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Abstract. Stabilization of instable periodic orbits of nonlinear dynamical systems

has been a widely explored field theoretically and in applications. The techniques

can be grouped in time-continuous control schemes based on Pyragas, and the

two Poincaré-based chaos control schemes, Ott-Gebogi-Yorke (OGY) and difference

control. Here a new stability analysis of these two Poincaré-based chaos control schemes

is given by means of Floquet theory. This approach allows to calculate exactly the

stability restrictions occuring for small measurement delays and for an impulse length

shorter than the length of the orbit. This is of practical experimental relevance; to

avoid a selection of the relative impulse length by trial and error, it is advised to

investigate whether the used control scheme itself shows systematic limitations on the

choice of the impulse length. To investigate this point, a Floquet analysis is performed.

For OGY control the influence of the impulse length is marginal. As an unexpected

result, difference control fails when the impulse length is taken longer than a maximal

value that is approximately one half of the orbit length for small Ljapunov numbers

and decreases with the Ljapunov number.

http://arxiv.org/abs/nlin/0204060v3
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1. Introduction

Controlling chaos, or stabilization of instable periodic orbits of chaotic systems, has

matured to a field of large interest in theory and experiment [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18]. Most of these techniques are applied to dissipative systems,

but with respect to applications as suppression of transport in plasmas, there has been

recent interest also in controlling chaos in Hamiltonian systems [19, 20, 21, 22, 23, 24, 25]

and in the stability of periodic orbits in multidimensional systems [26]. Control of chaos

in general, however, does not rely on the existence of a Hamiltonian, so the system can

be given as any dynamical system described by a set of differential equations, or can

be an experimental system. The aim of chaos control is the stabilization of unstable

periodic orbits (UPOs), or modes in spatial systems. The central idea of the Hübler

and Ott-Grebogi-Yorke approaches to the control of chaos is to utilize the sensitive

dependence on initial conditions, be it system variables [1], or system parameters [2]

to steer the trajectory on an (otherwise unstable) periodic orbit of the system. To

accomplish this task, a feedback is applied to the system at each crossing of a suitably

chosen Poincaré plane, where the feedback is set proportional to the actual deviation of

the desired trajectory. Contrary to Pyragas control [3], where control is calculated quasi

continuously at a high sampling rate, here the approach is to stabilize by a feedback

calculated at each Poincaré section, which reduces the control problem to stabilization of

an unstable fixed point of an iterated map. The feedback can be chosen proportional to

the distance to the desired fixed point (OGY scheme), or proportional to the difference

in phase space position between actual and last but one Poincaré section. This latter

method, difference control [4], or Bielawski-Derozier-Glorieux control, being a time-

discrete counterpart of the Pyragas approach [3], allows for stabilization of inaccurately

known fixed points, and can be extended by a memory term [27, 28] to improve stability

and to allow for tracking [7] of drifting fixed points [27].

In this paper the stability of perturbations x(t) around an unstable periodic orbit

being subject to a Poincaré-based control scheme is analyzed by means of Floquet theory

[29]. This approach allows to investigate viewpoints that have not been accessible by

considering only the iteration dynamics between the Poincaré sections, as measurement

delays and variable impulse lengths. The impulse length is, both in OGY and difference

control, usually a fixed (quasi invisible) parameter; and the iterated dynamics is uniquely

definded only as long as this impulse length is not varied. The influence of the impulse

length has not been point of consideration before; if mentioned at all, usually a relative

length of approximately 1/3 is chosen without any reported sensitivity. Whereas for the

Pyragas control method (in which the delayed state feedback enforces a time-continuous

description) a Floquet stability analysis is known [30], here the focus is on the time-

discrete control.

1.1. Floquet stability analysis

The linearized differential equations of both schemes are invariant under translation in

time, t → t + T . Herby, we assume that the system under control is not explicitely

time-dependent. According to the theory of delay-differential equations [29], a stability



Floquet Stability Analysis of Ott-Grebogi-Yorke and Difference Control 3

condition can be derived from a simple eigenvalue analysis of Floquet modes. The

Floquet ansatz expands the solutions after periodic solutions u(t+ T ) = u(t) according

to

x(t) = eγtuγ(t). (1)

The necessary condition on the Floquet multiplier eγT of an orbit of duration T for

stability of the solution is Reγ < 0; and x(t) ≡ 0 refers to motion along the orbit.

In Poincaré-based control the effective motion can be transformed into the unstable

eigenspace, see e.g. App. A in [28]; the stability is governed by the motion therein. For

the case of one unstable Lyapunov exponent, this subspace is one-dimensional.

1.2. OGY control

The method proposed by Ott, Grebogi and Yorke [2] applies a control amplitude

r(t) = ε(t)(x(t×) − x∗), in vicinity of a fixed point x∗. Here ε(t) is a (possibly time-

dependent) feedback gain parameter, and x(t×) is the position of the last Poincare

crossing. Without loss of generality, we can place the fixed point at x = 0, so that

the OGY feedback scheme becomes r(t) = ε(t)x(t×), where t× ≡ t − (t mod T ) is

the time of the last Poincare crossing. Now one considers the linearized motion in

vicinity of an unstable periodic orbit (which is a stable periodic orbit of a successfully

controlled system). The Poincaré crossing reduces the dimensionality from N to N − 1

dimensions, in the lowest-dimensional case from 3 to 2. In this case it is sufficient

to consider a linearized one-dimensional time-continuous motion around the orbit,

ẋ(t) = λx(t) + µr(t), which now can be complex-valued to account for flip motion

around the orbit [30], i.e., one has the dynamical system

ẋ(t) = λx(t) + µεx(t− (t mod T )). (2)

Without control (r(t) = 0), the time evolution of this system is simply x(t) = eλt and the

Ljapunov exponent of the uncontrolled system is Reλ. Here it must be emphasized that

assuming constant λ and µ is a quite crude approximation, so only qualitative results can

be concluded. Now we see – a central observation – that no delay-differential equation

[29] is obtained: As the “delay” term always refers to the last Poincaré crossing, this

type of dynamics can be integrated piecewise. In the first time interval between t = 0

and t = T the differential equation reads

∀0<t<T ẋ(t) = λx(t) + µεx(0).

Integration of this differential equation yields

x(t) =
(

(1 +
µε

λ
)eλt −

µε

λ

)

x(0).

This gives us an iterated dynamics (here we label the begin of the time period again

with t)

x(t+ T ) =
(

(1 +
µε

λ
)eλT −

µε

λ

)

x(t).

This equation allows to determine the Floquet modes x(t+ T ) = eγTx(t) by inspection.

The Floquet multiplier eγT of an orbit, assuming an impulse duration of full orbit length,



Floquet Stability Analysis of Ott-Grebogi-Yorke and Difference Control 4

therefore is given by

eγT = (1 +
µε

λ
)eλT −

µε

λ
. (3)

The remainder of the paper investigates, both for OGY and difference control, how the

Floquet multiplier is modified for different impulse lengths.

2. Influence of impulse length: OGY case

The time-discrete viewpoint now allows to investigate the influence of timing questions

on control. First we consider the case that the control impulse is applied timely in the

Poincaré section, but only for a finite period pT within the orbit period (0 < p < 1)

(see Fig. 1a).

(a)ε(t)✻

✲
0 Tp T

t

ε

(b)ε(t)✻

✲
0 Ts T (s + p) T

t

ε

.

Figure 1. Impulse shapes considered for ε(t), resulting in the Floquet multipliers (7)

for a finite impulse length (a), and (10) if one also adds an additional delay of duration

s (b).

This situation is described by the differential equation

ẋ(t) = λx(t) + µεx(t− (t mod T ))Θ((t mod T )− p), (4)

here Θ is a step function (Θ(x) = 1 for x > 0 and Θ(x) = 0 elsewhere). In the first time

interval between t = 0 and t = pT the differential equation reads ẋ(t) = λx(t)+µεx(0).

Integration of this differential equation yields

∀0<t≤pT x(t) =
(

(1 +
µε

λ
)eλt −

µε

λ

)

x(0). (5)

In the second interval between t = pT and t = T the differential equation is the same

as without control, ẋ(t) = λx(t). From this one has immediately

∀pT<t<T x(t) = eλ(t−pT )x(pT ) (6)

and the Floquet multiplier of an orbit is given by

eγT = eλT
(

1 +
µε

λ
(1− e−λpT )

)

. (7)

The consequences are shown in Fig. 2. One finds that in zero order the “strength” of

control is given by the product pTµε; in fact there is a weak linear correction in p. This

analysis reproduces well the experimental results of Mausbach [36]. For λpT ≤ 1 one

has

eγT = eλT (1 + µεpT −
1

2
µελp2T 2 + o(p3)) (8)
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i.e. the condition of a constant strength of control reads

µεpT =
1

1− λT
2
p
= 1 +

λT

2
p+ o(p2). (9)

The result is: Apart from a weak linear correction for OGY control the length of the

impulse can be chosen arbitrarily, and the “strength” of control in zero order is given

by the time integral over the control impulse.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

p

µε

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

p

µεp

Figure 2. Left: Dependence of OGY control on the duration 1 ≤ pT ≤ T and strength

of control. Control is possible within the shaded areas, where darker shadings refer to

smaller Reγ, including an optimal line inbetween where Reγ → − ∞. In the white

areas, Reγ is positive, there the system with applied control becomes unstable. Right:

Plot in the (p, µεp) plane, the product µεp shows only a weak dependency on p. This

supports that the linear approximation (9) is a good approximation for (7).

For the case where the system can only be measured delayed – by a delay time of

the orbit length and longer – stability borders [31, 32] and improved control schemes

have been given in [28, 33] and successfully applied experimentally [27, 34, 35]. In

experimental situations one often has the intermediate case that there is a measurement

delay sT that is not neglectable, but within the orbit length. To keep the case general,

we again consider a finite impulse length pT with 0 < p < 1 und 0 < (s + p) < 1, see

Fig. 1b. Again we can integrate piecewise, and the Floquet multiplier is given by

eγT = eλT
(

1 +
µε

λ
e−λsT (1− e−λpT )

)

(10)

and (7) is included as the special case of s = 0.
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3. Impulse length influence: Difference control

Now we analyze the difference control scheme [4]

r(t) = ε(x(t×)− x(t××)), (11)

where t× and t×× denote the times of last and last but one Poincaré crossing, respectively.

Again the starting point is the linearized equation of motion around the periodic orbit

when control is applied. For difference control now there is a dependency on two past

time steps,

ẋ(t) = λx(t) + µεx(t− (t mod T ))

− µεx(t− T − (t mod T )). (12)

Although the right hand side of (12) depends on x at three different times, it can be

nevertheless integrated exactly, which is mainly due to the fact that the two past times

(of the two last Poincaré crossings) have a fixed time difference being equal to the orbit

length. This allows not only for an exact solution, but also offers a correspondence to

the time-discrete dynamics and the matrix picture used in time-delayed coordinates.

Now also for difference control the experimentally more common situation of a

finite but small measurement delay sT is considered, together with a finite impulse

length sT (here 0 < p < 1 and 0 < (s + p) < 1). An analogeous calculation [33, 37] as

for the OGY case can also be performed as follows. Piecewise integration in the first

interval 0 < t < T · s, where the differential equation reads ẋ(t) = λx(t), yields again

x(T ·s) = eλT ·sx(0). In the second interval T ·s < t < T · (s+p) the differential equation

reads

ẋ(t) = λx(t) + µε(x(0)− x(−T )).

Integration yields

∀T ·s<t<T ·(s+p) x(t) = −
µε

λ
(x(0)− x(−T ))

+
(

µε

λ
(x(0)− x(−T )) + eλsTx(0)

)

eλ(t−sT )

x(T · (s+ p)) = −
µε

λ
(x(0)− x(−T ))

µε

λ
(x(0)− x(−T )) + eλpT + eλ(s+p)Tx(0).

For the third interval again there is no control, thus

∀T ·(s+p)<t<T x(t) = eλ(t−(s+p)T )x(T · (s+ p)).

Collecting together, we find for x(T )

x(T ) = x(0)eλT
(

1 +
µε

λ
e−λsT (1− e−λpT )

)

− x(−T )eλT
µε

λ
e−λsT (1− e−λpT ) (13)

or, in time-delayed coordinates of the last and last but one Poincaré crossing
(

xn+1

xn

)

=

(

eλT
(

1+ µε(1−e−λpT )
λeλsT

)

−eλT µε(1−e−λpT )
λeλsT

1 0

)(

xn
xn−1

)

.
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0.6 0.7 0.8 0.9 1 1.1 1.2
-2.5
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µε

0
−0.03

−0.1

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

Imλ/π

µε
−0.03

0

−0.1

Figure 3. Time-continuous stability analysis of difference control with consideration

of the length of the control impulse: Contour plot of the real part of the Floquet

exponent in (Imλ,µε) space for T = 1, s = 0, p = 0.3, Reλ = 0.2 (left) and Reλ = 0.6

(right). For Imλ = π one finds (above Reλ = 0.52) an island of stability, which

completely disappears for p > pmax (Fig. 5). The Floquet analysis shows that the

impulse length is of fundamental importance for the dynamical behaviour and stability

of difference control, contrary to the situation for OGY control. The contour lines show

the real part of the Floquet multiplier for 0 (outer), -0.03, and -0.1 (inner contour).

0.2 0.25 0.3 0.35 0.4 0.45 0.5
-2.5

-2

-1.5

-1

-0.5

µε

p
0.2 0.225 0.25 0.275 0.3 0.325 0.35

-2.5

-2

-1.5

-1

-0.5

p

µε

Figure 4. Time-continuous stability analysis of difference control with consideration

of the length of the control impulse: Stability area for fixed twist Imλ = π and

independence of amplitude µε and relative impulse length p, for T = 1, s = 0,

Reλ = 0.2 (left) and Reλ = 0.6 (right).
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0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

Reλ

pmax

Figure 5. Time-continuous stability analysis of difference control: Maximal impulse

length p for different values of Reλ in the range from 0.01 to 1.0.

If we identify with the coefficients of the time-discrete case, λd = eλT and µdεd =

e−λsT (1 − eλpT )µε
λ
, the dynamics in the Poincaré iteration t = nT becomes identical

with the pure discrete description; this again illustrates the power of the concept of

the Poincaré map. In principle, due to the low degree of the characteristic polynomial,

one could explicitely diagonalize the iteration matrix, allowing for a closed expression

for the n-th power of the iteration matrix. However, for the stability analysis only the

eigenvalues are needed. For the Floquet multiplier one has

e2γT = eγT eλT
(

1 +
µε

λ
e−λsT (1− e−λpT )

)

− eλT
µε

λ
e−λsT (1− e−λpT ). (14)

This quadratic equation yields two Floquet multipliers,

eγT =
1

2
eλT

(

1 +
µε

λ
e−λsT (1− e−λpT )

)

±
1

2

√

(

eλT (1 +
µε

λ
e−λsT (1− e−λpT ))

)2

+ 4eλT
µε

λ
e−λsT (1− e−λpT ).

Figures 3 and 4 show, by example of Reλ = 0.2, (resp. Reλ = 0.6) that at Imλ = π

for p < pmax(Reλ = 0.2) ≃ 0.505401 (resp p < pmax(Reλ = 0.6) ≃ 0.367) there exists

an island of stability, whose width decreases to zero for p → pmax. Here explicitely the

influence of the impulse length can be seen. The maximal value of pmax is shown in

Fig. 5.
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4. Discussion of the time-continuous model: Relaxing the assumption of a

constant local Ljapunov exponent

The quantitative analysis given above was based on the model assumption that one has

a constant local Ljapunov exponent around the orbit – a condition that will almost

never be fulfilled exactly for a typical orbit of a chaotic system. To test whether this

assumption is crucial, the stability can be investigated for OGY control by assuming λ

to be time-dependent along the orbit. For simplicity, we consider the exemplaric case

shown in Fig. 6 that λ(t) = λ1 for 0 < t < qT and λ(t) = λ2 for qT < t < T , generalizing

the case q = 1/2 already sketched in [37].

4.1. The case p < q of a short impulse

ε(t)✻

✲
0 pT T

t

ε

λ(t)
✻

✲
0 qT T

t

λ1

λ2

Figure 6. Impulse shapes ε(t) and time-varying λ(t): Case of a short impulse p < q.

If we assume p < q, we have for the OGY case,

x(pT ) = (eλ1pT (1 + (µε/λ1))− (µε/λ1))x(0)

x(qT ) = eλ1(qT−pT )x(pT )

x(T ) = eλ2(T−qT )x(qT ). (15)

Using λ̄ := qλ1 + (1− q)λ2, the Floquet multiplier reads now

eγT = eλ̄T
(

1 +
µε

λ1
(1− e−λ1pT )

)

(16)

in contrast to eq. (7). Again in zero order the “strength” of control is given by the

product pµε; in first order λ1pT ≤ 1 again the weak linear dependence on p applies,

eγT = eλ̄T (1 + µεpT (1−
1

2
λ1pT + o(p2))), (17)

i.e. for a constant “strength” of control, one has to fulfill

µεpT =
1

1− λ1T
2
p
+ o(p2) = 1 +

λ1T

2
p + o(p2). (18)

Thus, the value of λ1, i.e. here, the deviation of λ(t) from its average value λ̄ during the

control impulse, only contributes in first order. More complicated cases can be tackled

likewise, giving corrections for the quantitative p-dependence of the optimal control gain

ε, but preserving the qualitative behaviour discussed above.
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4.2. The case p > q of a long impulse

While a short impulse is the experimentally more feasible case, for completeness, also

the p > q shown in Fig. 7 can be investigated in this manner. Here we have two time

intervals where the control is active; and in the second one the initial condition x(pT )

has to be distinguished from the position x(0) at the last Poincaré crossing, from which

the control value is calculated and which determines the inhomogenity of the ODE.

ε(t)✻

✲
0 pT T

t

ε

λ(t)
✻

✲
0 qT T

t

λ1

λ2

Figure 7. Impulse shapes ε(t) and time-varying λ(t): Case of a long impulse p > q.

Integration over the three time intervals yields

x(qT ) = eλ1qTx(0)
(

1 +
µε

λ1

)

− x(0)
µε

λ1

x(pT ) = eλ2(pT−qT )
(

x(qT ) + x(0)
µε

λ2

)

− x(0)
µε

λ2

x(T ) = eλ2(T−pT )x(pT )

so that we arrive at

x(T ) = x(0)eλ̄T
[

1 +
µε

λ1

(1− e−λ1qT ) +
µε

λ2

(1− e−λ2(p−q)T )e−λ1qT

]

. (19)

Weakly nonlinear approximation for q = 1/2 As p > q, and q is a fixed value for the

given system, a discussion of pλT ≪ 1 can no longer be based on the p → 0 case. As

p is of order 1, an expansion as above is meaningful only for the case where λT ≪ 1,

i.e., we derive an approximation for those UPOs which have an only marginally positive

Floquet multiplier. For q = 1/2 we now explicitely discuss this “weakly nonlinear” case

λ1T ≪ 1, λ2T ≪ 1,

x(T ) = x(0)eλ̄T
[

1 +
µε

λ1

(

− λ1
T

2
+

λ2
1T

2

8
−

λ3
1T

3

48

)

+
µε

λ2

(

− λ2T (p−
1

2
) +

λ2
2T

2(p− 1
2
)2

2

)(

−
λ1T

2
+

λ2
1T

2

8

)

]

= x(0)eλ̄T
[

1−
µεT

2

(

1− λ1T (p−
1

4
) + o(λ2

1, λ1λ2, λ
2
2)
)

]

that is, control is kept constant in lowest order for

µεT

2
!
=

1

1− λ1T (p−
1
4
)
≃ 1 + λ1T (p−

1

4
) (20)

for orbits sharing the same value of λ̄.
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4.3. Difference control and nonconstant local Ljapunov exponent

For completeness, now also the case of difference control is considered. As has been

shown before, for the case of a constant Ljapunov exponent, impulse lengths of p > 1
2

do not lead to stable control; therefore the case p > q is completely irrelevant, and only

the case p < q has to be be considered. In the first interval, λ1 is active and integration

yields

x(pT ) = eλ1pT

[

x(0)(1 +
µε

λ1

(e−λ1pT − 1))− x(−T )
µε

λ1

(e−λ1pT − 1)
]

(21)

and the subsequent intervals have the control switched off,

x(T ) = eλ2(1−q)Tx(qT ) = eλ2(1−q)T eλ1(q−p)Tx(pT ) (22)

= eλ̄T
[

x(0)(1 +
µε

λ1

(e−λ1pT − 1))− x(−T )
µε

λ1

(e−λ1pT − 1)
]

. (23)

Again we use the average value λ̄ = λ1q+ λ2(1− q) to simplify the expressions, and the

coordinates in the Poincaré countings xn+1 = x(T ), xn = x(0), xn−1 = x(−T ). We have
(

xn+1

xn

)

=

(

eλ̄T (1 + µε

λ1

(e−λ1pT − 1)) −eλ̄T µε

λ1

(e−λ1pT − 1)

1 0

)(

xn

xn−1

)

(24)

which leads to the characteristic equation for the two Floquet multipliers eγT

e2γT = eγT eλ̄T
(

1 +
µε

λ1

(e−λ1pT − 1)
)

− eλ̄T
µε

λ1

(e−λ1pT − 1). (25)

This generalizes the discussion of difference control to the case of nonconstant λ.

5. Conclusions and Outlook

To summarize, a new time-continuous stability analysis of Poincaré-based control

methods was introduced. This general and novel approach allows to investigate timing

questions of Poincaré based control schemes that cannot be analyzed within the picture

of the Poincaré iteration. For both OGY and difference control it has been possible

for a homogeneous case to integrate the dynamics exactly. While for OGY control the

impulse length turns out not to be crucial, for difference control it is, and the impulse

has to be shorter than a critical fraction of the period, which is of the order of half of

the period and decreases for larger Ljapunov exponents. Such timing dependence is not

completely uncommon in feedback systems with delay; in time-continuous feeedback

control, a half-period feedback resulted in an enlarged stability range [38].

Techniques of chaos control, be it Poincaré-based, following the Pyragas technique,

or open-loop [43, 39, 40, 41, 42] have been of great interest not only in technical systems,

but also in biologically, especially neural systems and excitable media [44, 45]. Besides

the approach of controlling pathological neural subsystems directly, the intact brain

already bears implementations of feedback control [50], implying that the failure of the

respective circuits eventually results in migraine or stroke. Also the human gait system,

as virtually any perception-motor system, performs control of a bio-mechanical system

with delays; and disturbances of the delay loops as well as the cortical control may

result in tremor and related movement disorders [46, 47, 48, 49]. In the thalamocortical
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system, a designated impulse shape, formed by the so-called slow waves that emerge in

the cortex during S2 sleep, has been shown to act as an open-loop controller of thalamic

oscillator networks [51]. This offers further possibilities to influence human sleep in

the case of sleep disturbances: Recent control techniques by transcranial electrical or

magnetic stimulation [52, 53, 54, 55] have been demonstrated to influence human sleep

as well as to affect memory consolidation during sleep. In most of these techniques, the

impulse shape and relative duration of the control impulse has significant impact on the

results, thus different control goals may become accessible within the same setup. For

the systematic understanding how such control techniques influence the brain, detailed

models are of likewise importance as the methodical understanding of the theoretically

possible control methods.
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[10] E. Schöll and H. G. Schuster (Eds.), Handbook of chaos control, Wiley-VCH, Berlin (2007).

[11] H. G. Schuster, W. Just, Deterministic chaos: an introduction, 4th ed., Wiley-VCH, Berlin (2005).
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