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Stretching and Curvature of Material Lines in Chaotic Flows
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As a streak of dye is advected by a chaotic flow, it stretches and folds and becomes

indistinguishable from a one-dimensional idealized material line. The variation along

a material line of the total stretching experienced by fluid elements is examined, and

it is found that it can be decomposed into an overall time-dependent factor, constant

along the line, and a smooth time-independent deviation. The stretching is related

by a power law to the curvature of the line near sharp bends. This is confirmed

numerically and motivated by a simple model. A conservation law for Lyapunov

exponents explains deviations from a power-law.
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I. INTRODUCTION

The literature on the deformation of fluid elements in chaotic and turbulent flows is
immense. Mainly the focus has been on the Lyapunov exponents, which characterize the
exponential rate of separation of neighboring trajectories, and thus also represent the rate of
stretching of fluid elements. For instance, the distribution of Lyapunov exponents has been
used to characterize the diffusive decay of variance of an advected scalar [1–6], because in
incompressible flows the stretching of fluid elements has an associated contraction and thus
serves to amplify gradients, thus enhancing the efficiency of diffusion.

Much less attention has been paid the evolution of curvature in chaotic and turbulent
flows. The curvature represents a higher-order deformation of fluid elements than stretch-
ing. To leading order, one can think of the stretching as deforming an initially spherical
fluid element into an ellipsoid; the curvature then represents a bending of the axes of the
ellipsoid. Since stretching tends to occur along a dominant direction, so the effect of cur-
vature is most easily observed along that dominant direction of stretching. Mathematically,
the stretching depends on first derivatives of the velocity field (essentially the local strain),
whereas curvature depends on its first and second derivatives.

It has been observed that the magnitude of stretching and of curvature are anticorrelated
in a flow [7]: wherever the flow experiences large amounts of stretching the fluid elements
(and hence material lines) tend to be straight, and vice-versa. Intuitively, one can see that
this is a result of the competing effects of curvature and stretching: the flow can pull on a
material line or bend it, but the effects are orthogonal—stretching is the result of a pull along
the material line, whereas curvature arises from perpendicular deformations. This provides a
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motivation for the study of curvature in a flow, because being a purely geometrical quantity
it can be measured directly from pictures of material lines (which can easily be obtained
from experiments). In this manner one can get a rough estimate of regions of high and
low stretching. This is a useful guide when trying to maximize the efficiency of mixing by
varying the properties of the flow [8, 9].

In the present paper we explore the form of the dependence between stretching and
curvature along material lines. There is a −1/3 power-law relation between the magnitude
of stretching and curvature along sharp bends of material lines advected by a flow. We
present evidence for this based on numerical experiments. We then explain the −1/3 power
law using two models. The first is based on a single sharp bend in a material line where only
the shape of the bend is taken into account; it has the advantage of being straightforward
and intuitive, but does not account for the range of features observed. The second model
uses a foliation of bends, to correct the deficiency of the first model of treating material lines
as isolated objects in the flow. We make use of a local “conservation law” for Lyapunov
exponents that allows a more complete description of the relationship between curvature
and stretching for the foliation of bends. In particular, the conservation law predicts a
dependence on the shape of neighboring material lines near a particular bend.

II. STRETCHING OF A MATERIAL LINE

We first discuss the kinematics of stretching of a material line advected by a
flow x = Φ(t, t0;a) in an n-dimensional space. Here x is the position at time t (the Eulerian
coordinate) of a fluid element that was originally at a at time t0 (the Lagrangian coordi-
nate). The flow Φ is typically the result of the integration of a velocity field v(x, t), but it
could also be given by a map.

A vector w0 is transformed to a vector w at time t by the relation

wi(x, t) =M i
q w

q
0(a, t0), M i

q = [M]iq :=
∂Φi

∂aq
(t, t0;a), (1)

where repeated indices are summed; M is known as the tangent mapping of the flow. Because
we are interested in the state of material lines in the Eulerian (x) frame, we wish to hold x

constant and integrate backward in time to obtain a = Φ−1(t, t0;x) (if Φ is a map we iterate
its inverse). We thus rewrite the tangent mapping as a function of x,

M =
∂Φ

∂a
(t, t0; Φ

−1(t, t0;x)) =

{
∂Φ−1

∂x
(t, t0;x)

}−1

, (2)

which can easily be verified by differentiating the identity Φ(t, t0; Φ
−1(t, t0;x)) = x with

respect to x. The matrix M is obtained directly from integrating

∂

∂t0
M = −M · (∇v)T , M(t0 = t) = I, (3)

as t0 → −∞; here ∇v is evaluated at a = Φ−1(t, t0;x). In practice, there are more accurate
numerical methods available, based on matrix decomposition techniques [10–12].

The stretching of vectors as they are advected by the flow is expressed in the Eulerian
frame by the left Cauchy–Green tensor [13],

gij :=

n∑

q=1

M i
qM

j
q . (4)
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Being a symmetric positive-definite matrix, the Cauchy–Green tensor g admits n real positive
eigenvalues Λ2

µ(x, t, t0) with corresponding orthonormal eigenvectors êµ(x, t, t0). We assume
that the eigenvalues are nondegenerate (at least for large t−t0), and without loss of generality
order them such that Λ1 > Λ2 > . . . > Λn. The Λµ’s are called the coefficients of expansion,
and their exponential growth rates

λµ :=
1

t− t0
log Λµ (5)

are known as the finite-time Lyapunov exponents. The theorem of Oseledec [14] asserts that
for ergodic measure-preserving systems the limit as t→ ∞ (or in our case t0 → −∞) exists
for almost all initial conditions (or in our case the final condition x at t, held fixed). The
positivity of the largest Lyapunov exponent is the usual criterion for the presence of chaos.
Because the eigenvalue of largest stretching plays an important role in our development, we
often write Λu and û for Λ1 and ê1, where the letter u stands for “unstable”. Note that we
shall not assume that λu has converged, only that it is positive “most of the time,” in the
sense that Λ1 is exponentially large for large t − t0. Thus our treatment is valid even for
aperiodic flows, where the Lyapunov exponents are not guaranteed to converge.

The eigenvector û is the direction along which a fluid element has on average experienced
the most stretching throughout its history; this direction converges exponentially to an
asymptotic direction û∞(x, t) as t0 → −∞ [10–12]. We can integrate this vector field,

∂xu

∂s
= û∞(xu(s, t), t), û∞(xu(0, t), t) = û∞(x, t), (6)

to yield a curve xu(s, t) through x. This (infinite) curve is known as the global unstable

manifold through x, and is parametrized by the arc length s along the curve from x. It
corresponds to the unstable manifold of a hyperbolic orbit and converges to that orbit
as t0 → −∞. In a given chaotic region, all global unstable manifolds are equivalent to each
other [15]; this equivalence class of unstable manifolds is called the unstable foliation. We
will think of the representative point x as labeling a particular unstable manifold.

Now consider a material line C at time t, and let ℓ̂(x, t) be the unit tangent to the line C
at x. It is well-known that a material line advected by a chaotic flow aligns with the unstable
foliation of the flow, a phenomenon sometimes referred to as asymptotic directionality [15].
Intuitively, it is clear that if fluid elements are being stretched along a preferred direction
then they appear to align along that direction. This means that the tangent ℓ̂ aligns with
the most unstable eigenvector û∞ of the flow as t0 → −∞. The components of ℓ̂ initially
orthogonal to û∞ decay in proportion to their slower stretching rates as compared to Λu.
This can be expressed as

ℓ̂(x, t, t0) =

n∑

ν=1

Λν

Λu
σν(a, t, t0) ê

∞
ν (x, t) (7)

where the σν are nonexponential functions, that is, they may grow or decay algebraically (or
be identically zero) but may not do so exponentially; they are given by the initial condition

of ℓ̂(x, t0, t0). The normalization condition of ℓ̂ implies

σ1 = ±
(
1−

∑

ν>1

(Λν/Λu)
2 σ2

ν

)1/2

, (8)
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where the sign ambiguity occurs because the direction of the alignment is a matter of con-
vention. Thus |σ1| → 1 as t0 → −∞, whereas the other σν decay exponentially as Λν/Λu, a
consequence of the ordering and nondegeneracy assumptions for the Λν ’s.

Let ds denote the infinitesimal element of arc length at some point on the line. To
measure the relative growth of this element, we need to know its length ds0 at an earlier
time t0 < t,

ds0 =
(
g−1
ij ℓ̂i ℓ̂j

)1/2

ds. (9)

The square-root in (9) is the Jacobian |∂s0/∂s|, since the arc length changes by the same
proportion as the length of the tangent. Inserting the tangent (7) in the expression (9) for
the length element, we find

ds0 =

(∑

ν

Λ2
ν

Λ2
u

σ2
ν Λ

−2
ν

)1/2

ds = Λ−1
u

(∑

ν

σ2
ν

)1/2

ds, (10)

where we have used g−1
ij (ê∞ν )j = Λ−2

ν (ê∞ν )i from the definition of the eigenvectors. Because of
the chaotic nature of the flow, Λu = exp(λu t) grows exponentially in time, with λu(x, t) the
largest finite-time Lyapunov exponent. In general, then, the ratio ds/ds0 grows exponentially
with t− t0, reflecting the growth of material lines as they are advected by the flow.

The local stretching of the line, ds/ds0, varies both because of the inherent nonuniformity
in infinitesimal stretching, as described by Λu, but also because the initial material line at t0
is typically aligned differently with respect to the global unstable manifold at different points,
as described by the σν ’s. However, the first effect is exponential in time, whereas the second
is only algebraic. We can further differentiate these temporal behaviors, as we now proceed
to show.

If t − t0 is moderately large then the material line has aligned with the global unstable
manifold, that is, it is tangent to û∞ at every point. The relative change in Λ−1

u along ℓ̂

satisfies

ℓ̂ · ∇ log Λ−1
u = ℓ̂ · ∇ log Λ̃−1

u +O
(
Λ−1

u ,Λ2/Λu

)
, for |t− t0| ≫ 1, (11)

where Λ̃u depends on x and t but not on the initial time t0. (We define Λ̃u more precisely
below in (13).) This asymptotic form is a consequence of the results on derivatives of finite-
time Lyapunov of Ref. [12]. It is also straightforward to show that the relative change in σν
is

ℓ̂ · ∇ log σν = O
(
Λ−1

u

)
, for |t− t0| ≫ 1, (12)

consistent with the σν being defined in Lagrangian coordinates, so the stretching along û∞

in Eulerian coordinates smooths out their functional dependence.
Integrating equation (11) allows us to write

Λu(x, t, t0) ≃ Λu(x, t, t0) Λ̃u(x, t), for |t− t0| ≫ 1, (13)

where Λu(x, t, t0) is the coefficient of expansion evaluated at an arbitrary reference point x
on the manifold xu(s, t), defined by Eq. (6). This is true as long as we are considering a
line segment C(t) that is shorter than Λu, otherwise the higher-order terms in (11) cannot
be neglected. The asymptotic exponential dependence of Λu on t− t0 is entirely contained
in Λu(x, t, t0), because Λ̃ does not depend on t0.
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Similarly, Eq. (12) implies that the σν are constant in space along C(t) as long as it is
shorter than Λu. We can then absorb the constant (

∑
σ2
ν)

1/2 into Λu(x, t, t0) and rewrite (10)
as

ds/ds0 = Λu(x, t, t0) Λ̃u(x, t), (14)

where Λu(x, t, t0) is constant in space along the line C.
The main result of this section is thus given by (14). In the remainder of this paper

we shall examine line segments at fixed x and t, letting t0 recede to −∞. Since the seg-
ments we consider are much shorter than Λu, we find that the local stretching (coefficient

of expansion) of a material line can be characterized by the deviation Λ̃u(x, t) from the
overall stretching of the line segment, Λu(x, t, t0). The somewhat surprising results are that

(i) the deviation Λ̃u(x, t) is independent of t0, and (ii) the overall stretching of the line is
well-defined (i.e., it is constant along the line). The rate of overall stretching of the line of
course converges to the topological entropy.

We note in closing this section that there is an ambiguity in the decomposi-

tion (13): Λu(x, t, t0) and Λ̃u(x, t) are only defined up to a multiplicative function of x

and t. We resolve this by integrating (14) over C, to find

L(t)/L(t0) = Λu(x, t, t0)
〈
Λ̃−1

u

〉−1

C(t)
, (15)

where L(t) is the length of C(t) and 〈·〉C(t) is an average over the line C(t). Clearly a proper
definition of the overall growth Λu(x, t, t0) of the material line should be that it is equal to
the growth of the length L(t)/L(t0). An appropriate choice for the definition of Λu(x, t, t0)

and Λ̃u(x, t) is thus to scale them such that

〈
Λ̃−1

u

〉

C(t)
= 1, (16)

which we assume to hold.

III. NUMERICAL RESULTS

In this section we present the result of numerical calculations comparing the stretching
and the curvature along material lines. Because we are interested in material lines that have
evolved for a long time in the flow (long compared to the inverse Lyapunov exponent), it is
sufficient to compute the shape of unstable manifolds by integrating (6) starting at sample
points x at time t in the fluid domain.

Two prototypical systems will be used. The first is the ubiquitous standard map,

xn+1 = xn + yn+1 , yn+1 = yn + (K/2π) sin(2πxn), (17)

where (x, y) ∈ [0, 1]×[0, 1]. Maps of course have the advantage that they are computationally
efficient, allowing rapid verification of results. Another desirable feature of (17) is that for
large K the structure of material lines advected by the map is fairly simple, as evidenced in
Fig. 1(a) which has K = 50. The diagonal bias in the figure is due to the sweeping of the
sine wave on both side of (17), which at such large K traverses the domain several times
for each iteration, breaking (almost) all islands. The map is area-preserving, so that the
determinant of g is |g| = 1.
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FIG. 1: Material lines advected by (a) the standard map with K = 50 and (b) the cellular flow

with A = ǫ = ω = k = 1.

The second system we shall use is the cellular flow of Solomon and Gollub [16], with
velocity field

v :=

(
−
∂ψ

∂y
,
∂ψ

∂x

)
, ψ(x, t) := Ak−1(sin kx+ ǫ cosωt cos kx) sin2 πy, (18)

to model an array of oscillating convection rolls, periodic in x and with rigid walls at y = 0
and y = 1. The sin2 πy dependence is chosen to satisfy the rigid boundary conditions at the
walls. The velocity field is incompressible (∇·v = 0), so that |g| = 1. When ω = 0, the flow
is steady, and the trajectories of fluid elements are nonchaotic. This is true in general of
any two-dimensional steady flow [17]. A snapshot of typical material lines advected by (18)
are shown in Fig. 1(b). Note the two large regular islands in the center.

Our interest lies in the variations of stretching and curvature along material lines. The
local stretching is given by the coefficient of expansion Λu, but since we let the material
lines evolve for some time (such that Λu ≫ 1) it is sufficient to consider the t0-independent

deviation from mean stretching, Λ̃u, defined in Section II. Thus, for convenience we will refer

to Λ̃u as “the stretching” even though it needs to be multiplied by an overall factor Λ(x, t, t0)
to represent the total stretching a line has experienced.

Figure 2 is a plot of the stretching and curvature as they vary along a typical material line

advected by our two prototypical systems. The first thing to note is that the stretching Λ̃u

is smooth along the material line (the sharp dips are well-resolved). It is known that the
finite-time Lyapunov exponents are not continuous functions of the spatial variables, but
Fig. 2 underscores that the rough variation of the exponents (and hence the stretching)
occurs perpendicular to the unstable direction. In the Lagrangian frame, holding a fixed
instead of x, it is the variation along the contracting direction that is smooth [18, 19]. (The
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FIG. 2: The stretching, Λ̃u, and the magnitude of the curvature, κ, plotted against the arc length s

along a material line for (a) the standard map; and (b) the cellular flow. The parameter values are

as in Fig. 1. Note the close anticorrelation between stretching and curvature.

variation of the stretching along the characteristic directions is discussed in Ref. [12].)
A second observation is that the variations in the stretching are very large, encompassing

about four orders of magnitude or more in typical cases. This says that not all points in the
flow are equally propitious to stretching, and that the variations can be sizeable even within
a single chaotic region. Because the coefficient of expansion denotes a fluid elements’s history
of stretching, the large variations imply that some trajectories avoid regions of significant
stretching for a long time.

The third striking feature of Fig. 2 is the close anticorrelation between stretching and
curvature—high curvature regions are invariably associated with relatively low stretching.
This phenomenon was first observed by Drummond and Münch [7] in the context of a model
turbulent flow, based on earlier work of Pope et al. on the curvature of fluid elements [20, 21].
This and later work on turbulence and random flows [22–25] and deterministic flows [24, 26–
28] focused on the probability distribution of curvature and on comparing stretching and
curvature at a point. Here we investigate how stretching and curvature vary along material
lines, with the intention of gaining a better understanding of their relationship.

With this in mind it is natural to plot the stretching and curvature of Fig. 2 as a para-
metric (or phase) plot, that is, we plot them against each other while increasing the arc
length along the line. The result is shown in Fig. 3. A power-law relation between stretch-
ing and curvature around sharp bends (large curvature) is immediately apparent, with ex-
ponent −1/3. This power-law behavior is especially well-realized for the standard map
(Fig. 3(a)). Fig. 3(a) also shows that for the same maximum curvature, bends can have
very different peak stretchings, so even though there is a power-law relationship between
curvature and stretching, the peak stretching is not directly related to the peak curvature.

In a related context involving the stable manifold in the Lagrangian frame, the exponent
was measured as −0.331 by Tang and Boozer [18]. In the following two sections we use two
models of increasing refinement to justify an exponent of exactly −1/3 and illuminate the
cause of the power-law relation.
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FIG. 3: Parametric plot of the stretching, Λ̃u, against the magnitude of the curvature, κ, along a

material line for (a) the standard map; and (b) the cellular flow. The parameter values are as in

Fig. 1. For sharp bends there is a power-law relationship between the curvature and the stretching.

From (a), it is clear that for the same maximum curvature, bends can have very different peak

stretching factors.

IV. ANALYSIS FOR A SINGLE BEND

We propose a simple physical picture in 2D to reproduce the Λ̃u ∼ κ−1/3 law around sharp
bends. We refer to this picture as the “simple bend model”. We examine the model in detail,
and point out its advantages and failures. Its advantages are simplicity and a physically
intuitive formulation. Its failures are that it refers to a specific initial configuration of the
material line, and that it does not account for the deviations from the −1/3 law observed
in Fig. 3; these shortcomings will be addressed by a more refined model in Section V.

Consider an initially straight material line of length L, as illustrated at the top of Fig. 4(a),
parametrized by (x(s), y(s)) = (s, 0) with s ∈ [0, L]. The material line will be stretched and
folded by the flow, as in Fig. 4(a). We parametrize the shape of the fold by

x(s) = (x(s) , y(s)) = (βs , f(s)), s ∈ [0, L], (19)

where f determines the shape of the bend, and β its horizontal extent. From this we can
directly compute the curvature,

κ =
‖x′(s)× x

′′(s)‖

‖x′(s)‖3
= β |f ′′(s)| ‖x′(s)‖

−3
. (20)

But ‖x′(s)‖ is a measure of Λ̃u, the relative local stretching of the material line [28]. Hence,
if the variation in |f ′′(s)| can be neglected, Eq. (20) gives the desired power-law relationship
between curvature and stretching. That |f ′′(s)| can be neglected is a consequence of the
sharpness of the bend: a Taylor series expansion of f (in a rotated and translated coordinate
system)

f(s) = 1
2
κ0 s

2 + O(s3) (21)
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FIG. 4: (a) Schematic representation of a material line folded by a flow. (b) A foliation of bends.

will be dominated by the quadratic term near the tip of the bend: the cubic and other odd
terms cannot dominate, otherwise the profile would not resemble a sharp bend. While it is
possible that quartic or higher-order terms are important in characterizing the shape of a
given bend, we assume that there is nothing special about this particular bend so that the
quadratic term dominates (in principle many shapes of bends will occur in a chaotic flow).
This will always be true if we are near enough the tip. The coefficient κ0 is large and gives
the curvature at the tip of the bend.

It is encouraging that such a straightforward physical picture reproduces the salient
features of stretching and folding in a chaotic flow. But there are problems with the simple
bend model. First, it requires a consideration of the initial shape of the material line. In a
chaotic flow, the −1/3 law is observed for arbitrary initial conditions. The second problem
is that deviations from the strict −1/3 law are not of the form predicted by the model. In
Fig. 3, some of the bends appear “fat”, that is, the maxima of stretching and curvature do
not exactly coincide. The only deviations allowed in the simple bend model arise from a
non-quadratic bend profile. But the bends that exhibit deviations from the law in Fig. 3
have a profile that is essentially quadratic near the tip.

We resolve this discrepancy in Section V by allowing the bend to be surrounded by a
continuum (a foliation) of other bends and using a conservation law for Lyapunov exponents.

V. A CONSERVATION LAW FOR LYAPUNOV EXPONENTS

The failures of the simple bend model in Section IV lies in the material lines not being
isolated objects in the fluid: they are surrounded by a continuum of other material lines.
Figure 1(a) shows a material line that has been advected by the standard map, for a large
value of the control parameter K (by “advection” in the context of a map we simply mean
iterating an initial distribution). At these highly chaotic values of K, the material line
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exhibits a surprising degree of regularity. Indeed, the visible folds (there are also tiny bends
too small to see) resemble a nested set of the simple bend we discussed in Section IV. This
suggests extending the model to treat a foliation of curves, as shown in Fig. 4(b), where
the thick curve is the bend under consideration (the nominal bend) and the others are
neighboring bends (not necessarily identical to the nominal bend).

The tangent ℓ(x, y) near the thick bend y = f(x) of Fig. 4(b) can be written

ℓ(x, y) = (1 , f ′(x) + h(x, y − f(x))) , h(x, 0) = 0, (22)

with the unit tangent ℓ̂ = ℓ/‖ℓ‖. Thus, when evaluated on the curve y = f(x), we
have ℓ = (1 , f ′(x)) and we recover the tangent to the curve. The function h represents
changes in the tangent to the bends as we move off our nominal bend y = f(x). Both f
and h are left unspecified for now.

To analyze the variation of stretching on the nominal bend, it is sufficient to know how Λu

varies along û∞, the characteristic direction of stretching of fluid elements. This is because
material lines can be assumed to be aligned with the unstable foliation, as described in
Section II. We will obtain this variation from the formula

|g|1/2∇ ·
(
|g|−1/2 û

)
+ û · ∇ log Λu ∼ max(Λ−1

u ,Λ2/Λu) −→ 0, (23)

which holds for for large t−t0, when we can replace û by û∞. Here |g| is the determinant of g.
This is a “constraint” on the variation of Λu along the unstable manifold in chaotic flows and
maps. It was derived for arbitrary dimension in Ref. [12]. It traces its origins in an analogous
relation for the stable manifold in Lagrangian coordinates, obtained using methods from
differential geometry [18, 19]. A similar result was obtained in the 2D incompressible case
in Ref. [15], where it was used to derive an invariant measure to characterize intermaterial
contact area. In dimensions greater than two, the characteristic directions and finite-time
Lyapunov exponents associated with a chaotic flow must obey other constraints [12], but (23)
is the only one we will use here.

Assuming that the material line has evolved long enough that the constraint (23) is
satisfied to any desired accuracy, and assuming that the flow is incompressible, we rewrite
the constraint as

∂

∂s
log Λu +∇ · û∞ = 0, (24)

where s is the arc length along the material line (i.e., the unstable manifold). Actually,
incompressibility is sufficient to have (24), but it is not necessary as any flow with |g|
constant in space will satisfy (24). This is the case, for instance, in the Lorenz equations,
where ∇ · v = constant.

Equation (24) is a conservation law for the largest Lyapunov exponent λu: if neighbor-
ing unstable manifolds converge (diverge), then the largest finite-time Lyapunov exponent
increases (decreases). Physically, the conservation law (24) can be justified by thinking
of converging unstable manifolds (or equivalently the material line) as “squeezing” fluid
elements, thereby also stretching them if the flow is incompressible. In 3D the unstable
manifolds squeezes fluid elements by the same amount because they must preferentially
stretch along the unstable manifold (the stretching that can occur along the intermediate
direction ê2 is negligible, because we assumed nondegenerate Λσ’s so that Λu ≫ Λ2 after
some time).
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Returning to our model of a foliation of bends, the divergence of û∞ evaluated on y = f(x)
is easily computed,

∇ · û∞ ≃ ∇ · ℓ̂ = −
f ′ (f ′′ + h1(x, 0))

(1 + f ′2)3/2
+

h2(x, 0)

(1 + f ′2)1/2
, (25)

since the tangent (22) to the curve is aligned with the unstable manifold. The subscripts 1
and 2 on h denote differentiation with respect to its first and second arguments. We may
think of h1(x, 0) as the variation in the tangent ℓ̂ along x, and of h2(x, 0) as the variation
along y, both parametrized by x, where the x–y coordinates are defined in Fig. 4(b).

We evaluate the other term of the constraint (24) on y = f(x),

∂

∂s
log Λu = û∞ · ∇ log Λu =

1

(1 + f ′2)1/2
d

dx
log Λu , (26)

so that from (23), (25), and (26), we find

d

dx
log Λu =

f ′(f ′′ + h2(x, 0))

1 + f ′2
− h1(x, 0). (27)

This can be integrated to yield

Λu = c (1 + f ′2)
1/2

exp

(∫
f ′(x) h1(x)

1 + f ′2
dx−

∫
h2(x, 0) dx

)
, (28)

where c is constant in space along the material line but depends on time (it contains the
exponential growth of Λu). The integrals in (28) are indefinite.

First we show that we recover the result of Section IV in the limit h1 = h2 = 0 (a uniform
foliation of bends). To exhibit the relationship between stretching and curvature, we use
the expression

κ(x) =
|f ′′(x)|

(1 + f ′(x)2)3/2
(29)

for the magnitude κ(x) of the curvature, and obtain from (28)

Λu = c |f ′′(x)|1/3 κ−1/3 (30)

after setting h1 = h2 = 0. Equation (30) agrees with (20), with c3 = β−1. However, Eq. (30)
has been derived with no assumption as to the initial shape of the material line.

Now we look for deviations from the −1/3 law. The integrals in (28) depend on the exact
form of f and h1,2(x, 0). But as a lowest-order approximation, near the tip of the bend
(at x = 0) we may assume that f is quadratic and h1,2(x, 0) =: h1,2 = constant, the first
nonzero terms in a power series. The resulting stretching is

Λu = c
(
1 + f ′2

)1
2
+(h1/2κ0)

exp (−h2 x) , (31)

which may be rewritten in terms of the curvature κ(x) using (29),

Λu = c κ−
1
3
−(h1/3κ0) exp

[
±(h2/κ0)

(
(κ/κ0)

−2/3 − 1
)]
. (32)
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FIG. 5: Deviation from the −1/3 law due to nonuniformity of bends. The solid line is a fit using

formula (32), and the diamonds are numerical data. The parameters used are h1/κ0 = −0.01,

h2/κ0 = 0.015, where h1 controls the deviation from the −1/3 law and h2 the multi-valuedness

of Λ̃.

Thus, h1 appears as a deviation to the exponent of the −1/3 law, while h2 gives an expo-
nential, multi-valued correction (due to the ± sign). For sharp bends, κ0 ≫ 1, so that the
corrections due to h are not visible. In Fig. 5 we show a bend where the corrections are
more important (h1/κ0 = −0.01, h2/κ0 = 0.015): the solid line shows that the fit of (32) to
the numerical solution is very good near the tip, where we expect it to be valid.

There are several sources of deviation from the −1/3 law. The first is from the shape
of the bend, as represented by the cubic and higher-order terms in f(x). The second is in
the variation of the tangent vector field (22), that is, the shape of the neighboring bends, as
embodied by the function h in (22). In 3D, the variation in z (the direction perpendicular to
the plane of the bend) must also be taken into account, but we do not do so here. What our
analysis shows is that the simplest configuration—a uniform foliation of bends—captures
the power-law behavior perfectly. The leading-order corrections are predominantly due to
the function h, and not to the higher-order terms of f , at least near the tip of the bend.
The reason for this is that the h terms enter (31) at lowest order in x.

Numerical investigation indicates that the −1/3 law often holds in 3D around sharp
bends, but not always—possibly a signature of torsion (the bend is no longer planar). A
complete 3D description would have to take into account possible torsion in the material
lines and will be the focus of future research.

If the flow is compressible, then a simple modification of (30) starting from (23) gives

Λu = c |g|1/2 |f ′′(x)|1/3 κ−1/3 , (33)
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where we have assumed |g| depends only on x. The −1/3 law will thus not be affected by
compressibility as long as the variations in |g| are unimportant around sharp bends, which
is usually the case because of the localized nature of the bends.

We may consider instead of bends a foliation of horizontal lines, so that f ′(x) ≡ 0. Then
we conclude from (28) that Λu = c, for h2(x, 0) = 0. Such a foliation corresponds to a region
of vanishing curvature, and the constant stretching is reflected in Fig. 3(a) (upper-left portion
of the plot). The cellular flow, Fig. 3(b), does not exhibit the constancy of Λu in regions
of low curvature, indicating that in this less idealized situation the variation of the vector
field û∞ perpendicular to itself cannot be neglected.

VI. CONCLUSION

Though stretching of fluid elements is more directly relevant to physical problems such as
mixing, understanding the kinematics of curvature is also important. A compelling reason
is that, unlike stretching, curvature is directly measurable from simple visualization experi-
ments, being a purely geometrical quantity. Stretching and curvature are not independent,
and it is hoped that techniques such as those described herein can be used to relate their
distribution. For instance, the −1/3 law suggests that low values of stretching are closely
correlated to high curvature regions in a universal manner, and thus the corresponding tail
of the two distributions can have similar properties. There is some indication that this is
the case, and future work will address such statistical correlations.
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