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On the Algebraic Bethe Ansatz for XXX spin chain:
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Abstract

Considering the XXX spin-1/2 chain in the framework of the Algebraic Bethe
Ansatz (ABA) we make the following short comment: the product of the creation
operators corresponding to the recently found solution of the Bethe equations ”on the
wrong side of the equator” [1] is just zero (not only its action on the pseudovacuum).

Consider the periodic XXX spin-1/2 chain with N sites in the framework of ABA (see for
example [2]). Let us introduce the Lax operator acting in the two-dimensional local quantum
space hn = C2 and in the two-dimensional auxiliary space V = C2:

Ln(x) =

(

x+ is3n is−n
is+n x− is3n

)

, (1)

where si are operators of spin 1/2, x is an arbituary complex number (the spectral parame-
ter). The monodromy matrix is the ordered product over all sites:

T (x) = LN (x)LN−1(x)...L1(x) =

(

A(x) B(x)
C(x) D(x)

)

, (2)

where A(x), B(x), C(x), D(x) are operators acting in the full quantum space H = ⊗
N
∏

n=1

hn.

In the framework of ABA one looks for the eigenvectors of the transfer matrix

t̂(x) = trT (x) = A(x) +D(x)

in the form
Φ({x}) = B(x1)B(x2)...B(xl)Ω, (3)

where Ω =
N
∏

n=1

ωn, s+nωn = 0. It follows from the intertwining relations for the monodromy

matricies that vector (3) will be an eigenvector of the transfer matrix when the parameters
x1, ..., xl satisfy the Bethe equations:

(

xj + i/2

xj − i/2

)N

=
l

∏

k 6=j

xj − xk + i

xj − xk − i
(j = 1, 2, ..., l). (4)
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Let us denote vectors of the form (3) with parameters xj (j = 1, 2, ..., l) satisfying the
system (4) by Φ({x}B). It is well known that vectors Φ({x}B) are the highest weights vectors
with respect to SU(2) generated by J i i.e.

J+Φ({x}B) = 0 (5)

and
J3Φ({x}B) = (N/2− l)Φ({x}B), (6)

where J3, J± are operators of the total spin. It is clear that if l > N/2 then Φ({x}B) = 0.
The solution {x} of (4) with l ≤ N/2 defines the polynomial q(x) of the degree l, whose
roots are {x}:

q(x) =

l
∏

j=1

(x− xj). (7)

Let t(x) be the eigenvalue of transfer matrix t̂(x) corresponding to the eigenvector
Φ({x}B) i.e. t̂(x)Φ({x}B) = t(x)Φ({x}B). It is a polynomial of degree N . Then the
polynomials t(x) and q(x) satisfy the Baxter equation [4] (we consider the case of the simple
roots):

t(x)q(x) = (x− i/2)Nq(x+ i) + (x+ i/2)Nq(x− i). (8)

In the paper [1] was shown that there exist the polynomial p(x) of degree N − l+1 with
roots satisfying the Bethe equation (4) 1 and

t(x)p(x) = (x− i/2)Np(x+ i) + (x+ i/2)Np(x− i), (9)

with the same t(x) as in (8). Actually there exists the one-parametric family of such poly-
nomials

p(x, α) = p(x) + αq(x), (10)

so there is the one-parametric family of sets of parameters ({x})–the zeroes of p(x, α) which
belongs to the ”beyond the equator” case. Let us denote these zeroes as xi(α) (it is clear
that the zeroes of the polynomial (10) depends on α). Now consider the creation operator

B(α) = B(x1(α))B(x2(α))...B(xN−l+1(α))

corresponding to the beyond the equator case. The following statement is valid:
Theorem.

B(α) = 0 (11)

Proof.

Consider its action on the basis constructed using the Bethe vectors (in the case of finite {x}
Bethe vectors are the highest weights; to obtain the rest eigenvectors we use the operator J−

(it commutes with the transfer matrix), which also can be considered as a creation operator,
since B(x) = xN−1(J− + o(1/x)) when x → ∞; on the hypothesis of the completeness of
the Bethe ansatz see [2, 3]). We immidiatly see that its action is zero due to [B(x), B(y)] =
0, [B(x), J−] = 0 and B(α)Ω = 0. So, the action of B(α) is zero onto each vector of the
basis, then

B(α) = 0. (12)

1See also the interesting discussion of the ”beyond equator” solution in [5].
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To see that this fact is nontrivial let us consider the concrete examples. Let us first
analyse the structures of the product of B-operators. We have the following commutation
relation:

[B(x), J3] = B(x), (13)

so for the product of l B-operators

eβJ
3

B(x1)...B(xl)e
−βJ3

= e−lβB(x1)...B(xl) (14)

and we see that each term of expansion of this product necessarily contains the products
of l-operators s−j with different j, since (s−)2 = 0 (so if l > N this product is zero). At
N = 6, product of four B-operators (l = 4 > 3 i.e. this is the ”beyond the equator” case):
B(x1)B(x2)B(x3)B(x4), as was shown by the explicit construction of this product, contains
terms, proportional to s+2 s

−
1 s

−
3 s

−
4 s

−
5 s

−
6 , s

+

3 s
−
1 s

−
2 s

−
4 s

−
5 s

−
6 , s

+

4 s
−
1 s

−
2 s

−
3 s

−
5 s

−
6 and s+5 s

−
1 s

−
2 s

−
3 s

−
4 s

−
6

with nonzero coefficients–polynomials in x1, x2, x3, x4. The appearance of such terms is not
excluded by (14). Its action on the vacuum Ω is zero identicaly, so if x1, x2, x3, x4 satisfy
the system (4), then these terms is zero, not only terms, whose action on the vacuum Ω
is nonzero, for example the term proportional to s−1 s

−
2 s

−
3 s

−
4 . Such solutions do exist, for

example roots of the polynomial

p(x) = x4 − 6√
13

x3 + x2 − 9

16
(15)

satisfy system (4). This solution corresponds to the total spin J = 0, the eigenvalue of the
transfer matrix

t(x) = 2x6 +
9

2
x4 +

23

8
x2 − 3√

13
x− 1

32

the corresponding eigenvector can be constructed, using the roots of the polynomial

q(x) = x3 +
1

12
x+

1

4
√
13

. (16)

and the one-parametric family B(α) = 0 corresponds to the roots of the polynomial

p(x, α) = x4 − 6√
13

x3 + x2 − 9

16
+ α(x3 +

1

12
x+

1

4
√
13

). (17)

The products of l operators B(x) with l > N/2 considered above are not used for the
construction of the eigenvectors of the transfer matrix. However, we would like to emphasize
that there is another important example, when the product of B-operators corresponding to
the case l ≤ N/2 is zero:

B(−i/2)B(i/2) = 0.

This product corresponds to the polynomial

q(x) = x2 + 1/4

and
t(x) = (x+ i/2)(x− 3/2i)N−1 + (x− i/2)(x+ 3/2i)N−1
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and at even N ≥ 4 corresponds to some eigenvector of the transfer matrix. In the paper
[6] was shown how one can use the ABA to construct this eigenvector corresponding to this
exceptional solution. If we consider the following vector B(−i/2 + ǫ + 2iǫN)B(i/2 + ǫ)Ω at
ǫ → 0, then

B(−i/2 + ǫ+ 2iǫN )B(i/2 + ǫ)Ω = ǫNΦ({−i/2, i/2}) +O(ǫN+1)

where Φ({−i/2, i/2}) is the desired eigenvector. The proof of our statement holds true in
this case too, since we use again only B-operators to construct this eigenvector.

This work was supported in part by grants of RFBR 00-15-96645, 01-02-16585, 01-01-
00201, CRDF MO-011-0, of the Russian Minestry on the education E00-3.3-62 and INTAS
00-00561.
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