3

4
− r

)

. (11)

In the above, r denotes the radius of the curvature of the
petal.
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Machta-Zwanzig
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D
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 κ
FIG. 4. Diffusion coefficient D (solid line) versus the cur-

vature κ of the petal of the flower-shaped obstacle. The solid
curve correspond to the numerically exact results while the
dotted curve yields the Machta-Zwanzig random walk approx-
imation Eq. (12).

The distance l between the centers of the flower shape
obstacles is 1/

√
3. Assuming that the gap size W is very

narrow leads to the Machta-Zwanzig random walk ap-
proximation for the diffusion coefficient

DMZ =
l2

4τ
(12)

with τ being given by Eq. (8) and supplemented by
Eqs. (9)-(11) for the flower shape case. As is shown in
Fig. 4, the Machta-Zwanzig approximation works very
well in the vicinity of zero curvature of the petal only.

V. KLAGES-DELLAGO CORRECTIONS OF THE

MACHTA-ZWANZIG APPROXIMATION

In Ref. [8], Klages and Dellago have generalized the
Machta-Zwanzig approximation for the standard periodic
Lorentz gas by taking memory effects of orbits into ac-
count. Their generalization is based on the observation
that, except in the asymptotic limit of narrow gap sizes,
the diffusive dynamics is not a simple Markov process, in
the sense that there exist non-vanishing dynamical cor-
relations. By mapping the orbit of a particle onto a suit-
able symbolic dynamics they numerically calculated the
probabilities to obtain certain symbol sequences of finite
length. Increasing the length of these symbol sequences
yielded systematic corrections of the Machta-Zwanzig ap-
proximation. In Ref. [8], two schemes directly emerg-
ing from this approach were discussed, one suggesting
simple heuristic corrections to the simple random walk
model of diffusion Eq. (7), and another one employing
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lattice gas computer simulations defined by these proba-
bilities. In this section, we apply these two methods to
the flower shape billiard in order to systematically cor-
rect the Machta-Zwanzig approximation. A third scheme
starting from a Green-Kubo formula for diffusion will be
discussed in section VI.
The Machta-Zwanzig approximation assumes that a

particle jumps from one trap to a neighbouring trap
situated on the hexagonal lattice of traps. However,
there exist non-vanishing probabilities that a particle can
jump to next nearest neighbours, or even farther, without
collisions. Accordingly, we should correct the Machta-
Zwanzig approximation for the flower shape billiard by
using the probabilities pcf1 and pcf2 of those collision-
less flights which lead from one cell directly to its second
nearest neighbours, or to the third nearest neighbours,
respectively. The distances l1 and l2 between the centers
of a trap to respective second and third neighbours are

l1 =
√
3l , l2 =

√
7l . (13)

The diffusion coefficientDcf with corrections due to these
collisionless flights then reads

Dcf = (1− pcf1 − pcf2)DMZ + pcf1
l21
4τ

+ pcf2
l22
4τ

= (1 + 2pcf1 + 6pcf2)DMZ . (14)

Next we take memory effects of orbits due to backscat-
tering into account. For this purpose, orbits are coded by
labeling the entrance through which a particle enters a
trap with z, the exit to the left of this entrance with l, and
the one to the right with r. Thus, an orbit can be mapped
onto a sequence of symbols z, l, and r. For example, p(z)
is the backscattering probability pbs, which is the prob-
ability of the moving particle to leave the trap through
the same gate where it entered. The Machta-Zwanzig
approximation assumes that p(z) = p(l) = p(r) = 1/3.
However, in general p(z) is not close to 1/3 as shown
in Fig. 5, because the actual orbits do not loose their
memory during their itineraries.
A more profound explanation for the complicated func-

tional form of p(z) may be provided in terms of the
theory of chaotic scattering: Chaotic scattering systems
with multiple exit modes typically have fractal phase
space boundaries separating the sets of initial conditions
(basins) going to the various exits. However, open sys-
tems such as a three-disk scatterer of the periodic Lorentz
gas possess the even stronger property of being Wada,
that is, any initial condition which is on the boundary
of one exit basin is also simultaneously on the boundary
of all the other exit basins [18]. Changing the curva-
ture κ sensitively affects the highly irregular structure of
these basin boundaries. Consequently, Fig. 5 may be un-
derstood as reflecting the topological instability of Wada
basins under parameter variation, and as we will now
show this is reflected in the parameter dependence of the
diffusion coefficient.

0.2

0.4

0.6

P b
s

0 1 2 3 4 5 6 7
 κ

FIG. 5. Backscattering probability p(z) (solid line) versus
the curvature κ of the petal of the flower-shaped obstacle. In
the case of a Markovian process it is equal to 1/3.

Modifying the Machta-Zwanzig random walk by in-
cluding the backscattering probability p(z) we obtain the
diffusion coefficient

DBS =
(1− p(z))l2

2

4(2τ)
= (1− p(z))

3

2
DMZ . (15)

Combining the effects of collisionless flights and backscat-
tering yields as a first order approximation

D1 =
3

2
(1− p(z))(1 + 2pcf1 + 6pcf2)DMZ . (16)

Higher-order approximations of the diffusion coefficient,
as related to longer symbol sequences and respective
probabilities such as p(lrz . . .), can be derived in the same
way [8]. For the flower shape billiard, respective results
are shown in Fig. 6.
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FIG. 6. Diffusion coefficients of higher-order approxima-
tions due to including higher-ordering backscattering proba-
bilities. The solid curve corresponds to numerically exact re-
sults while the other curves represent approximate solutions.

The above correction methods assume that all orbits
follow higher-order Markov processes, where correlations
are present in form of initial transient times before the
variance becomes linear in time. This dynamics appears
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to be more suitably represented in form of lattice gas
simulations on a honeycomb lattice, where the sites of
the lattice represent the traps. Indeed, for the periodic
Lorentz gas such lattice gas simulations were performed
in Ref. [8] confirming fast convergence to the numerically
exact results. Compared to that scheme, the conver-
gence of the intuitive correction method described above
is firstly slower, and secondly it is not everywhere con-
verging to the numerically exact results, which is due
to the fact that this approach was purely of a heuristic
nature.
We also performed lattice gas simulation in case of the

flower shape billiard according to the following prescrip-
tion: Particles hop from site to site with frequency τ−1,
which is identical to the hopping frequency used in the
Machta-Zwanzig approximation. The hopping probabili-
ties are given by the backscattering probability p(z) and
by those corresponding to respective longer symbol se-
quences. The diffusion coefficient is then obtained from
the Einstein formula Eq. (7) in the limit when the vari-
ance is getting proportional to time. The correlations
in the actual orbits are thus systematically and exactly
filtered out according to the length of the symbol se-
quences.
In Fig. 7, the results of such higher-order approxima-

tions according to lattice gas simulations are shown. One
can see that the convergence to the numerically exact re-
sults is not only much better than in Fig. 6, but even ex-
act. Strong memory effects are clearly visible especially
after the diffusion coefficient curve takes its maximum.
In the previous heuristic modifications to the simple ran-
dom walk model, the dynamics was only modeled for a
limited number of time steps as a Markov process. Fig. 6
suggests that correlations as contained in the symbol se-
quences are more suitably represented by higher-order
iterations in form of lattice gas simulations. However,
a disadvantage is that the lattice gas scheme requires a
second round of computations which is put on top of the
previous simulations, by again looking at the time evolu-
tion of an initial ensemble of points.
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FIG. 7. Diffusion coefficient as obtained from lattice gas
simulations based on higher-order backscattering probabili-
ties. The solid curve corresponds to numerically exact results
while the other curves yield higher-order approximations.

VI. THE GREEN-KUBO FORMULA APPROACH

The main drawbacks of the two methods described
above were, firstly, that the heuristic corrections of the
Einstein formula were not converging exactly to the nu-
merically exact results, and, secondly, that the lattice
gas simulations were merely a numerical scheme without
being represented in form of analytical approximations.
These deficiencies were essentially resolved in Ref. [12] by
the derivation of a Green-Kubo formula which employs
the symbolic dynamics on the hexagonal lattice of traps
introduced in section V. The result reads

D =
1

4τ
C0 +

1

2τ

∞
∑

n=1

Cn , (17)

with

Cn := 〈j(x0) · j(xn)〉 (18)

being the velocity autocorrelation function related to
jumps j(xn) on the hexagonal lattice at time step n.
These jumps are suitably defined in terms of the lattice
vectors Eqs. (3),(4). That is, any symbol sequence of an
orbit on the hexagonal lattice of traps defines a respec-
tive chain of lattice vectors. The averages indicated by
the brackets in Eq. (18) are calculated by weighting the
respective scalar products of lattice vectors with the cor-
responding conditional probablities p(αβγ . . .) , α, β, γ ∈
{l, r, z}. In Eq. (18), τ is the mean time of free flight be-
tween symbol changes, and it is given by Eq. (8). Eq.
(17) is thus the honeycomb lattice analogue to the Green-
Kubo formula derived by Gaspard for the Poincaré-
Birkhoff map of the periodic Lorentz gas [1,19].
It is easy to see that the first term in Eq. (17) yields

the Machta-Zwanzig approximation Eq. (12). Higher-
order corrections can then be calculated by defining the
hierarchy of approximations

Dn =
l2

4τ
+

1

2τ

∑

αβγ...

p(αβγ . . .)ℓ · ℓ(αβγ . . .) (19)

with n > 0 being the number of symbols andD0(w) given
by Eq. (12), where, again, ℓ(αβγ . . .) are suitable lattice
vectors.
The impact of dynamical correlations on the diffusion

coefficient can now be understood by analyzing the single
contributions in terms of the correlation function Cn as
contained in the Green-Kubo formula Eq. (17). In fully
chaotic systems such as the periodic Lorentz gas and the
flower shape billiard, the velocity correlation function de-
cays exponentially, which is in agreement to the results
depicted in Fig. 8. By comparing this figure to Fig. 9 one
can learn how the irregularities of the correlation func-
tion determine the parameter dependent diffusion coeffi-
cient: Let us start with the first-order approximation of
Eq. (19) which readsD1 = D0+D0(1−3p(z)). The func-
tional form of p(z) in Fig. 5 thus qualitatively explains
the position of the global maximum of the diffusion coef-
ficient, because at this value of the curvature the proba-
bility of backscattering is minimal. Adding up the three-
jump contributions coming from C2 furthermore yields
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the most important quantitative contributions in this re-
gion of the curvature. In the region of large curvature
the diffusion coefficient decays monotonically according
to the effect of two-hop correlations covered by C1. How-
ever, note the large fluctuations of the correlation func-
tion Cn as well as of the diffusion coefficient approxi-
mations Dn in this regime both indicating the dominant
effect of long-range higher-order correlations. Studying
the detailed convergence of the approximations depicted
in Fig. 9 shows that correlations due to orbits with longer
symbol sequences yield irregularities in the parameter de-
pendence of the diffusion coefficients on finer and finer
scales.
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FIG. 8. Parameter dependence of the time-dependent cor-
relation function Cn, see Eq. (18), as defined with respect to
the symbolic dynamics on the hexagonal lattice of traps. At
any parameter Cn decays exponentially related to the fact
that the Green-Kubo formula Eq. (17) is a convergent series.
The speed of the convergence depends on the curvature. Ob-
viously, in the large curvature region the correlation function
decays more slowly than for small curvature.
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FIG. 9. Diffusion coefficients as obtained from the
Green-Kubo formula Eq. (19). The solid curve correspond
to the asymptotic, numerically exact results while the other
curves yield the respective hierarchy of approximations.

VII. SUMMARY AND CONCLUSION

In this paper, we have introduced a novel variant of the
periodic Lorentz gas by assigning a flower-shaped geom-
etry to the scatterers. Although both systems are rather
similar in the sense that they are both fully chaotic and
exhibit normal diffusion in a certain parameter range,
we have found that the diffusion coefficient in the flower
shape geometry is considerably more irregular under pa-
rameter variation than the one obtained from circular
disks as scatterers. We have analyzed these irregularities
by three different methods which all start from correct-
ing the Machta-Zwanzig random walk approximation for
the diffusion coefficient. All these improved approxima-
tion schemes use a symbolic dynamics which maps the
orbits of moving particles to symbol sequences according
to traps situated on a hexagonal lattice. We have dis-
cussed the convergence of these different approximation
schemes, and we have shown how they enable a detailed
understanding of the precise shape of the parameter de-
pendent diffusion coefficient in the flower shape billiard
in terms of long-range dynamical correlations.
The Green-Kubo formula introduced in Ref. [12] ap-

pears to be most suitable for understanding the irregular
behavior of the parameter dependent diffusion coefficient,
because it conveniently transforms the diffusive dynamics
into a sum over the velocity correlation function, whose
specific parameter dependence can in turn be analyzed
step by step. In particular, this approach yields an exact
convergence to the parameter dependent diffusion coeffi-
cient as obtained from simulations.
Interestingly, when the correlation function decays in

time, the frequency of oscillations as a function of the
control parameter increases. The relation between this
decay in time and the increase of the frequency of these
oscillations determines the strength of the irregularities
on fine scales of the resulting parameter dependent diffu-
sion coefficient. The question of the existence of fractal
diffusion coefficients in billiards such as periodic Lorentz
gases with circular or flower-shaped scatterers might thus
be answered by using Green-Kubo formulas if the re-
spective correlation functions could be evaluated more
precisely for large enough times. Indeed, in Ref. [9] the
highly irregular diffusion coefficient of an open billiard
in an external field has already been investigated along
these lines by relating the Poincaré-Birkhoff version of
the Green-Kubo formula to fractal Weierstrass functions.
The joint efforts compiled in Refs. [8,9,12] may therefore
be considered as first steps towards answering the con-
jecture of Refs. [5,6], which suggested a possible univer-
sality of fractal diffusion coefficients in low-dimensional
fully chaotic dynamical systems exhibiting some spatial
periodicity, for the case of chaotic Hamiltonian dynami-
cal systems such as particle billiards.
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