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Abstract

We formulate and discuss a reduction theorem for Poisson pencils associated
with a class of integrable systems, defined on bi-Hamiltonian manifolds, recently
studied by Gel’fand and Zakharevich. The reduction procedure is suggested by
the bi-Hamiltonian approach to the Separation of Variables problem.
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1 Introduction

The aim of this paper is to present and prove some results about Poisson reduction for
bi-Hamiltonian manifolds. The methods presented in the paper are an outgrowth of
a geometric theory of Separation of Variables, based on the notion of bi-Hamiltonian
geometry, introduced in recent years (see, e.g., [16, 2, 5]), which is thoroughly dis-
cussed in [7] and [8]. The cornerstones of such a theory are the (related) concepts of
ωN manifold and of bi-Lagrangian foliation. An ωN manifold M can be viewed as
a special bi-Hamiltonian manifold, where one of the two compatible Poisson brackets
defined on M is actually symplectic, i.e., is associated with a symplectic 2-form ω. A
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bi-Lagrangian foliation F defined on an ωN manifold M is a foliation of M which
is Lagrangian with respect to both brackets. The content of the “bi-Hamiltonian
theorem of Separation of Variables” can be (roughly) summarized as follows:
A Hamiltonian H is separable in a set of coordinates (called Darboux-Nijenhuis coordi-
nates) naturally associated with the ωN structure of M if and only if the Hamiltonian
vector field XH , defined by the equation

ω(XH , ·) = −dH ,

is tangent to a bi-Lagrangian foliation.
Although the notions of Hamiltonian vector field (and, a fortiori, of separability)

pertain to the category of symplectic manifolds, it “experimentally” turns out that
a major source of separable systems admit a more natural formulation in a wider
class of manifolds, that is, Poisson manifolds. This feature is particularly evident
in the case of integrable systems connected with soliton equations and loop algebras
(see, e.g., [10, 4, 1, 18, 19]), related to the theory of Lax equations and the R-matrix
formalism.

We will be interested in the class of systems nowadays known as Gel’fand-Zakharevich
(GZ) systems. These are bi-Hamiltonian systems defined over a bi-Hamiltonian man-
ifold M where none of the Poisson brackets is symplectic, over which, so to speak,
the geometry of the Poisson pencil P ′ − λP itself selects a complete family of mutu-
ally commuting Hamiltonians. Indeed, by definition, for a (torsionless) GZ system of
rank k, this family can be grouped in k Casimirs of the Poisson pencil . A Casimir
of the pencil is a polynomial H(λ) = H0λ

n + H1λ
n−1 + · · · + Hn, whose coefficients

are functions on M , that satisfy the equation

(P ′ − λP )dH(λ) = 0 . (1.1)

It is well-known (and quite easy to check) that such equation entails the Lenard
recursion relations for the vector fields Xi = PdHi+1, and, as a consequence, the
mutual commutativity with respect to both brackets of the coefficients Hi. So, the
family of the vector fields associated with the k above-mentioned Casimirs defines a
distribution X in TM (called the axis of the pencil) which has the following property:
it is tangent to the symplectic leaves S̄ of any fixed element P̄ of the Poisson pencil
defined on M , and, when viewed as a distribution defined on the symplectic manifold
S̄ (endowed with the natural symplectic structure induced by P̄ ) it is a Lagrangian
distribution. Once we have fixed such a “preferred” element P̄ , we can thus discuss
whether we can induce on S̄ another Poisson bracket, starting from another element
of the Poisson pencil Pλ. In doing this, we require (for the reasons briefly addressed
above, and related to the Separation of Variables problem) to preserve two properties:

a) compatibility of the reduced brackets on S̄;
b) commutativity of the (restriction to S̄ of the) Hamiltonians Hj .
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To this end, we will have to make an assumption on the pencil, that is, we will
suppose that Pλ admits a distribution Z transversal to the symplectic leaves of P̄ ,
enjoying “good” properties (to be discussed later on in the paper).

The problem can be tackled in two ways: from the point of view of Poisson tensors
(on a tubular neighbourhood of S̄) and from the point of view of induced 2-forms
(on the single leaf S̄). Since, in our opinion, both ways have their own strong points
we decided to divide the paper in two sections, and present both points of view. In
particular, the “Poisson” point of view allows for simpler proofs and a nice description
in terms of Poisson-Lichnerowicz geometry. The other point of view has the advantage
that it clearly points out that the problem “lives” on single symplectic leaves, and
frames its study within the scheme of symplectic geometry.

The results contained in this paper have been used (more specifically those con-
cerning what we call the strong form of the reduction theorem in Remark 1) in [5, 6, 3].

Acknowledgments. The results presented in this paper have been obtained in
collaboration with Franco Magri, to whom we are very grateful. We wish to thank
also the organizers for the nice atmosphere at the conference. This work was partially
supported by INdAM–GNFM and the Italian M.I.U.R. under the research project
Geometry of Integrable Systems.

2 GZ Poisson pencils and their reduction to sym-

plectic leaves

We are interested in a special class of GZ systems, known as complete torsionless rank
k systems of pure Kronecker type. They are studied in, e.g., [12, 11, 17, 20, 22]).

They can be defined as the datum of:
i) a bi-Hamiltonian manifold (M, {·, ·}λ), that is, a manifold M endowed with a linear
pencil of Poisson brackets {·, ·}λ = {·, ·}′ − λ{·, ·} or equivalently with a linear pencil
Pλ = P ′ − λP of Poisson tensors, where

{f, g}λ = 〈df, Pλdg〉.

ii) a collection of k polynomial Casimir functions H(1), . . . , H(k), that is, a collection
of degree nj polynomials

H(j)(λ) =

nj
∑

i=0

H
(j)
i λnj−i

such that:
a) n1 + n2 + · · · + nk = n, with dimM = 2n + k.

b) The differentials {dH
(j)
s }j=1,...k; s=0,...,nj

are linearly independent at every point
and so define an (n + k)–dimensional distribution in T ∗M .

3



The collection of the n bi-Hamiltonian vector fields

X
(j)
k = PdH

(j)
k+1 = P ′dH

(j)
k (2.1)

associated with the Lenard sequences defined by the polynomials Casimir H(j) is called
the GZ system associated with the given GZ manifold, or axis of the bi-Hamiltonian
manifold M . We now consider (clearly, this specific choice is inessential) the preferred
Poisson tensor P̄ , mentioned in the Introduction, to be exactly P . Let S be one
of its symplectic leaves. We seek for a deformation of the Poisson structure P ′ to
Q = P ′ + ∆P ′, such that the following three properties hold:

1. Q restricts to S;

2. Q− λP is still a Poisson pencil;

3. P ′ − λP and Q− λP share the same axis.

To this end we consider a distribution Z transversal to S and such that it splits the
tangent space to M as

TM = TS ⊕ Z . (2.2)

We assume, at this stage, that Z is defined in a whole tubular neighbourhood US

of S. We consider the family of Casimir functions (H
(1)
0 , . . . , H

(k)
0 ) of {·, ·} defining

S, and a family of vector fields (Z1, . . . , Zk) spanning Z. We can assume that the
transversal vector fields Za are normalized:

Za(H
(b)
0 ) = δba . (2.3)

We consider the “first” vector fields of the each Lenard sequence, that is,

X ′
a = P ′dH

(a)
0 ,

and we define the new bivector

Q = P ′ −
k
∑

a=1

X ′
a ∧ Za . (2.4)

Theorem 2.1 1) The bivector Q restricts to S, and all the GZ Hamiltonians H
(a)
l

are skew orthogonal with respect to the second “bracket” defined by Q, that is,

{H
(a)
l , H

(b)
k }Q :=< dH

(a)
l , Q dH

(b)
k >= 0 . (2.5)

2) The second bracket satisfies the Jacobi identity if and only if

k
∑

a=1

X ′
a ∧

(

LZa
(P ′) −

k
∑

b=1

[Za, X
′
b] ∧ Zb

)

−
1

2

k
∑

a,b=1

X ′
a ∧X ′

b ∧ [Za, Zb] = 0, (2.6)
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that is, if and only if

k
∑

a=1

X ′
a ∧

(

LZa
(Q) +

1

2

k
∑

b=1

X ′
b ∧ [Za, Zb]

)

= 0. (2.7)

3) In this case, the two brackets define a Poisson pencil if and only if

k
∑

a=1

X ′
a ∧ LZa

(P ) = 0 . (2.8)

Proof. To prove that Q restricts to S we remark that, if we consider bivectors as
maps from T ∗M to TM , the corresponding expression for the map associated with
Q is given by

Q(α) = P ′(α) +

k
∑

a=1

(< α,X ′
a > Za− < α,Za > X ′

a) .

We must show that Im(Q) ⊂ TS, i.e., that for every 1-form α and b = 1, . . . , k,

< dH
(b)
0 , Q(α) >= 0 .

This is true thanks to the antisymmetry of Q, and the fact that QdH
(b)
0 = 0. The

validity of Eq. (2.5) is proved exactly in the same way, taking into account the com-
mutativity of the vector fields entering the Lenard sequences.

The proof of the last two assertions is done via a computation which makes use of
the formal properties of the Schouten brackets of multivectors, and, especially, of the
fact that the Schouten bracket is an extension to polyvector fields of the Lie derivative
for vector fields (see, e.g. [21]). In particular, we will use the following facts:
i) If X and Y are vector fields, the Schouten bracket [X, Y ]S coincides with the
commutator [X, Y ].
ii) the Lie derivative along a vector field Z of the wedge product of two vector fields
X and Y satisfies:

LZ(X ∧ Y ) = [Z,X ] ∧ Y + X ∧ [Z, Y ] .

iii) if X is a vector field and P a bivector, then

[X,P ]S = LX(P ) .

iv) If X, Y are vector fields and P is a bivector one has:

[X ∧ Y, P ]S = Y ∧ [X,P ]S −X ∧ [Y, P ]S = Y ∧ LX(P ) −X ∧ LY (P ) .
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Using i) through iv) one can argue as follows: It is well-known that {·, ·}Q is a
Poisson bracket if and only if the Schouten bracket [Q,Q]S vanishes, and that the
compatibility between {·, ·}Q and {·, ·} takes the form [Q,P ]S = 0. Let us compute

[Q,Q]S =
[

P ′ −
∑k

a=1 X
′
a ∧ Za, P

′ −
∑k

a=1X
′
a ∧ Za

]

S

= −2
∑k

a=1 [X ′
a ∧ Za, P

′]S +
∑k

a,b=1 [X ′
a ∧ Za, X

′
b ∧ Zb]S

= −2
∑k

a=1

(

LX′

a
P ′ ∧ Za −X ′

a ∧ LZa
P ′
)

+
∑k

a,b=1 (2X ′
a ∧ [Za, X

′
b] ∧ Zb −X ′

a ∧X ′
b ∧ [Za, Zb] + [X ′

a, X
′
b] ∧ Za ∧ Zb) .

But LX′

a
P ′ = 0 and [X ′

a, X
′
b] = 0, so that

[Q,Q]S = 2

k
∑

a=1

X ′
a ∧

(

LZa
P ′ −

k
∑

b=1

[Za, X
′
b] ∧ Zb

)

−

k
∑

a,b=1

X ′
a ∧X ′

b ∧ [Za, Zb] .

Therefore [Q,Q]S = 0 if and only if (2.6) (as well as its equivalent form (2.7)) holds.
As far as assertion 3) is concerned, we have

[Q,P ]S =
[

P ′ −
∑k

a=1 X
′
a ∧ Za, P

]

S
= −

∑k

a=1 [X ′
a ∧ Za, P ]S

=
∑k

a=1

(

−LX′

a
P ∧ Za + X ′

a ∧ LZa
P
)

.

Now we recall that the compatibility condition between P and P ′ can be written as

LP ′dFP + LPdFP
′ = 0 for all F ∈ C∞(M).

Since H
(a)
0 is a Casimir of P , this implies that LX′

a
P = 0. Hence we have

[Q,P ]S =

k
∑

a=1

X ′
a ∧ LZa

P ,

and the theorem is proved.

Remark 1 When the transversal distribution Z is integrable, Equation (2.6) simpli-
fies to

k
∑

a=1

X ′
a ∧

(

LZa
(P ′) −

k
∑

b=1

[Za, X
′
b] ∧ Zb

)

= 0 . (2.9)

So, the conditions for Q− λP to be a Poisson pencil reduce to
∑k

a=1X
′
a ∧ LZa

(Q) = 0
∑k

a=1X
′
a ∧ LZa

(P ) = 0 .
(2.10)

The “strong” solutions to this system, that is, the distributions Z spanned by vector
field satisfying, for a = 1, . . . , k,

LZa
P ′ =

∑k

b=1[Za, X
′
b] ∧ Zb

LZa
P = 0 ,

(2.11)
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can be described in the framework of the Marsden–Ratiu reduction scheme [15] for
Poisson manifolds. Indeed, one can notice that the conditions (2.11) on the Poisson
pencil imply (actually, are equivalent to, see [21]) the fact that the ring of functions
which are left invariant by the distribution Z are a Poisson subalgebra with respect to
the pencil. This means that if Z(F ) = Z(G) = 0 for every Z ∈ Z, then Z({F,G}λ) =
0. Thus the bi-Hamiltonian structure can be projected onto every symplectic leaf
S ′ ⊂ US of P , and the restriction of Q to S ′ coincides with the reduction of P ′ to
S ′. The reader should however be aware of the fact that, in the general case, that is,
when Q satisfies Equations (2.7), the reduction scheme herewith presented does not
fit in the MR setting.

Remark 2 It is interesting to compare our approach to the reduction of P ′ with
the classical Dirac reduction procedure for second class constraints. The latter (see,
e.g.,[15, 21]) is usually described as follows. Let (M, {·, ·}) be a Poisson (or even sym-
plectic) manifold, and let {φ1, . . . , φ2k} be a family of “constraints” for a Hamiltonian
system defined on M . One says that the constraints are second class if the matrix of
Poisson brackets

Cab = {φa, φb} (2.12)

is nondegenerate on a submanifold S ⊂ M , where S is defined by the 2n equations
φa = consta, a = 1, . . . , 2k. The Dirac bracket {·, ·}D is defined on S as follows:

{F,G}D = {F,G} −

n
∑

a,b=1

{F, φa}(C−1)ab{φb, G} . (2.13)

In terms of Poisson tensors it is not difficult to check that, if P is associated with
{·, ·} and Xa is the Hamiltonian vector field associated with φa, that is, Xa = Pdφa,
the Poisson tensor associated with {·, ·}D is

PD := P −
1

2

∑

a,b=1

Xb ∧ (C−1)abXa . (2.14)

This can be interpreted (see also [21]) as follows. The Dirac bracket is a deformation
of the “original one” to one for which the constraint functions (that define the special
submanifold S, or, better, a local foliation given by the constraints {φa}) are Casimirs.
In particular, the analogy with Eq. (2.4) is enhanced by remarking that the vector
fields

Ya :=

k
∑

b=1

(C−1)abXa

of Eq. (2.14) are normalized with respect to the Casimirs of PD. The fundamental
difference between the two instances resides in the fact that, in our case, the Poisson
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brackets of the functions Ca is maximally degenerated, that is, it is the zero matrix.
So, the choice of the transversal distribution Z is a “free input” in our problem. As a
consequence of such a freedom, however, we are no longer guaranteed that the reduced
“brackets” are Poisson brackets, and so one has to impose on Z the condition (2.6).

Remark 3 The deformation P ′ → Q defined by Eq. (2.4) is not the unique satisfying
the requirements that Q restricts to S and that the GZ Hamiltonians are in involution.
For instance, one could consider

Q′ = Q + ∆

with ∆ a section of the second exterior product of the axis X of the GZ manifold.
Correspondingly, the requirements that Q′ − λP be a Poisson pencil would take a
more complicated form. The choice we made can be considered as a “minimal” one.

Remark 4 One can notice the following: if Eqs. (2.6) and (2.8) do not hold in the
whole tubular neighbourhood US but, say, on a single symplectic leaf S̄, we can still
say that such a single leaf is endowed with a bi-Hamiltonian structure, of regular
type, since, by definition, P |S̄ is clearly symplectic. Actually, as we shall see in the
next section, one can also drop the assumption that the distribution Z be defined in
US and require it to exist on a single symplectic leaf. To do that, it is convenient to
tackle the problem from a different point of view.

3 The ωN point of view

We want now to discuss the problem at hand from the point of view of symplectic
geometry, or, to be more precise, from the point of view of the geometry of ωN mani-
folds. As we have anticipated in Remark 4 above, the advantage of this point of view
is that it makes clear that the assumptions about the existence of the transversal dis-
tribution in a whole tubular neighbourhood of the symplectic leaf S are not necessary,
and that the reduction process can be discussed, so to say, “leaf by leaf”, even if it
involves more complicated computations (which we spare to the reader). To proceed,
we need to recall in more details some notions. The basic elements of the concept of
ωN manifold are a symplectic manifold (M,ω), of dimension 2n, and a second closed
2-form ω′. To this form we associate the recursion operator N defined as

ω′(X, Y ) = ω(NX, Y ) . (3.1)
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Definition 3.1 Definition We say that M is an ωN manifold if the Nijenhuis torsion
of N is vanishing, i.e.,

TN (X, Y ) := [NX,NY ] −N [NX, Y ] −N [X,NY ] + N2[X, Y ] = 0 (3.2)

for all pairs (X, Y ) of vector fields on M . In this case we say, for short, that N is
the recursion operator of the manifold M .

An alternative form of the vanishing condition of the torsion of N is obtained by
introducing the third 2-form ω′′ defined by

ω′′(X, Y ) = ω(NX,NY ) . (3.3)

Indeed, it turns out that the torsion of N vanishes if and only if ω′′ is closed. To
check this, it suffices to use the identity

dω′′(X, Y, Z) = dω′(NX, Y, Z) + dω′(X,NY, Z) − dω(NX,NY, Z)
−ω(TN(X, Y ), Z) ,

(3.4)

relating the exterior derivatives of the 2-forms ω, ω′, ω′′ and the torsion TN of the
recursion operator. The most direct link between the theory of ωN manifolds and
bi-Hamiltonian manifolds is the following: If Q − λP is a Poisson pencil on a bi-
Hamiltonian manifold M , and if P is symplectic, with symplectic form ω, the (1, 1)
tensor field

N = Q · P−1

has vanishing Nijenhuis torsion, so that the pair (ω,N) endows M with the structure
of an ωN manifold. We refer to [13, 14] for fuller details and proofs.

Let us consider a Poisson manifold M . It is well-known that such a manifold can
be seen as a “glueing” of symplectic leaves. Let P the Poisson bivector corresponding
to the Poisson bracket, that is, {F,G} =: 〈dF, PdG〉, and let us denote with

XF = PdF (3.5)

the Hamiltonian vector field associated with the function F . As it is well known, the
leaves of the distribution generated by the vector fields XF , F ∈ C∞(M), are endowed
with the a canonical symplectic form ω, explicitly defined as

ω(XF , XG) := {F,G} . (3.6)

Let us suppose now that M be endowed with a second Poisson bracket, denoted with
{·, ·}′, which we assume to be compatible with the Poisson bracket associated with P .
In the ωN setting, it is thus natural to discuss how to use the second Poisson bracket
to induce a second closed 2-form ω′ on a fixed symplectic leaf S of the first bracket, in
such a way to provide S with an ωN manifold structure. Since the symplectic leaves

9



of {·, ·}′ are not contained, in general, in the ones of the first bracket, we cannot use
the analog of (3.6) in order to define ω′.

To attain our aim, we must be able to “project” in a suitable way the Hamiltonian
vector fields X ′

F (that is, the Hamiltonian vector fields associated with {·, ·}′) on the
symplectic leaf S. As the projection process has a local character, without loss of
generality we can restrict to an open subset where the functions (C1, . . . , Ck) form
a basis in the algebra of Casimir functions of {·, ·}. In the intersection of such an
open set with S we consider a family of k vector fields Za, a = 1, . . . , k, which, at
the points p ∈ S, span a subspace of TpM complementary (and hence transversal) to
TpS. We still agree to normalize these vector fields as

Za(Cb) = δab (3.7)

on S. As in Section 2, we use the vector fields Za to split, in every point p of S, the
tangent space to M as the direct sum

TpM = TpS ⊕ Zp (3.8)

of the tangent space to the leaf and of the distribution spanned by the vector fields
Za. Dually, we split the cotangent space as the direct sum

T ∗
pM = Z0

p ⊕ (TpS)0 (3.9)

of the annihilators. We identify the annihilator Z0 of Z with the cotangent space
of the symplectic leaf, and we denote with π∗ the canonical projection on Z0 in the
splitting (3.9). One has that

π∗(dF ) = dF −

k
∑

a=1

Za(F )dCa . (3.10)

We still denote with P ′ the bivector associated with the second Poisson bracket, and
we introduce a second 2-form ω′ on S according to the relation

ω′(XF , XG) := 〈P ′ ◦ π∗(dF ), π∗(dG)〉 . (3.11)

The problem we have to discuss now is how to choose the vector fields Za in such
a way that the 2-form ω′ define an ωN structure on the selected leaf S. We still work
under the assumption that Casimirs Ca of the first bracket form an Abelian algebra
with respect to the second bracket, i.e., that {Ca, Cb}

′ = 0. It implies that the vector
fields X ′

a = P ′dCa are tangent to S and, therefore, it is not necessary to project these
vector fields onto S (whence the simplification of some of the formulae in the sequel).
In particular, for ω′ we obtain the expression

ω′(XF , XG) = {F,G}′ +
k
∑

a=1

(X ′
a(F )Za(G) −X ′

a(G)Za(F )) , (3.12)

10



to be compared with formula (2.4).
According to the definitions given at the beginning of this section, we have to

insure that the 2-form ω′ is closed.

Theorem 3.2 The 2-form ω′ is closed if and only if

k
∑

a=1

X ′
a ∧ LZ̃a

(P ) = 0 (3.13)

at the points of S, where Z̃a is any extension of the vector field Za (which are in
principle defined only on S) to a tubular neighbourhood of S in M .

Proof. We have to compute the exterior derivative of ω′ on S. Thanks to the Palais
formulae, one has

dω′(XF , XG, XH) =
∑

cyclic

(XFω
′(XG, XH) − ω′([XF , XG], XH)) . (3.14)

Before proceeding to the computation of this exterior derivative, we recall that the
compatibility condition between the two Poisson brackets can be written as

∑

cyclic

({F, {G,H}}′ + {F, {G,H}′}) = 0 (3.15)

for every triple of functions (F,G,H) on M . A particular case of this identity is

{F, {G,Ca}
′} + {G, {Ca, F}′} + {Ca, {F,G}′} = 0 , (3.16)

obtained by putting H = Ca. Now let us substitute the expression of ω′ in Equation
(3.14). Let us use the definition (3.5) of the vector field XF and the commutation
property [XF , XG] = X{F,G} of the Hamiltonian vector fields. Collecting in a suitable
way the different terms, using the identities (3.15) and (3.16), we get straight away
the identity

dω′(XF , XG, XH) =

k
∑

a=1

(

X ′
a ∧ LZ̃a

(P )
)

(dF, dG, dH) . (3.17)

It shows that the exterior derivative of the 2-form ω′, evaluated on the Hamiltonian
vector fields XF , XG ,XH , coincides with the 3-vector

∑k

a=1 X
′
a ∧ LZ̃a

(P ) evaluated
on the differentials of the corresponding Hamiltonians. This completes the proof.

The second step is to check under which additional hypotheses the torsion of the
recursion operator N , associated with ω′, vanishes too. To this aim, we will write
explicitly N . From (3.12), taking into account that {Ca, Cb}

′ = 0, one finds that

NXF = X ′
F +

k
∑

a=1

(X ′
a(F )Za − Za(F )X ′

a) . (3.18)
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Theorem 3.3 Suppose that dω′ = 0 on S. Then the torsion of N vanishes if and
only if, at the points of S,

k
∑

a=1

X ′
a ∧ Ra = 0, (3.19)

where

Ra = LZ̃a
(P ′ −

k
∑

b=1

X ′
b ∧ Z̃b) +

1

2

k
∑

b=1

X ′
b ∧ [Z̃a, Z̃b], (3.20)

and, as above, Z̃a is any extension of Za to a tubular neighbourhood of S in M .

Proof. The proof of this assertion is, in ths formalism, rather long, even if in prin-
ciple not difficult. The reason is that the expression of the torsion of N contains
several terms that must be assembled and managed carefully. Thus, we will give the
essential lines of the computation, omitting the details. We begin with computing
the expression

[XF , XG]N := [NXF , XG] + [XF , NXG] −N [XF , XG] . (3.21)

Then we plug in it the form (3.18) of NXF , we compute the Lie brackets and we
make use once again of (3.15) and (3.16) to simplify the resulting expression. Using
also the condition (3.13) of closedness of the 2-form ω′, which we already assumed,
we arrive in this way at the expression

[XF , XG]N : = X{F,G}′ +
∑k

a=1

(

Za(G)XX′

a(F ) − Za(F )XX′

a(G)

)

+
∑k

a=1

(

X ′
a(F )XZa(G) −X ′

a(G)XZa(F )

)

.
(3.22)

It shows that [XF , XG]N is a linear combination of Hamiltonian (with respect to
{·, ·}) vector fields. This make simpler the calculation of N [XF , XG]N . Finally, we
evaluate the Lie bracket [NXF , NXG]. Subtracting N [XF , XG]N to this Lie bracket,
assembling with care the large number of terms of the previous expressions, using the
identity

[X ′
F , X

′
G] = X ′

{F,G}′ (3.23)

and the involutivity of the Casimir functions Ca, we obtain a still quite complicated
expression for the torsion

TN(XF , XG) = [NXF , NXG] −N [XF , XG]N (3.24)

we want to compute. Finally, evaluating the symplectic scalar product

ω(XH, TN(XF , XG)) = 〈TN(XF , XG), dH〉 , (3.25)

we get the final identity

ω(XH , TN(XF , XG)) =
k
∑

a=1

(X ′
a ∧ Ra) (dF, dG, dH) , (3.26)
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where Ra is the expression (3.20). The 3-form in the left-hand side, thanks to (3.4),
is the exterior derivative dω′′ of the 2-form ω′′. Hence we have the identity

dω′′(XF , XG, XH) =
k
∑

a=1

(X ′
a ∧Ra) (dF, dG, dH) , (3.27)

which proves the theorem.

References

[1] M.R. Adams, J. Harnad and J. Hurtubise: Commun. Math. Phys. 155, 385–413
(1993).

[2] M. B laszak: J. Math. Phys. 39, 3213–3235 (1998).

[3] L. Degiovanni and G. Magnano: nlin.SI/0108041.

[4] B.A. Dubrovin, I.M. Krichever and S.P. Novikov: Integrable Systems. I , in Dy-
namical System IV, V. I. Arnold ed., EMS vol. 4, Springer, New York 1990.

[5] G. Falqui, F. Magri and G. Tondo: Theor. Math. Phys. 122, 176–192 (2000).

[6] G. Falqui, F. Magri and M. Pedroni: J. Nonlinear Math. Phys. 8 suppl., 118–127
(2001).

[7] G. Falqui and M. Pedroni: SISSA preprint 27/2002/FM., nlin.SI/0204029.

[8] G. Falqui, F. Magri and M. Pedroni: in preparation.

[9] G. Falqui, F. Magri, M. Pedroni and J.P. Zubelli: Reg. Chaotic Dyn. 5, 33–51
(2000).

[10] H. Flaschka and D.W. McLaughlin: Progr. Theor. Phys. 55, 438–456 (1976).

[11] I.M. Gel’fand and I.S. Zakharevich: Sel. Math., New Ser. 6, 131-183 (2000).

[12] I.M. Gel’fand and I.S. Zakharevich: On the local geometry of a bi-Hamiltonian
structure, in The Gel’fand Mathematical Seminars 1990-1992, L. Corwin et al.
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