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The soliton dressing matrices for the higher-order zeros of the Riemann-

Hilbert problem for theN -wave system are considered. For the elementary

higher-order zero, i.e. whose algebraic multiplicity is arbitrary but the

geometric multiplicity is 1, the general soliton dressing matrix is derived.

The theory is applied to the study of higher-order soliton solutions in the

three-wave interaction model. The simplest higher-order soliton solution

is presented. In the generic case, this solution describes the breakup of a

higher-order pumping wave into two higher-order elementary waves, and

the reverse process. In non-generic cases, this solution could describe (i)

the merger of a pumping sech wave and an elementary sech wave into

two elementary waves (one sech and the other one higher-order); (ii) the

breakup of a higher-order pumping wave into two elementary sech waves

and one pumping sech wave; and the reverse processes. This solution

could also reproduce fundamental soliton solutions as a special case.
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I. INTRODUCTION

Soliton solutions to nonlinear partial differential equations (PDEs) in (1+1) dimensions

have been of great interest ever since the very discovery of completely integrable PDEs.

There is a wide range of literature concerning integrable nonlinear PDEs and their soliton

solutions (see, for instance, Refs. [1–4] and the references therein). Much is known about the

behavior of solitons and their interactions in various integrable systems (soliton scattering,

breather solutions, soliton bound states, etc). Such knowledge is very valuable not only

for the underlying integrable systems, but also for nearly integrable systems which can be

studied analytically by soliton perturbation theories.

It is an astonishing fact, however, that notwithstanding the almost three decades of

advances in the study of soliton dynamics, still there are substantial gaps in our knowledge

of soliton solutions in integrable nonlinear PDEs. Indeed, the reader familiar with the

basics of the inverse scattering transform method knows that it is poles of the reflection

coefficient (or, in modern terms, zeros of the Riemann-Hilbert problem) that give rise to

the soliton solutions. The soliton solutions are usually derived by using one of the several

well-known techniques, such as the dressing method [1,5,6] or the Riemann-Hilbert problem

approach [2,3]. However, in most publications (except, to our knowledge, Refs. [7–13], which

are discussed below) only soliton solutions from simple poles are considered. It is usually

assumed that a multiple-pole solution can be obtained in a straightforward way by coalescing

several distinct poles (see, for instance, Ref. [2,14]) which describe multisoliton solutions.

This would be indeed the case if such coalescing were a regular limit. However, this limit is

obviously a singular one. Indeed, the soliton dressing matrix corresponding to a multisoliton

solution is a rational matrix function which has distinct simple poles, while the coalescing

procedure must produce multiple poles. Obviously, a more careful examination of this issue

is necessary. This is the main subject of the present paper.

Soliton solutions corresponding to multiple poles, i.e., the higher-order solitons, have

been investigated in the literature before. A soliton solution to the nonlinear Schrödinger

(NLS) equation corresponding to a double pole was first given in Ref. [7] but without much

analysis. The double- and triple-pole soliton solutions to the KdV equation were exam-

ined in Ref. [8] and the general N -pole soliton solution to the sine-Gordon equation was

extensively studied in Ref. [9] using the associated Gelfand-Levitan-Marchenko equation. In

Refs. [10,11], higher-order soliton solutions to the NLS equation were studied by employing

the dressing method. Finally, in [12,13], higher order solitons in the Kadomtsev-Petviashvili I

equation were derived by the inverse scattering method.

In this article, we consider the higher-order zeros of the Riemann-Hilbert problem for the

N -wave system and study the corresponding soliton matrices. We derive the soliton dressing

matrices for the simplest class of higher-order zeros – the elementary higher-order zeros. We

call the n-th order zero k1 of the Riemann-Hilbert problem elementary if the soliton matrix

evaluated at k1 has only one vector in the kernel, i.e. the geometric multiplicity of the zero

is 1 (see Definition 1 in Sec. 3 for more details). The corresponding higher-order soliton

solutions to the N -wave system are determined. Then we apply our theory to the physically

important three-wave interaction model and derive the simplest higher-order soliton solution.
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In the generic case, this solution describes the breakup of a higher-order pumping wave into

two higher-order elementary waves, and the reverse process. In non-generic cases, this

solution could describe (i) the merger of a pumping sech wave and an elementary sech wave

into two elementary waves (one sech and the other one higher-order); (ii) the breakup of a

higher-order pumping wave into three sech waves — one pumping wave and two elementary

waves. The higher-order soliton solution could also reproduce fundamental soliton solutions

as a special case.

In general, one needs to consider zeros with the geometric multiplicities taking values

from 1 to N − 1, where N is the matrix dimension of the Riemann-Hilbert problem. The

present work is the first step towards the solution of this general case. The point is that the

soliton matrices derived here for the elementary zeros provide the building blocks for the

most general case. We plan to address the general problem in the next paper. Thus, for the

3-wave interaction model, the higher-order soliton solutions we derived in this paper (which

correspond to elementary higher-order zeros) may not be the most general higher-order

soliton solutions in this wave system.

It is noted that the soliton dressing matrices for the higher-order soliton solutions were

already a subject of interest in Refs. [10,11], where an ansatz for the soliton matrices was

proposed for the 2×2 Zakharov-Shabat spectral problem and expressions for the higher-order

soliton solutions of the nonlinear Schrödinger equation were obtained. In the present paper,

we study higher-order solitons in the N -wave system. Even though the evolution equations

considered in [10,11] and this article are different, their Riemann-Hilbert formulations have

a lot in common. In this paper, we place the emphasis on the derivation of the soliton

matrices for the higher-order zeros and fill some gaps in the approach of Ref. [11]. We

show that the ansatz of [11] is precisely the soliton matrix for an elementary higher-order

zero in a N × N spectral problem. For the 2 × 2 Zakharov-Shabat spectral problem, any

higher-order zero is elementary. Thus the ansatz of [11] is the general soliton matrix of the

Zakharov-Shabat problem. Consequently, higher-order soliton solutions obtained in [10,11]

are the general higher-order soliton solutions in the nonlinear Schrödinger equation. But in

a N ×N spectral problem with N > 2, a higher-order zero is non-elementary in general. In

that case, the ansatz of [11] will not be the general form of soliton matrices. In this paper,

we also uncover the invariance property of the soliton matrix for a higher-order zero, which

is necessary for the vector-parametrization of the soliton matrix to be self-consistent. The

invariance property obtained in [11] is shown to be just a special case. Lastly, we point

out that our derivation of higher-order solitons in the N -wave system is made for general

dispersion laws and arbitrary matrix dimensions. In addition, our results can be generalized

to the most general case of non-elementary zeros of the N ×N spectral problem.

The paper is organized as follows. A summary on the Riemann-Hilbert problem is placed

in section II. Section III is the central section of the paper. There we present the theory of

soliton matrices corresponding to the higher-order zeros of the Riemann-Hilbert problem.

For an elementary higher-order zero of the N ×N Riemann-Hilbert problem (see definition

in the text), the general soliton matrix is derived. This soliton matrix is similar to the ansatz

as proposed in [11]. In section IV, the theory is applied to derive the simplest higher-order

soliton solution in the three-wave interaction model.
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II. THE RIEMANN-HILBERT PROBLEM APPROACH: SUMMARY

The integrable nonlinear PDEs in 1+1 dimensions are associated with the matrix

Riemann-Hilbert problem (consult, for instance, Refs. [1–6,15–24]). The matrix Riemann-

Hilbert problem (below we work in the space of N × N matrices) is the problem of finding

the holomorphic factorization, denoted below by Φ+(k) and Φ−1
− (k), in the complex plane

of a nondegenerate matrix function G(k) given on an oriented curve γ:

Φ−1
− (k, x, t)Φ+(k, x, t) = G(k, x, t)

≡ exp [−Λ(k)x− Ω(k)t]G(k, 0, 0) exp [Λ(k)x+ Ω(k)t], k ∈ γ. (2.1)

Here the matrix functions Φ+(k) and Φ−1
− (k) are holomorphic in the two complementary

domains of the complex k-plane: C+ to the left and C− to the right from the curve γ,

respectively. The matrices Λ(k) and Ω(k) are called the dispersion laws. In this paper, we

require the dispersion laws to be diagonal (we have accounted for this on the right-hand

side of equation (2.1) by writing the explicit (x, t)-dependence in the form of an exponent).

The Riemann-Hilbert problem requires an appropriate normalization condition. Usually

the curve γ contains the infinite point k = ∞ of the complex plane and the normalization

condition is formulated as

Φ±(k, x, t) → I, as k → ∞. (2.2)

This normalization condition is called the canonical normalization. Setting the normalization

condition to an arbitrary nondegenerate matrix function S(x, t) leads to the gauge equivalent

integrable nonlinear PDE, e.g., the Landau-Lifshitz equation in the case of the NLS equation

[3]. Obviously, the new solution Φ̂±(k, x, t) to the Riemann-Hilbert problem, normalized to

S(x, t), is related to the canonical solution by the following transformation

Φ̂±(k, x, t) = S(x, t)Φ(k, x, t). (2.3)

Thus, without any loss of generality, we confine ourselves to the Riemann-Hilbert problem

under the canonical normalization.

For physically applicable nonlinear PDEs the Riemann-Hilbert problem possesses the

involution properties, which reduce the number of the dependent variables (complex fields).

The N -wave interaction model admits the following involution property of the associated

Riemann-Hilbert problem

Φ†
+(k) = Φ−1

− (k), k ≡ k∗. (2.4)

Here the superscript “†” represents the Hermitian conjugate, and “*” the complex conjugate.

However, our approach can be trivially extended to the general case without such involution.

To keep our treatment general, we will use the overlined quantities where applicable. The

reduction to the involution is then done by associating the overline with the Hermitian

conjugation in the case of vectors and matrices and with the complex conjugation in the

case of scalar quantities.
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To solve the Cauchy problem for the integrable nonlinear PDE posed on the whole axis

x, one usually constructs the associated Riemann-Hilbert problem starting with the linear

spectral equation

∂xΦ(k, x, t) = Φ(k, x, t)Λ(k) + U(k, x, t)Φ(k, x, t), (2.5)

whereas the t-dependence is given by a similar equation

∂tΦ(k, x, t) = Φ(k, x, t)Ω(k) + V (k, x, t)Φ(k, x, t). (2.6)

The nonlinear integrable PDE corresponds to the compatibility condition of the system (2.5)

and (2.6):

∂tU − ∂xV + [U, V ] = 0. (2.7)

The essence of the approach based on the Riemann-Hilbert problem lies in the fact that

the evolution governed by the complicated nonlinear PDE (2.7) is mapped to the evolution

of the spectral data given by simpler equations such as (2.1) and (2.21). For details, consult

Refs. [3,4,15–18].

Let the evolution equations for the spectral data be given. In our case, these are equation

(2.1) for G and equation (2.21) (see below) for the discrete data. Then the matrices U(k, x, t)

and V (k, x, t) describing the evolution of Φ± can be retrieved from the Riemann-Hilbert

problem. In our case, the potentials U(k, x, t) and V (k, x, t) are completely determined

by the (diagonal) dispersion laws Λ(k) and Ω(k) and the Riemann-Hilbert solution Φ ≡
Φ±(k, x, t). Indeed, let us assume that the dispersion laws are polynomial functions, i.e.,

Λ(k) =
J1∑

j=0

Ajk
j, Ω(k) =

J2∑

j=0

Bjk
j . (2.8)

Then using similar arguments as in Ref. [18] we get:

U = −P{ΦΛΦ−1}, V = −P{ΦΩΦ−1}. (2.9)

Here the matrix function Φ(k) is expanded into the asymptotic series,

Φ(k) = I + k−1Φ(1) + k−2Φ(2) + ..., k → ∞,

and the operator P cuts out the polynomial asymptotics of its argument as k → ∞. An

important property of matrices U and V is that

TrU(k, x, t) = −TrΛ(k), TrV (k, x, t) = −TrΩ(k), (2.10)

which evidently follows from equation (2.9). Below, let us consider the three-wave interaction

system as an example [2,25–27]. Set N = 3,

Λ(k) = ikA, A =




a1 0 0

0 a2 0

0 0 a3



, Ω(k) = ikB, B =




b1 0 0

0 b2 0

0 0 b3



, (2.11)
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where aj and bj are real with the elements of A being ordered: a1 > a2 > a3. From equation

(2.9) we get

U = −Λ(k) + i[A,Φ(1)], V = −Ω(k) + i[B,Φ(1)]. (2.12)

Setting

u1 =
√
a1 − a2Φ

(1)
12 , u2 =

√
a2 − a3Φ

(1)
23 , u3 =

√
a1 − a3Φ

(1)
13 , (2.13)

assuming the involution (2.4), and using equation (2.12) in (2.7) we get the three-wave

system:

∂tu1 + v1∂xu1 + iεu2u3 = 0, (2.14a)

∂tu2 + v2∂xu2 + iεu1u3 = 0, (2.14b)

∂tu3 + v3∂xu3 + iεu1u2 = 0. (2.14c)

Here

v1 =
b2 − b1
a1 − a2

, v2 =
b3 − b2
a2 − a3

, v3 =
b3 − b1
a1 − a3

, (2.15)

ε =
a1b2 − a2b1 + a2b3 − a3b2 + a3b1 − a1b3

[(a1 − a2)(a2 − a3)(a1 − a3)]1/2
. (2.16)

The group velocities satisfy the following condition

v2 − v3
v1 − v3

= −a1 − a2
a2 − a3

< 0. (2.17)

The three-wave system (2.14) can be interpreted physically. It describes the interaction

of three wave packets with complex envelopes u1, u2 and u3 in a medium with quadratic

nonlinearity.

It is often desirable to relate the inverse-scattering parameters aj and bj (j = 1, 2, 3) to

the physical parameters ε and vj (j = 1, 2, 3). This relation can be easily found from (2.15)

and (2.16) as

a1 − a2 =
ε2

(v1 − v2)(v1 − v3)
, a2 − a3 =

ε2

(v1 − v2)(v3 − v2)
. (2.18)

The other parameters a1 − a3 and bj (j = 1, 2, 3) can be readily obtained from equations

(2.18) and (2.15). Note that the inverse-scattering parameters are not uniquely determined.

In fact, one of aj and one of bj (j = 1, 2, 3) are free parameters. It is an invariance in

the inverse-scattering formulation of the 3-wave system and it does not affect the physical

solution in any way.

In general, the Riemann-Hilbert problem (2.1)-(2.2) has multiple solutions. Different

solutions are related to each other by the rational matrix functions Γ(k) (which also depend

on the variables x and t) [2,3,5,6,14]:
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Φ̃±(k, x, t) = Φ±(k, x, t)Γ(k, x, t). (2.19)

The rational matrix Γ(k) must satisfy the canonical normalization condition: Γ(k) → I for

k → ∞ and must have poles only in C− (the inverse function Γ−1(k) then has poles in C+

only). Such a rational matrix Γ(k) will be called the soliton matrix below, since it gives the

soliton part of the solution to the integrable nonlinear PDE.

To specify a unique solution to the Riemann-Hilbert problem the set of the Riemann-

Hilbert data must be given. These data are also called the spectral data. The full set of the

spectral data comprises the matrix G(k, x, t) on the right-hand side of equation (2.1) and the

appropriate discrete data related to the zeros of det Φ+(k) and det Φ−1
− (k). We will confine

ourselves to the case of the Riemann-Hilbert problem with zero index, i.e., when det Φ+(k)

and det Φ−1
− (k) have equal number of zeros (counting the multiplicity). For instance, in

the case of involution (2.4) the Riemann-Hilbert problem has zero index because the zeros

appear in complex conjugate pairs: kj = k∗
j . It is known [19–24] (see also Ref. [14]) that in

the generic case the spectral data include simple (distinct) zeros k1, . . . , kn of det Φ+(k) and

k1, . . . , kn of det Φ−1
− (k), in their holomorphicity domains, and the null vectors |v1〉, . . . , |vn〉

and 〈v1|, . . . , 〈vn| from the respective kernels:

Φ+(kj)|vj〉 = 0, 〈vj|Φ−1
− (kj) = 0. (2.20)

Using the property (2.10) one can verify that the zeros do not depend on the variables

x and t. The (x, t)-dependence of the null vectors can be easily derived by differentiation of

(2.20) and use of the linear spectral equations (2.5)-(2.6). This dependence reads:

|vj〉 = exp {−Λ(kj)x− Ω(kj)t}|v(0)j 〉, (2.21a)

〈vj | = 〈v(0)j | exp {Λ(kj)x+ Ω(kj)t}, (2.21b)

where |v(0)j 〉 and 〈v(0)j | are some constant vectors.

The vectors in equation (2.21) together with the zeros constitute the full set of the

discrete data necessary to specify the soliton matrix Γ(k, x, t) and, hence, unique solution to

the Riemann-Hilbert problem (2.1)-(2.2). Indeed, by constructing the soliton matrix Γ(k)

such that the following matrix functions

φ+(k) = Φ+(k)Γ
−1(k), φ−1

− (k) = Γ(k)Φ−1
− (k) (2.22)

are nondegenerate and holomorphic in the domains C+ and C−, respectively, we reduce

the Riemann-Hilbert problem with zeros to another one without zeros and hence uniquely

solvable (for details see, for instance, Refs. [2–4,14]). Below by matrix Γ(k) we will imply

the matrix from equation (2.22) which reduces the Riemann-Hilbert problem (2.1)-(2.2) to

the one without zeros. The corresponding solution to the integrable PDE (2.7) is obtained

by using the asymptotic expansion of the matrix Φ(k) as k → ∞ in the linear equation (2.5).

In the N -wave interaction model it is given by formula (2.12). The pure soliton solutions

are obtained by using the rational matrix Φ = Γ(k).
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III. SOLITON MATRICES FOR MULTIPLE ZEROS

In this section we consider the soliton solution corresponding to a single multiple zero of

arbitrary order in the case of an arbitrary matrix dimension N . Such soliton solutions will

be referred to as the higher-order solitons. We will derive the general formulae for the soliton

matrices corresponding to an elementary higher-order zero (see the definition below) starting

from the usual elementary soliton matrices of the Riemann-Hilbert problem. Our formulae

for the soliton matrices corresponding to an elementary higher-order zero are similar to the

previously proposed ansatz for the 2 × 2 Zakharov-Shabat spectral problem [11]. However,

in our approach some essential invariance properties and simple evolution formulae for the

vector parameters in the soliton matrices are given, which were not known before. Thus we

simplify the ansatz of Refs. [10,11] and put it on the rigorous footing. Although we work

in the case of involution (2.4), usual for applications in nonlinear physics, our approach is

valid for the general Riemann-Hilbert problem with zero index. Moreover, we present our

formulae in a form transferable without any changes to that general case.

Let Φ+(k) and Φ−1
− (k) from (2.1) each have but one zero of order n, k1 and k1, respec-

tively:

det Φ+(k) = (k − k1)
nϕ(k), det Φ−1

− (k) = (k − k1)
nϕ(k), (3.1)

where detϕ(k1) 6= 0 and detϕ(k1) 6= 0. The geometric multiplicity of k1 (k1) is defined as

the number of the null vectors in the kernel of Φ+(k1) (Φ
−1
− (k1)), see (2.20). It can be easily

shown that the order of a zero is always greater or equal to its geometric multiplicity. It

is also obvious that the geometric multiplicity of a zero is less than the matrix dimension.

Before we proceed with the construction of the soliton matrix Γ(k) corresponding to the

multiple zero of order n, two important properties must be pointed out. It is convenient to

formulate them in the form of two lemmas.

Lemma 1 Suppose vectors |vj〉 (1 ≤ j ≤ m) are in the kernel of matrix Φ+(k1), i.e.,

Φ+(k1)|vj〉 = 0, j = 1, . . . , m, (3.2)

where m is less or equal to k1’s geometric multiplicity. Define the new matrix Φ̃+(k) ≡
Φ(k)+χ

−1(k) where

χ(k) = I − k1 − k1

k − k1

P, (3.3)

P =
m∑

i,j=1

|vi〉(K−1)ij〈vj |, Kij = 〈vi|vj〉, (3.4)

and vectors 〈vj | (1 ≤ j ≤ m) are arbitrary but they make matrix K invertible. Then matrix

Φ̃+(k) is also holomorphic in the upper half plane. In addition, if a new vector |w〉 is in the

kernel of Φ̃+(k1) and is orthogonal to 〈vj| (1 ≤ j ≤ m), i.e.,
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Φ̃+(k1)|w〉 = 0, 〈vj |w〉 = 0, j = 1, . . . , m, (3.5)

then

Φ+(k1)|w〉 = 0, (3.6)

i.e., |w〉 is also in the kernel of Φ+(k1). Furthermore, |w〉 is linearly independent of |vj〉 (1 ≤
j ≤ m). Similar results exist for matrix Φ−1

− (k) where the multiplication is one the left.

Remark: it is easy to see that in order for K to be invertible, it is necessary that vectors

〈vj | (1 ≤ j ≤ m) be linearly independent. But this condition is not sufficient. However, if

〈vj | = |vj〉† (j = 1, . . . , m), then it can be shown that K is invertible.

Proof. The matrix P is clearly a projector matrix, thus

χ−1(k) = I +
k1 − k1

k − k1
P. (3.7)

Then, expanding the holomorphic function Φ+(k) into the Taylor series and recalling equa-

tion (3.2), we see that

Φ+(k)χ−1(k) =
{
Φ+(k1) + (k − k1)

dΦ+(k1)
dk

+ (k − k1)
2 d2Φ+(k1)

2!dk2
+ . . .

}
(1 + k1−k1

k−k1
P )

= Φ+(k1) + (k1 − k1)
dΦ+(k1)

dk
P + (k1 − k1)(k − k1)

d2Φ+(k1)
2!dk2

P + . . . , (3.8)

which is clearly holomorphic.

Next, if

Φ̃+(k1)|w〉 = 0,

recalling the definition of Φ̃+(k) and expanding Φ+(k) into the Taylor series, we get

Φ+(k1)|w〉+ (k1 − k1)
dΦ+(k1)

dk
P |w〉 = 0. (3.9)

Since by assumption,

〈vj|w〉 = 0, j = 1, . . . , m,

thus,

P |w〉 = 0,

consequently,

Φ+(k1)|w〉 = 0. (3.10)

Lastly, |w〉 is linearly independent of |vj〉 (j = 1, . . . , m) because the matrix K is invertible.

Q.E.D.

Corollary 1 Suppose the kernel of Φ+(k1) is spanned by vectors |vj〉 (1 ≤ j ≤ m) where

m is the geometric multiplicity of zero k1. Define matrices χ(k), Φ̃+(k) and projector P as

in Lemma 1. Then, there exists no vector in the kernel of Φ̃+(k1) which is simultaneously

orthogonal to 〈vj | (1 ≤ j ≤ m).
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Lemma 2 Suppose that Φ+(k1) has r independent vectors in the kernel:

Φ+(k1)|vj〉 = 0, j = 1, . . . , r, (3.11)

i.e., rankΦ+(k1) = N−r. Then the following matrix function Φ̃+(k) ≡ Φ+(k)χ
−1(k), where

matrix χ(k) is as defined in equation (3.3) but with

P =
r∑

i,j=1

|vi〉(K−1)ij〈vj|, Kij = 〈vi|vj〉, (3.12)

has at most r vectors in the kernel at k = k1, i.e., rank Φ̃+(k1) ≥ N − r. Here vectors

〈vj | (1 ≤ j ≤ r) are arbitrary but they make matrix K invertible.

Proof. This lemma is easy to prove by contradiction. Suppose that there are at least r + 1

independent vectors |u1〉, ..., |ur+1〉 in the kernel of Φ̃+(k1) defined above. Then one can

find a non-zero vector |X〉 in the kernel of Φ̃+(k1) such that

〈vj|X〉 = 0, j = 1, . . . , r. (3.13)

Indeed, substitution of the expansion

|X〉 =
r+1∑

j=1

Cj|uj〉

into Eq. (3.13) leads to an underdetermined, hence, solvable system of equations

r+1∑

j=1

〈vi|uj〉Cj = 0, i = 1, . . . , r

which have non-zero solutions. But then, according to the second part of Lemma 1, |X〉 is
also in the kernel of Φ+(k1), thus

|X〉 =
r∑

j=1

Cj|vj〉. (3.14)

Substituting Eq. (3.14) into (3.13) and recalling that the matrix K is invertible, we find

that Cj = 0, j = 1, . . . , r, hence X = 0. Thus we have arrived at a contradiction. Q.E.D.

(Note that a similar lemma is valid for Φ−1
− (k) at k = k1 with the multiplication on the left.)

To clarify the implications of Lemma 2 for the soliton matrix Γ(k) of the higher-order

zeros, k = k1 of det Φ+(k) and k = k1 of det Φ−1
− (k), let us examine the way such matrix is

constructed. Starting from the solution Φ±(k) to the Riemann-Hilbert problem (2.1)-(2.2),

one looks for the independent null vectors for the matrices Φ+(k1) and Φ−1
− (k1):

Φ+(k1)|vi1〉 = 0, 〈vi1|Φ−1
− (k1) = 0, i = 1, . . . , s1, (3.15)

where s1 is the smaller of k1 and k1’s geometric multiplicities. Here we allow the two

geometric multiplicities to be different in general, but they are always the same in the case

of involution (2.4). Next, one constructs the elementary matrix
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χ1(k) = I − k1 − k1

k − k1

P1, (3.16)

where

P1 =
s1∑

i,j

|vi1〉(K−1)ij〈vj1|, Kij = 〈vi1|vj1〉. (3.17)

It can be shown that detχ1 =
(
k−k1
k−k1

)s1
. If s1 < n, where n is the order of the two zeros, then

one considers the matrix functions Φ̃+(k) = Φ+(k)χ
−1
1 (k) and Φ̃−1

− (k) = χ1(k)Φ
−1
− (k). From

Lemma 1, we know that matrices Φ̃+(k) and Φ̃−1
− (k) are also holomorphic in the respective

half planes of the complex plane. In addition, k1 (k1) is still a zero of detΦ̃+(k) (detΦ̃
−1
− (k)).

Repeating the above steps one gets the elementary matrices χ1(k), . . . , χr(k) such that

s1 + s2 + . . .+ sr = n. Therefore,

Γ(k) = χr(k) · . . . · χ2(k)χ1(k), (3.18)

where matrices χl(k) and projectors Pl are as defined in equations (3.16) and (3.17) but the

independent vectors |vil〉 and 〈vil| (i = 1, . . . , sl) are from the kernels of (Φ+χ
−1
1 ·. . .·χ−1

l−1)(k1)

and (χl−1 · . . . · χ1Φ
−1
− )(k1) respectively.

Lemma 2 indicates that in fact the sequence of ranks of the projectors Pl in the matrix

Γ(k) given by equation (3.18), i.e. built in the described way, is non-increasing:

rankPr ≤ rankPr−1 ≤ . . . ≤ rankP1. (3.19)

This result allows one to classify possible occurrences of a higher-order zero of the Riemann-

Hilbert problem for arbitrary matrix dimension N . In general, for zeros of the same order n,

different sequences of ranks in formula (3.19) give different classes of the higher-order soliton

solutions. In the present paper we consider in detail only the higher-order zeros when the

sequence of ranks (3.19) is the simplest possible: rankPl = 1, l = 1, . . . , n. We introduce

the following definition.

Definition 1. In the soliton matrix (3.18) corresponding to a higher-order zero k1 of a

Riemann-Hilbert problem, if the ranks of all projectors Pl(1 ≤ l ≤ n) are 1, then we call

this zero an elementary higher-order zero.

Remark 1: We observe from equation (3.19) that a higher-order zero (of arbitrary alge-

braic multiplicity) is elementary if and only if rankP1 = 1, i.e., the geometric multiplicity of

the zero is 1.

Remark 2: If the matrix dimension N = 2 (as for the nonlinear Schrödinger equation),

then all higher-order zeros are elementary since rankP1 is always equal to 1.

Below we derive the soliton matrix Γ(k) and its inverse for an elementary higher-order

zero. The results are presented in the following lemma.

Lemma 3 Consider a pair of elementary higher-order zeros of order n: k = k1 in C+ and

k = k1 in C−. Then the corresponding soliton matrix Γ(k) and its inverse can be cast in the

following form:
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Γ(k) = I +
n∑

l=1

l∑

j=1

|qj〉〈pl+1−j|
(k − k1)n+1−l

= I + (|qn〉, . . . , |q1〉)D(k)




〈p1|
...

〈pn|



, (3.20a)

Γ−1(k) = I +
n∑

l=1

l∑

j=1

|pl+1−j〉〈qj|
(k − k1)n+1−l

= I + (|p1〉, . . . , |pn〉)D(k)




〈qn|
...

〈q1|



, (3.20b)

where the matrices D(k) and D(k) are defined as

D(k) =




1
(k−k1)

0 . . . 0

1
(k−k1)2

1
(k−k1)

. . .
...

...
. . .

. . . 0

1
(k−k1)n

. . . 1
(k−k1)2

1
(k−k1)




, D(k) =




1
(k−k1)

1
(k−k1)2

. . . 1
(k−k1)n

0
. . .

. . .
...

...
. . . 1

(k−k1)
1

(k−k1)2

0 . . . 0 1
(k−k1)




,

(3.21)

and vectors |pj〉, 〈pj |, 〈qj|, |qj〉 (j = 1, . . . , n) are independent of k.

Remark: In [11], the ansatz of the form (3.20) was proposed for higher-order solitons

in the nonlinear Schrödinger equation. The lemma above, together with Remark 2 below

Definition 1, shows that their ansatz is in fact the most general soliton matrix for the

nonlinear Schrödinger equation. If N > 2, their ansatz then is just the soliton matrix for

elementary higher-order zeros.

Proof. The representation (3.20) can be proved by induction. Consider, for instance, formula

(3.20a). Obviously, this formula is valid for n = 1. In this case, Γ(k) reduces to an elementary

matrix χ(k). Now, suppose that formula (3.20a) is valid for n = m. Then we need to show

that it is valid for n = m + 1 as well. Indeed, denote the soliton matrices for n = m and

n = m + 1 by Γ(k) and Γ̃(k) respectively. Then taking into account expression (3.18) and

recalling our assumption of the elementary higher-order zero, we have

Γ̃(k) = χm+1(k)Γ(k) =

(
I +

|vm+1〉〈vm+1|
k − k1

)

I +
m∑

l=1

l∑

j=1

|qj〉〈pl+1−j |
(k − k1)m+1−l



 . (3.22)

Here, for simplicity of the formulae below, we have normalized the vectors |vm+1〉 and 〈vm+1|
such that 〈vm+1|vm+1〉 = k1 − k1. Let us now multiply the two terms in the right-hand side

of equation (3.22) and compute the coefficients at the poles:

Γ̃(k) = I +
Ã1

k − k1

+
Ã2

(k − k1)2
+ . . .+

Ãm+1

(k − k1)m+1
, (3.23)

12



where

Ãm+1 = |vm+1〉〈vm+1|Am = |vm+1〉〈vm+1|q1〉〈p1|,
Ãm = |vm+1〉〈vm+1|Am−1 + Am

= |vm+1〉〈vm+1|
(
|q2〉〈p1|+ |q1〉〈p2|

)
+ |q1〉〈p1|

= (|vm+1〉〈vm+1|q2〉+ |q1〉) 〈p1|+ |vm+1〉〈vm+1|q1〉〈p2|,
Ãm−1 = |vm+1〉〈vm+1|Am−2 + Am−1

= |vm+1〉〈vm+1|
(
|q3〉〈p1|+ |q2〉〈p2|+ |q1〉〈p3|

)
+ |q2〉〈p1|+ |q1〉〈p2|

= (|vm+1〉〈vm+1|q3〉+ |q2〉) 〈p1|+ (|vm+1〉〈vm+1|q2〉+ |q1〉) 〈p2|
+|vm+1〉〈vm+1|q1〉〈p3|,
. . . ,

Ã1 = |vm+1〉〈vm+1|+
m∑

j=1

|qm+1−j〉〈pj |.

Define new vectors:

|q̃1〉 = |vm+1〉〈vm+1|q1〉, |q̃j〉 = |vm+1〉〈vm+1|qj〉+ |qj−1〉, j = 2, . . . , m,

|q̃m+1〉 = |qm〉, 〈pm+1| =
〈vm+1| −

∑m−1
j=1 〈vm+1|qj+1〉〈pm−j+1|
〈vm+1|q1〉

. (3.24)

Then matrices Ã1, . . . , Ãm+1 take the following representation:

Ãm+2−l =
l∑

j=1

|q̃l+1−j〉〈pj |, l = 1, . . . , m+ 1. (3.25)

Thus formula (3.20a) is valid for Γ̃(k) as well. It is noted that we must also show that the

denominator in formula (3.24) is nonzero. This is easy to show, as 〈vm+1|q1〉 is actually (up

to a factor (k1 − k1)
m) a product of inner products 〈vj+1|vj〉 (1 ≤ j ≤ m), where |vj〉 and

〈vj | are the projector vectors in matrix χj:

χj(k) = I − k1 − k1

k − k1

|vj〉〈vj | (3.26)

[see equations (3.18) and (3.22)]. If 〈vj+1|vj〉 = 0 for some j, then Lemma 1 indicates that

the projector Pj in matrix χj [see (3.16) to (3.18)] would have rank higher than 1, which

contradicts our assumption of elementary higher-order zeros. Thus 〈vj+1|vj〉 6= 0 for all j,

consequently, 〈vm+1|q1〉 6= 0. Expression for Γ−1(k) (3.20b) can be proved in the same way.

Q.E.D.

In the expressions for Γ(k) (3.20a) and Γ−1(k) (3.20b) there are twice as many vectors

as in the elementary matrices (3.16) and (3.18). As the result, only half of the vector

parameters, namely |p1〉, . . . , |pn〉 and 〈p1|, . . . , 〈pn|, are independent. To derive the formulae
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for the rest of the vector parameters in (3.20) we can use the identity Γ(k)Γ−1(k) = I. The

poles of Γ(k)Γ−1(k) at k = k1, starting from the highest order pole, give:

Γ(k1)|p1〉〈q1| = 0,

Γ(k1) (|p2〉〈q1|+ |p1〉〈q2|) +
1

1!

dΓ(k1)

dk
|p1〉〈q1| = 0,

Γ(k1) (|p3〉〈q1|+ |p2〉〈q2|+ |p1〉〈q3|) +
1

1!

dΓ(k1)

dk
(|p2〉〈q1|+ |p1〉〈q2|) +

1

2!

d2Γ(k1)

dk2
|p1〉〈q1| = 0,

. . . .

Hence, we obtain:

Γ(k1)|p1〉 = 0, (3.27a)

Γ(k1)|p2〉+
1

1!

dΓ(k1)

dk
|p1〉 = 0, (3.27b)

Γ(k1)|p3〉+
1

1!

dΓ(k1)

dk
|p2〉+

1

2!

d2Γ(k1)

dk2
|p1〉 = 0, (3.27c)

. . . ,

Γ(k1)|pn〉+
1

1!

dΓ(k1)

dk
|pn−1〉+ . . .+

1

(n− 1)!

dn−1Γ(k1)

dkn−1
|p1〉 = 0. (3.27d)

Equations (3.27) can be written in a compact form for the following matrix Γ(k):

Γ(k1)




|p1〉
...

|pn〉




= 0, Γ(k) ≡




Γ 0 . . . 0

1
1!

d
dk
Γ Γ

. . .
...

...
. . .

. . . 0

1
(n−1)!

dn−1

dkn−1Γ . . . 1
1!

d
dk
Γ Γ




. (3.28)

Note that, as a block matrix, Γ(k) has (lower-triangular) Toeplitz form, i.e. along each

diagonal it has the same (matrix) element.

In much the same way, by considering the poles at k = k1 in Γ(k)Γ−1(k), one derives the

following formula

(〈p1|, . . . , 〈pn|)Γ(k1) = 0, Γ(k) =




Γ−1 1
1!

d
dk
Γ−1 . . . 1

(n−1)!
dn−1

dkn−1Γ
−1

0 Γ−1 . . .
...

...
. . .

. . . 1
1!

d
dk
Γ−1

0 . . . 0 Γ−1




. (3.29)

Equations (3.28) and (3.29) allow us to find the expressions for the dependent vector

parameters. For convenience of the presentation, let us introduce the following k-dependent

vectors:
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〈Zj(k)| =
n∑

l=j

〈pl+1−j|
(k − k1)n+1−l

, |Zj(k)〉 =
n∑

l=j

|pl+1−j〉
(k − k1)n+1−l

. (3.30)

Then, by reordering the summation in (3.20) we get

Γ(k) = I + (|qn〉, . . . , |q1〉)




〈Zn(k)|
...

〈Z1(k)|



, (3.31a)

Γ−1(k) = I + (|Zn(k)〉, . . . , |Z1(k)〉)




〈qn|
...

〈q1|



. (3.31b)

Let us now substitute the expression (3.31a) into equation (3.28) and solve for |q1〉, . . . , |qn〉.
We have

|p1〉+ (|qn〉, . . . , |q1〉)




〈Zn(k1)|p1〉
...

〈Z1(k1)|p1〉




= 0,

|p2〉+ (|qn〉, . . . , |q1〉)




〈Zn(k1)|p2〉+ 1
1!

d
dk
〈Zn(k1)|p1〉

...

〈Z1(k1)|p2〉+ 1
1!

d
dk
〈Z1(k1)|p1〉




= 0,

|p3〉+ (|qn〉, . . . , |q1〉)




〈Zn(k1)|p3〉+ 1
1!

d
dk
〈Zn(k1)|p2〉+ 1

2!
d2

dk2
〈Zn(k1)|p1〉

...

〈Z1(k1)|p3〉+ 1
1!

d
dk
〈Z1(k1)|p2〉+ 1

2!
d2

dk2
〈Z1(k1)|p1〉




= 0,

. . . .

Hence

(|qn〉, . . . , |q1〉) = −(|p1〉, . . . , |pn〉)K−1
, (3.32)

where

K =




〈Zn(k1)|p1〉 〈Zn(k1)|p2〉+ 1
1!

d
dk
〈Zn(k1)|p1〉 . . .

n∑
l=1

1
(n−l)!

dn−l

dkn−l 〈Zn(k1)|pl〉
...

...
...

〈Z1(k1)|p1〉 〈Z1(k1)|p2〉+ 1
1!

d
dk
〈Z1(k1)|p1〉 . . .

n∑
l=1

1
(n−l)!

dn−l

dkn−l 〈Z1(k1)|pl〉




. (3.33)
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Similarly, we get




〈qn|
...

〈q1|




= −K−1




〈p1|
...

〈pn|



, (3.34)

where

K =




〈p1|Zn(k1)〉 . . . 〈p1|Z1(k1)〉

〈p2|Zn(k1)〉+ 1
1!

d
dk
〈p1|Zn(k1)〉 . . . 〈p2|Z1(k1)〉+ 1

1!
d
dk
〈p1|Z1(k1)〉

...
...

n∑
l=1

1
(n−l)!

dn−l

dkn−l 〈pl|Zn(k1)〉 . . .
n∑

l=1

1
(n−l)!

dn−l

dkn−l 〈pl|Z1(k1)〉




. (3.35)

In terms of the independent vector parameters, the soliton matrices (3.20a) and (3.20b)

can be rewritten as

Γ(k) = I − (|p1〉, . . . , |pn〉)K−1D(k)




〈p1|
...

〈pn|



, (3.36)

Γ−1(k) = I − (|p1〉, . . . , |pn〉)D(k)K−1




〈p1|
...

〈pn|



, (3.37)

where matrices K and K are given in equations (3.35) and (3.33).

The soliton matrices given by (3.36) and (3.37) possess invariance properties. The in-

variance is the transformation of the independent vector parameters which preserves the

form of the soliton matrices and equations defining the vector parameters, i.e. equations

(3.28)-(3.29). Let us first consider transformations of vectors |pj〉 (j = 1, . . . , n). Suppose

these vectors are transformed as

(|p1〉, . . . , |pn〉) = (|p̃1〉, . . . , |p̃n〉)B, (3.38)

where B is a k-independent matrix which, in general, depends on (x, t). Here the vectors

〈pj| (j = 1, . . . , n) remain intact. Simple calculations show that the new vectors |p̃1〉, . . . , |p̃n〉
satisfy equation (3.28) if and only if the matrix B has upper-triangular Toeplitz form,
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B =




b1 b2 . . . . . . bn

0 b1 b2 . . .
...

... 0
. . .

. . .
...

...
...

. . .
. . . b2

0 . . . . . . 0 b1




. (3.39)

Further, we note that under the transformation (3.38)-(3.39) the matrix K transforms as

K = K̃B, (3.40)

where matrix K̃ is as given by equation (3.33) but with vectors |pj〉 replaced by the new

vectors |p̃j〉. From formulae (3.38) and (3.40) it is seen that the form (3.36) of matrix Γ(k)

is preserved. We still need to show that for matrix B of the form (3.39), the transformation

(3.38) also preserves the form (3.37) of matrix Γ−1(k). Notice that matrix D(k) also has

upper-triangular Toeplitz form, thus D(k) and B are commutable. Utilizing this property,

we can easily show that under the transformation (3.38), matrix K transforms as

K = K̃B, (3.41)

where K̃ is given by equation (3.35) but with |pj〉 replaced by |p̃j〉. Thus the form of matrix

Γ−1(k) is also preserved. In short, soliton matrices (3.36) and (3.37) are invariant under the

transformation (3.38) with matrix B given by (3.39).

Similarly, we can show that soliton matrices (3.36) and (3.37) are also invariant under

the transformation



〈p1|
...

〈pn|




= B




〈p̃1|
...

〈p̃n|



, (3.42)

where the k-independent matrix B (which, in general, depends on (x, t)) has lower-triangular

Toeplitz form,

B =




b1 0 . . . . . . 0

b2 b1 0
. . .

...

... b2
. . .

. . .
...

...
...

. . .
. . . 0

bn . . . . . . b2 b1




, (3.43)

and vectors |pj〉(j = 1, . . . , n) remain intact.
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Summarizing, we conclude that soliton matrices (3.36) and (3.37) are invariant under

the triangular Toeplitz transformations

(|p1〉, . . . , |pn〉) = (|p̃1〉, . . . , |p̃n〉)B,




〈p1|
...

〈pn|




= B




〈p̃1|
...

〈p̃n|



, (3.44)

of the independent vectors |pj〉 and 〈pj| (1 ≤ j ≤ n). Here B and B are arbitrary lower and

upper triangular Toeplitz matrices, respectively, in general (x, t)-dependent. Here we point

out that the invariance transformation found in [11] is given by bj = bj = 0 (2 ≤ j ≤ n− 1),

i.e., only b1, bn, b1 and bn being non-zero. Thus it is just a special case of the invariance

property of the soliton matrices.

The invariance transformations indicate that arbitrary sets of vectors |p1〉, . . . , |pn〉 and
〈p1|, . . . , 〈pn| satisfying equations (3.28) and (3.29) can be chosen as the independent vector

parameters. This is, in fact, also a necessary condition for such vector parameterization of

the soliton matrix to be self-consistent.

Now let us derive the (x, t)-dependence of the vector parameters which enter the soliton

matrix. We can start with the fact that the soliton matrix Γ(k, x, t) must satisfy equations

(2.5)-(2.6) with some potentials U(k, x, t) and V (k, x, t):

∂xΓ(k, x, t) = Γ(k, x, t)Λ(k) + U(k, x, t)Γ(k, x, t), (3.45a)

∂tΓ(k, x, t) = Γ(k, x, t)Ω(k) + V (k, x, t)Γ(k, x, t). (3.45b)

The derivation is based on the use of equations (3.28) and (3.29) (quite similar to the

derivation of equations (2.21) in section II). First of all we need to find the equations for the

triangular block Toeplitz matrices Γ and Γ. To this goal one needs to differentiate equations

(3.45) with respect to k up to the (n − 1)-th order. It is easy to see that, for instance, the

equations for the Γ have the same form as equations (3.45):

∂xΓ(k, x, t) = Γ(k, x, t)Λ(k) +U(k, x, t)Γ(k, x, t), (3.46a)

∂tΓ(k, x, t) = Γ(k, x, t)Ω(k) +V(k, x, t)Γ(k, x, t), (3.46b)

if we introduce the lower-triangular block Toeplitz matrices Λ, Ω, U, and V:

Λ ≡




Λ 0 . . . 0

1
1!

d
dk
Λ

.. .
. . .

...

...
. . . Λ 0

1
(n−1)!

dn−1

dkn−1Λ . . . 1
1!

d
dk
Λ Λ




, Ω ≡




Ω 0 . . . 0

1
1!

d
dk
Ω

.. .
. . .

...

...
. . . Ω 0

1
(n−1)!

dn−1

dkn−1Ω . . . 1
1!

d
dk
Ω Ω




, (3.47)
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U ≡




U 0 . . . 0

1
1!

d
dk
U

. . .
. . .

...

...
. . . U 0

1
(n−1)!

dn−1

dkn−1U . . . 1
1!

d
dk
U U




, V ≡




V 0 . . . 0

1
1!

d
dk
V

. . .
. . .

...

...
. . . V 0

1
(n−1)!

dn−1

dkn−1V . . . 1
1!

d
dk
V V




. (3.48)

Indeed, this is due to the fact that the matrix multiplication in (3.46) exactly reproduces

the Leibniz rule for higher-order derivatives of a product. Similarly, using the equations for

Γ−1, one finds that

∂xΓ(k, x, t) = −Λ(k)Γ(k, x, t)− Γ(k, x, t)U(k, x, t), (3.49a)

∂tΓ(k, x, t) = −Ω(k)Γ(k, x, t)− Γ(k, x, t)V(k, x, t), (3.49b)

for the upper-triangular block Toeplitz matrices Λ, Ω, U, and V:

Λ =




Λ 1
1!

d
dk
Λ . . . 1

(n−1)!
dn−1

dkn−1Λ

0 Λ
. . .

...

...
. . .

. . . 1
1!

d
dk
Λ

0 . . . 0 Λ




, Ω =




Ω 1
1!

d
dk
Ω . . . 1

(n−1)!
dn−1

dkn−1Ω

0 Ω
. . .

...

...
. . .

. . . 1
1!

d
dk
Ω

0 . . . 0 Ω




, (3.50)

U =




U 1
1!

d
dk
U . . . 1

(n−1)!
dn−1

dkn−1U

0 U
. . .

...

...
. . .

. . . 1
1!

d
dk
U

0 . . . 0 U




, V =




V 1
1!

d
dk
V . . . 1

(n−1)!
dn−1

dkn−1V

0 V
. . .

...

...
. . .

. . . 1
1!

d
dk
V

0 . . . 0 V




. (3.51)

The (x, t)-dependence of the vector parameters |p1〉, . . . , |pn〉 and 〈p1|, . . . , 〈pn| can be found

by differentiation of equations (3.28) and (3.29) with the help of equations (3.46) and (3.49).

First, we note that for commuting matrices the corresponding block Toeplitz matrices as

introduced above also commute with each other. Second, it is shown in the Appendix

that for a diagonal matrix [e.g. Λ(k)x + Ω(k)t ] the operation of raising to the exponent

commutes with the construction of the block Toeplitz matrix. Therefore, taking into account

the invariance property, we find the (x, t)-dependence of the vector parameters as




|p1〉
...

|pn〉




= exp {−Λ(k1)x−Ω(k1)t}




|p(0)1 〉
...

|p(0)n 〉



, (3.52a)
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(〈p1|, . . . , 〈pn|) = (〈p(0)1 |, . . . , 〈p(0)n |) exp
{
Λ(k1)x+Ω(k1)t

}
. (3.52b)

Here the superscript “0” is used to denote constant vectors and the exponents stand for the

triangular block Toeplitz matrices:

exp {−Λ(k1)x−Ω(k1)t} =




E(k1) 0 . . . 0

1
1!

d
dk
E(k1)

. . .
. . .

...

...
. . . E(k1) 0

1
(n−1)!

dn−1

dkn−1E(k1) . . . 1
1!

d
dk
E(k1) E(k1)




, (3.53a)

exp
{
Λ(k1)x+Ω(k1)t

}
=




E−1(k1)
1
1!

d
dk
E−1(k1) . . . 1

(n−1)!
dn−1

dkn−1E
−1(k1)

0 E−1(k1)
. . .

...

...
. . .

. . . 1
1!

d
dk
E−1(k1)

0 . . . 0 E−1(k1)




, (3.53b)

where E(k) ≡ exp {−Λ(k)x− Ω(k)t}. After the temporal and spatial evolutions for vectors

|pj〉 and 〈pj| have been obtained as above, the corresponding higher-order soliton solution

can be obtained from equations (2.7), (2.12), (3.20a) and (3.32).

IV. APPLICATION TO THE THREE WAVE INTERACTION MODEL

Here we apply the theory developed in the previous section to the three-wave interaction

model (2.14). The three-wave model has wide applications in nonlinear physics. For instance,

under the additional constraint uj = iqj where qj are real variables, it describes the “exact

resonance” in parametric interaction of three wave packets, while under the reduction of the

dispersion laws (2.11): a3 = −a1, a2 = 0, b3 = −b1, b2 = 0 and the condition u2 = −u1, it

models the generation of second harmonics. The usual (fundamental) soliton solutions to

the three-wave interaction model have been well studied (consult Ref. [2]). Such solitons

approach sech profiles as t → ±∞ on the characteristics x− vjt = const.

Let us consider the simplest higher-order solitons in the three-wave system: solitons

which correspond to an elementary higher-order zero of order 2. Here we should take into

account the involution property given by equation (2.4). For instance, we have

k = k∗, 〈pj | = |pj〉†

(here and below the overline is associated with the Hermitian or, in the case of scalar

quantities, complex conjugation). Then the soliton matrix reads
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Γ(k) = I − (|p1〉, |p2〉)K−1



〈Z2(k)|

〈Z1(k)|


 , (4.1)

where

K =



〈Z2(k1)|p1〉 〈Z2(k1)|p2〉+ d

dk
〈Z2(k1)|p1〉

〈Z1(k1)|p1〉 〈Z1(k1)|p2〉+ d
dk
〈Z1(k1)|p1〉


 , (4.2)

and

〈Z2(k)| =
〈p1|

k − k1

, 〈Z1(k)| =
〈p2|

k − k1

+
〈p1|

(k − k1)2
.

The (x, t)-dependence of the vector parameters |p1〉, |p2〉 has the following form



|p1〉

|p2〉


 =




E(k1) 0

d
dk
E(k1) E(k1)






|p(0)1 〉

|p(0)2 〉


 , E(k1) = e−ik1(Ax+Bt). (4.3)

We denote k1 = ξ + iη, where ξ and η are real numbers (η > 0 since k1 lies the upper

half plane of the complex plane), and choose the following parameterization of the constant

vectors |p(0)1 〉 and |p(0)2 〉:

|p(0)1 〉 = 2iη




θ
(1)
1

θ
(1)
2

θ
(1)
3



, |p(0)2 〉 =




θ
(2)
1

θ
(2)
2

θ
(2)
3



, (4.4)

where θ
(i)
j ’s are complex constants. It is noted that due to the invariance property (3.44),

where the matrix B contains two arbitrary complex constants, we have 2 free components

in each vector in formula (4.4). Hence there are 10 free real parameters (including ξ and η)

in the higher-order soliton solution.

The (x, t)-dependence of the components of the vector parameters reads

p1j = 2iηθ
(1)
j efj/2−iχj , p2j =

[
θ
(2)
j + fjθ

(1)
j

]
efj/2−iχj , (4.5)

where

fj = 2η(ajx+ bjt), χj = ξ(ajx+ bjt), j = 1, 2, 3. (4.6)

By simple calculations we obtain the elements of matrix K as

K11 = −2iη
3∑

j=1

|θ(1)j |2efj , K12 = −
3∑

j=1

(
θ
(1)

j θ
(2)
j + (fj − 1)|θ(1)j |2

)
efj , (4.7)
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K21 =
3∑

j=1

(
θ
(1)
j θ

(2)

j + (fj − 1)|θ(1)j |2
)
efj , K22 =

1

2iη

3∑

j=1

(
|θ(2)j + (fj − 1)θ

(1)
j |2 + |θ(1)j |2

)
efj .

(4.8)

It is easy to verify that the determinant of K is

detK = −
3∑

i,j=1

(
|θ(1)i θ

(1)
j |2 + 1

2
|θ(2)i θ

(1)
j − θ

(1)
i θ

(2)
j + (fi − fj)θ

(1)
i θ

(1)
j |2

)
efi+fj , (4.9)

which is always non-zero:

For the soliton solution corresponding to the matrix (4.1) we need the first-order term

of its asymptotics as k → ∞:

Γ(1) = − 1

detK
(
K22|p1〉〈p1|+K11|p2〉〈p2| − K12|p1〉〈p2| − K21|p2〉〈p1|

)
. (4.10)

Using formulae (4.5) for |p1〉 and |p2〉 and (4.7, 4.8) for the elements of K we get

Γ
(1)
lm = − 2iη

detK e(fl+fm)/2−i(χl−χm)
3∑

j=1

Clmje
fj , (4.11)

where

Clmj =
[
θ
(1)
j θ

(1)
l (fj − fl − 1) + θ

(2)
j θ

(1)
l − θ

(2)
l θ

(1)
j

][
θ
(1)

m θ
(1)

j (fm − fj + 1) + θ
(2)

m θ
(1)

j − θ
(2)

j θ
(1)

m

]

− θ
(1)
l θ

(1)

m |θ(1)j |2. (4.12)

The three nonlinear waves u1, u2, u3 are given by formula (2.13). Thus

u1 =
√
a1 − a2 Γ

(1)
12 , u2 =

√
a2 − a3 Γ

(1)
23 , u3 =

√
a1 − a3 Γ

(1)
13 , (4.13)

where Γ
(1)
ij are given by Eqs. (4.11) and (4.12). To be explicit, our soliton solution corre-

sponding to an elementary higher-order zero of order 2 in the three-wave interaction system

is

u1 = −2iη
√
a1 − a2

detK e(f1+f2)/2−i(χ1−χ2)
3∑

j=1

C12je
fj , (4.14)

u2 = −2iη
√
a2 − a3

detK e(f2+f3)/2−i(χ2−χ3)
3∑

j=1

C23je
fj , (4.15)

u3 = −2iη
√
a1 − a3

detK e(f1+f3)/2−i(χ1−χ3)
3∑

j=1

C13je
fj , (4.16)
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where detK, Cijk, fk and χk are given by Eqs. (4.6), (4.9) and (4.12).

The above solutions are fairly complicated. But some information about them can be

gained from considering the asymptotics as t → ±∞. Evidently, the t-asymptotics is nonzero

only on the characteristics:

z1 ≡ (f1 − f2)/2 = η(a1 − a2)(x − v1t),

z2 ≡ (f2 − f3)/2 = η(a2 − a3)(x − v2t),

z3 ≡ (f1 − f3)/2 = η(a1 − a3)(x − v3t).

The asymptotic formulae depend on the relation between the velocities of the waves. For

definiteness, let us choose v2 < v1. This is equivalent to the condition ε > 0 in view that

ε =

(
(a1 − a2)(a2 − a3)

a1 − a3

)1/2

(v1 − v2),

as follows from formulae (2.15)-(2.16). Then the condition (2.17) requires that v3 lies between

v2 and v1:

v2 < v3 < v1. (4.17)

Further, we notice that any solution ũ1, ũ2, ũ3 of the three-wave interaction model (2.14)

in the case of the opposite inequality, i.e. v1 < v3 < v2, is mapped onto the solu-

tion satisfying the inequality (4.17) by the following transformation: ũj(x, t; v1, v2, v3) =

−uj(x,−t;−v1,−v2,−v3). Thus, the case of v1 < v2 is easy to recover (it describes the

reverse process to that of v2 < v1).

The asymptotic formulae also depend on whether some of the components in vectors θ(1)

and θ(2) are zero or not. We first consider the generic case when none of the parameters θ
(1)
j

for j = 1, 2, 3 is zero. Define the following real quantities:

αlm = ln

(
|θ(1)m |
|θ(1)l |

)
, ̺lm + iσlm =

1

2


θ

(2)
l

θ
(1)
l

− θ(2)m

θ
(1)
m


+ αlm,

ϕ
(s)
j = arg(θ

(s)
j ), ϕlm = ϕ

(1)
l − ϕ(1)

m − ξαlm

η
, (4.18)

and denote

z12 = z1 − α12, z23 = z2 − α23, z13 = z3 − α13. (4.19)

Then, simple calculations show that the asymptotics of the waves (4.14), (4.15) and (4.16)

are as follows:

u1 → 0, u2 → 0, t → −∞; u3 → 0, t → ∞, (4.20)
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u1 → 2iη
√
a1 − a2

(z12 + ̺12) sinh z12 − (1 + iσ12) cosh z12

cosh2 z12 + (z12 + ̺12)2 + σ2
12

ei(ϕ12−ξz12/η), t → ∞, (4.21)

u2 → 2iη
√
a2 − a3

(z23 + ̺23) sinh z23 − (1 + iσ23) cosh z23

cosh2 z23 + (z23 + ̺23)2 + σ2
23

ei(ϕ23−ξz23/η), t → ∞, (4.22)

u3 → 2iη
√
a1 − a3

(z13 + ̺13) sinh z13 − (1 + iσ13) cosh z13

cosh2 z13 + (z13 + ̺13)2 + σ2
13

ei(ϕ13−ξz13/η), t → −∞. (4.23)

We see that as t → −∞, only the pumping wave u3 is non-zero, while as t → ∞ only

the elementary waves u1 and u2 are nonzero. Thus in the generic case of higher-order

solitons under condition (4.17), the solution describes the breakdown of the pumping higher-

order soliton u3 into the higher-order solitons of the elementary waves u1 and u2. [For the

opposite inequalities in formula (4.17), the solution describes the reverse process: merger

of the two elementary waves u1 and u2 into the pumping wave u3.] These properties are

identical to fundamental solitons (see, for instance, pp. 174-184 in Ref. [2]). However,

differences between higher-order solitons and fundamental solitons are also obvious: none

of the asymptotics (4.21) to (4.23) of the higher-order solitons is sech-shaped, while the

asymptotics of fundamental solitons are all sech-shaped.

Asymptotics (4.20) to (4.23) are invalid in the non-generic cases when at least one of the

parameters θ
(1)
j , j = 1, 2, 3, is zero. Consider first the case of θ

(1)
1 = 0 and θ

(1)
2 and θ

(1)
3 being

non-zero. There are two possibilities depending on whether θ
(2)
1 is zero or not.

(a) If θ
(2)
1 6= 0, then the asymptotics of the waves (4.14), (4.15) and (4.16) become

u1 → 0, t → −∞; u3 → 0, t → ∞; (4.24)

u1 → −iη
√
a1 − a2e

i(ϕ
(2)
1 −ϕ

(1)
2 −ξz1/η)sech(z1 − β1), t → ∞, (4.25)

u2 → −iη
√
a2 − a3e

i(ϕ
(1)
2 −ϕ

(1)
3 −ξz2/η)sech(z2 − β2), t → −∞, (4.26)

u2 → 2iη
√
a2 − a3

(z23 + ̺23) sinh z23 − (1 + iσ23) cosh z23

cosh2 z23 + (z23 + ̺23)2 + σ2
23

ei(ϕ23−ξz23/η), t → ∞, (4.27)

u3 → −iη
√
a1 − a3e

i(ϕ
(2)
1 −ϕ

(1)
3 −ξz3/η)sech(z3 − β3), t → −∞, (4.28)

where parameters βj (j = 1, 2, 3) are defined as

β1 = ln



 |θ(1)2 |
|θ(2)1 |



 , β2 = ln



 |θ(1)3 |
|θ(1)2 |



 , β3 = ln



 |θ(1)3 |
|θ(2)1 |



 . (4.29)
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The above asymptotics have two important features. One is that as t → −∞, both u3 and

u2 waves are non-zero. Thus, the higher-order soliton solution (4.14) to (4.16) in this non-

generic case does not describe the breakdown of the pumping wave u3. Instead, it describes

a new process:

u2 + u3 → u1 + u2. (4.30)

This is very different from fundamental solitons. The other feature is that the waves u2 and

u3 as t → −∞ and the wave u1 as t → ∞ all have sech profiles, but the wave u2 as t → ∞
is the higher-order soliton.

(b) If θ
(2)
1 = 0, then the higher-order solitons (4.14) to (4.16) are degenerate:

u1(x, t) = u3(x, t) = 0 u2(x, t) = u
(0)
2 (x− v2t), (4.31)

where u
(0)
2 (x) is the initial solution of u2. This is a trivial solution.

If two components of the vector θ(1) are zero, then higher-order soliton solutions (4.14)

to (4.16) reduce to fundamental-soliton solutions or trivial solutions. For instance, if θ
(1)
1 =

θ
(1)
2 = 0, θ

(1)
3 6= 0, θ

(2)
1 6= 0, and θ

(2)
2 6= 0, then the asymptotics of the waves become

u1 → 0, u2 → 0, t → −∞; u3 → 0, t → ∞; (4.32)

u1 → −iη
√
a1 − a2e

i(ϕ
(2)
1 −ϕ

(2)
2 −ξz1/η)sech(z1 − β̃1), t → ∞, (4.33)

u2 → −iη
√
a2 − a3e

i(ϕ
(2)
2 −ϕ

(1)
3 −ξz2/η)sech(z2 − β̃2), t → ∞, (4.34)

u3 → −iη
√
a1 − a3e

i(ϕ
(2)
1 −ϕ

(1)
3 −ξz3/η)sech(z3 − β3), t → −∞, (4.35)

where β3 is defined in equation (4.29) and

β̃1 = ln



 |θ(2)2 |
|θ(2)1 |



 , β̃2 = ln



 |θ(1)3 |
|θ(2)2 |



 . (4.36)

This is the fundamental soliton solution. If one or both of θ
(2)
1 and θ

(2)
2 is zero, the solution

is trivial (similar to (4.31)). We note that when θ
(1)
1 = θ

(1)
2 = 0, then θ

(1)
3 can not be zero,

because otherwise, the denominator detK in the solution is zero.

It turns out that consideration of the case when θ
(1)
3 = 0 is similar to the above case of

θ
(1)
1 = 0 with the only difference that now the elementary waves u1 and u2 are interchanged.

For instance, when θ
(1)
3 = 0, θ

(1)
1 6= 0, θ

(1)
2 6= 0, and θ

(2)
3 6= 0 we have the following (also new)

process:

u1 + u3 → u1 + u2, (4.37)

where the waves u1 and u3 as t → −∞ and the wave u2 as t → ∞ all have sech profiles,

while the wave u1 as t → ∞ is the higher-order soliton [see equation (4.22)].
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The only (different) case which is left to consider is the case of θ
(1)
2 = 0 with θ

(1)
1 6= 0

and θ
(1)
3 6= 0. The asymptotics depends on whether θ

(2)
2 is zero or not. In the former case,

i.e. θ
(2)
2 = 0, we have a degenerate solution,

u1(x, t) = u2(x, t) = 0, u3(x, t) = u
(0)
3 (x − v3t),

which is similar to solution (4.31). If however θ
(2)
2 6= 0, then the asymptotics of the waves

(4.14)-(4.16) are as follows:

u1 → 0, u2 → 0, t → −∞, (4.38)

u3 → 2iη
√
a1 − a3

(z13 + ̺13) sinh z13 − (1 + iσ13) cosh z13

cosh2 z13 + (z13 + ̺13)2 + σ2
13

ei(ϕ13−ξz13/η), t → −∞; (4.39)

u1 → −iη
√
a1 − a2e

i(ϕ
(1)
1 −ϕ

(2)
2 −ξz1/η)sech(z1 − β̂1), t → ∞, (4.40)

u2 → −iη
√
a2 − a3e

i(ϕ
(2)
2 −ϕ

(1)
3 −ξz2/η)sech(z2 − β̃2), t → ∞, (4.41)

u3 → −iη
√
a1 − a3e

i(ϕ
(1)
1 −ϕ

(1)
3 −ξz3/η)sech(z3 − β̂3), t → ∞, (4.42)

where β̃2 is defined in equation (4.36) and

β̂1 = ln


 |θ(2)2 |
|θ(1)1 |


 , β̂3 = ln


 |θ(1)3 |
|θ(1)1 |


 . (4.43)

These asymptotic formulae describe yet another new process:

u3 → u1 + u2 + u3, (4.44)

where waves u1, u2, and u3 as t → ∞ all have sech profiles, while the pumping wave u3 as

t → −∞ is more complicated. Thus, this process describes a breakup of the higher-order

pumping wave into three sech waves, the two elementary waves and the pumping wave.

Lastly, we present the graphical pictures of the above higher-order solitons for both

the generic and non-generic cases. In all figures, the common solution parameters are

(a1, a2, a3) = (2, 1,−1), (b1, b2, b3) = (−0.5, 2, 1), ξ = 1, η = 1, and θ(2) = (−1, 1 + i, 2).

Only the vector θ(1) is different. It is easy to check that for these parameters, the inequal-

ity (4.17) holds, thus the asymptotics of these higher-order solitons have been described in

the previous text. In all figures, the solid lines are |u1|, the dashed lines are |u2|, and the

dashed-dotted lines are |u3|.
First, we illustrate the generic solution with θ(1) = (1, i,−1) in Fig. 1. As we can see

from this figure as well as the asymptotics (4.20) to (4.23), as t → −∞, only the pumping

u3 solution is non-zero. As t → ∞, this u3 wave breaks into elementary u1 and u2 waves.

This process is similar to fundamental solitons. But there is a difference: the asymptotics
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of each wave in Fig. 1 has a complex structure which signals that it is a higher-order

soliton instead of a fundamental soliton. Next, we let θ
(1)
1 approach zero. Specifically, we

let θ
(1)
1 = 10−4, while the θ

(1)
2 and θ

(1)
3 values remain the same. The corresponding soliton

solution is illustrated in Fig. 2. We see that in this case, the pumping u3 wave at t → −∞
splits into two sech pulses. As time moves on, the front u3 sech pulse breaks into u1 and

u2 sech pulses. Then this u2 sech pulse and the back u3 sech pulse interact. The final

outcome is two u1 sech pulses moving in the positive x direction, and a higher-order u2

wave moving in the negative x direction. Thirdly, we consider the non-generic case where

θ
(1)
1 = 0, while θ

(1)
2 and θ

(1)
3 still do not change. This soliton solution is illustrated in Fig.

3. We see that as t → −∞, both the u3 and u2 waves are non-zero and sech-shaped. After

their interaction, the pumping u3 wave is depleted, and a new u1 sech wave and a higher-

order u2 wave are created. We note that this u2 + u3 → u1 + u2 process is novel, and it

has not been carefully investigated before. Fourthly, we consider the non-generic case where

θ
(1)
1 = θ

(1)
2 = 0, and θ

(1)
3 is still −1. This solution is illustrated in Fig. 4. We see that it is the

same as a fundamental soliton solution, and it describes the process of a pumping u3 sech

wave breaking into two elementary u1 and u2 sech waves. Thus, our higher-order soliton

solution reduces to a fundamental soliton solution as a special case. Lastly, we consider the

non-generic case where θ
(1)
2 = 0 while θ

(1)
1 = 1 and θ

(1)
3 = −1 as in Fig. 1. This solution is

shown in Fig. 5. As we can see, as t → −∞, the only non-zero wave is the pumping wave

u3, which is a higher-order soliton. As t → ∞, this pumping wave breaks up into a sech

waves in each component. Thus, this is the new u3 → u1 + u2 + u3 process which we have

presented in the text above.

We conclude this section with some comments on the soliton solutions to the three-wave

model corresponding to the higher-order zeros of order n ≥ 2. If the higher-order zero is

elementary, i.e. when the sequence of ranks in formula (3.19) is rankPj = 1, j = 1, ..., n,

the corresponding soliton solutions can be derived using the soliton matrix (3.36). However,

there are two other possible sequences of ranks in formula (3.19), namely

(a) rankPj = 2, j = 1, ..., r, n = 2r;

(b) rankPj = 2, j = 1, ..., r; rankPj = 1, j = r + 1, ..., r + s, n = 2r + s.

We note that the soliton matrix for the sequence of ranks (a), which corresponds to

the higher-order zero of order 2r, has an equivalent soliton matrix corresponding to the

elementary higher-order zero of order r. Indeed, let us consider the soliton matrix in the

representation (3.18), where each χj(k) is defined similar to formula (3.16) [Pj substituted

for P1] with rankPj = 2. Consider the following procedure. First, define new projectors

Qj = I − Pj. Evidently rankQj = 1. Second, multiply the soliton matrix Γ(k) (3.18) by a

scalar quotient,

Γ̃(k) =

(
k − k1

k − k1

)r

Γ(k), (4.45)

such that each χj(k), j = 1, ..., r, gets a multiplier (k − k1)/(k − k1). We have
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χ̃j(k) ≡
k − k1

k − k1
χj(k) =

k − k1

k − k1

(
k − k1

k − k1

I +
k1 − k1

k − k1

Qj

)
= I +

k1 − k1

k − k1
Qj ,

and

Γ̃(k) = χ̃r(k) . . . χ̃2(k)χ̃1(k). (4.46)

Evidently, the new matrix Γ̃(k) in (4.46) satisfies the linear system of equations (3.45a)-

(3.45b) for the original matrix Γ(k). Furthermore, it corresponds to an elementary higher-

order zero of order r, though now in the complementary half plane: k = k1. It is noted that

in this section we considered a soliton matrix Γ(k) corresponding to a zero k1 = ξ+ iη lying

in the upper half plane, i.e. with η > 0. However, the case of η < 0 is admissible as well. The

only significant change would be in the asymptotic formulae, and the effect of this change

is similar to reversing the time variable: t → −t. Thus, the sequence of ranks in case (a)

brings no new higher-order soliton solutions as compared to the simple sequence of ranks,

but the solution process is reversed. For the fundamental soliton solutions, a similar fact has

been noted in Ref. [2], where it is mentioned that the fundamental soliton corresponding to

the projector of rank 2 describes the three-wave interaction process which is reverse to that

of the soliton solution corresponding to the projector of rank 1.

There is no transformation similar to (4.45) for case (b) (similar multiplication will

produce a rational matrix function having poles in both half planes, thus such a matrix

does not belong to the class of soliton matrices). Higher-order soliton solutions in this case

require construction of the soliton matrices for non-elementary higher-order zeros and will

be addressed in a forthcoming paper.

V. CONCLUSION

We have proposed a unified and systematic approach to study the higher-order soliton

solutions of nonlinear PDEs integrable by the Riemann-Hilbert problem of arbitrary matrix

dimension. We have derived the soliton dressing matrix for the elementary higher-order zeros

in the N ×N -dimensional spectral problem, i.e., zeros having the geometric multiplicity 1.

The associated higher-order solitons in the N -wave system have also been obtained. We have

also clarified that the soliton dressing ansatz proposed in [11] is the general soliton matrix

for the nonlinear Schrödinger equation (where N = 2), thus the soliton solutions obtained

in [11] are the most general higher-order solitons in the the nonlinear Schrödinger equation.

For N ×N -dimensional spectral problems the soliton dressing ansatz of [11] corresponds to

the elementary higher-order solitons.

We have applied our theory to the three-wave interaction model, and the simplest higher-

order soliton solution has been obtained. The generic case of this solution describes the

process u3 ↔ u1 + u2, similar to fundamental solitons. But each wave involved here is

higher-order. The non-generic case of this solution could describe three new processes. The

first two are similar to each other:
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u1 + u3 ↔ u1 + u2,

u2 + u3 ↔ u1 + u2.

Here the waves on the left are all sech waves; the waves on the right are a sech wave and a

higher-order wave. The third process reads

u3 ↔ u1 + u2 + u3,

where the pumping wave on the left is a higher-order wave, and the waves on the right all

have sech shape. The non-generic solutions could also reduce to fundamental solitons or

trivial solutions as special cases.

We anticipate that the higher-order soliton solutions will have wide applications. First

of all, the new processes they describe may find physical applications where three-wave

interaction takes place. Second, as it has been mentioned in Ref. [10], the higher-order

soliton solution describes a weak bound state of solitons, thus it may appear in the study

of the train propagation of solitons with nearly equal amplitudes and velocities in nonlinear

integrable PDEs. The usual approach in the analytical study of the soliton trains is reduction

of the governing equations for the soliton parameters to the complex Toda chain (consult,

for instance, Refs. [28–31]). The higher-order soliton approach may provide an alternative

to this study. Thirdly, multi-hump solitary waves in the non-integrable nonlinear PDEs

can be another field of application of the higher-order solitons. For instance, the so-called

multisoliton complexes, or more precisely, oscillatory and stationary solitons observed in

an oscillating water trough [32–36] and subsequently reproduced in numerical simulations

[34–36] of the governing parametrically driven, damped NLS equation may have the same

relation to the higher-order solitons as the usual solitary-wave solutions of the non-integrable

PDEs to the fundamental solitons. Analytical study of the soliton complexes needs the

perturbation theory for the higher-order solitons, just as the study of usual solitary-wave

solutions needs the perturbation theory for the fundamental solitons. The perturbation

theory for the higher-order solitons can be developed in a similar way as it is done for the

fundamental solitons (see for instance Ref. [37–39]). Such a theory is left for future studies.

Lastly, we point out that the soliton matrices for the elementary zeros serve as the

building blocks for the general case of zeros with arbitrary geometric multiplicity. This

work is in progress and will be reported in a forthcoming paper. There the most general

higher-order soliton solution for the N -wave system will be given.
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APPENDIX A: EXPONENT OF THE TOEPLITZ MATRICES

Here we show that for a diagonal matrix M(k) the exponent of the block Toeplitz matrix,

defined as in formula (3.47), and the block Toeplitz matrix of the exponent of M(k) coincide.

As the derivatives dm

dkm
M(k) commute with each other, it is enough to prove this statement

for a scalar function. Consider, for example, the lower-triangular Toeplitz matrix of a scalar

function f(k):

F =




f 0 . . . 0

d
dk
f f . . . 0

...
...

. . .
...

dn−1

dkn−1f
dn−2

dkn−2f . . . f




. (A1)

It can be rewritten in the following form

F = H0f +H1
df

dk
+ . . .+Hn−1

dn−1f

dkn−1
, (Hj)l,m ≡ δl+j,m. (A2)

Note the product rule for the “diagonals”: HjHi = Hj+i and that for j + i > n − 1 the

product is zero. Therefore, the exponent of F is a finite sum of the diagonals Hj:

exp(F) = c0H0 + c1H1 + . . .+ cn−1Hn−1, (A3)

where c0, . . . , cn−1 are constants. Due to the formula Hj = Hj
1 , j = 0, . . . , n− 1, computing

the coefficients cj is equivalent to taking the finite sum of the first n terms of the Taylor

expansion of an equivalent scalar function:

exp






n−1∑

j=0

djf(k)

dkj
ǫj




 = c0 + c1ǫ+ . . .+ cn−1ǫ
n−1 +O{ǫn}, (A4)

where ǫ is the parameter of the Taylor expansion which represents H1. On the other hand,

computing the Taylor expansion reduces to taking derivatives with respect to k of exp{f(k+
ǫ)} at ǫ = 0:

exp





n−1∑

j=0

djf(k)

dkj
ǫj



 = exp {f(k + ǫ)} +O{ǫn}

= exp{f(k)}+ 1

1!

d

dk
exp{f(k)}ǫ+ . . .+

1

(n− 1)!

dn−1

dkn−1
exp{f(k)}ǫn−1 +O{ǫn}. (A5)

Therefore

cj =
1

j!

dj

dkj
exp{f(k)}, j = 1, . . . , n− 1, (A6)

thus,

exp{F} = H0 exp{f(k)}+H1
1

1!

d

dk
exp{f(k)}+ . . .+Hn−1

1

(n− 1)!

dn−1

dkn−1
exp{f(k)}. (A7)

Q.E.D.
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FIG. 1. A generic higher-order soliton solution which describes the breaking of the higher-order

pumping u3 wave into higher-order elementary u1 and u2 waves, i.e., the u3 → u1 + u2 process.

Here, the solution parameters are (a1, a2, a3) = (2, 1,−1), (b1, b2, b3) = (−0.5, 2, 1), ξ = 1, η = 1,

θ(1) = (1, i,−1) and θ(2) = (−1, 1 + i, 2). In all figures here and below, solid lines are |u1|, dashed

lines are |u2|, and dash-dotted lines are |u3|.
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FIG. 2. Another generic higher-order soliton solution with a very small θ
(1)
1 value. Here

θ
(1)
1 = 10−4, while the other solution parameters are the same as in Fig. 1.
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FIG. 3. A non-generic higher-order soliton solution which describes the u2 + u3 → u1 + u2

process. The solution parameters are the same as in Fig. 1 except that θ
(1)
1 = 0 now.
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FIG. 4. Another non-generic higher-order soliton solution which describes the breaking of the

u3 sech wave into u1 and u2 sech waves. The solution parameters are the same as in Fig. 1 except

that θ
(1)
1 = θ

(1)
2 = 0 here.
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FIG. 5. A non-generic higher-order soliton solution which describes the u3 → u1 + u2 + u3

process. The solution parameters are the same as in Fig. 1 except that θ
(1)
2 = 0 here.
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