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Abstract

Evolution PDEs for dispersive waves are considered in both linear and

nonlinear integrable cases, and initial-boundary value problems associated

with them are formulated in spectral space. A method of solution is pre-

sented, which is based on the elimination of the unknown boundary values

by proper restrictions of the functional space and of the spectral variable

complex domain. Illustrative examples include the linear Schrödinger

equation on compact and semicompact n-dimensional domains and the

nonlinear Schrödinger equation on the semiline.

1 Introduction

Initial-Boundary Value (IBV) problems for Partial Differential Equations (PDEs)
play an important role in applications to physics and, in general, to natural sci-
ences.

It is well known that the basic difficulty associated with the study of IBV
problems for linear and nonlinear integrable PDEs is the presence of unknown
boundary values in the relevant equations of any method of solution. In this
paper, after formulating the IBV problems for linear and nonlinear integrable
PDEs in spectral space, we present a method of solution, the Elimination-by-
Restriction (EbR) approach, which is based on a strategy of elimination of the
unknown boundary values by proper restriction of the functional space and of
the complex domain of definition of the involved spectral functions. This ap-
proach is inspired by the Green’s function (GF) method, which, in the linear
context, is essentially its counterpart in configuration space, and by our recent
findings in the nonlinear context. The paper is organized as follows. In §2 we
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deal with IBV problems for linear PDEs with constant coefficients. After in-
troducing the proper Fourier Transform (FT) for that problem and establishing
its analyticity properties, we first express the Fourier transform of the solution
in terms of the Fourier transforms of known and unknown initial - boundary
values using Green’s formula. Then we present the EbR approach in which,
using systematically a strategy of elimination of the unknown boundary values,
one obtains the appropriate spectral representation of the solution whose sup-
port may eventually turn out to be discrete rather than continuous as in the
general Fourier integral one starts from. We illustrate the power of the method
solving IBV problems for the Schrödinger equation on an n-dimensional rectan-
gular box and quadrant. In §3 we apply the EbR strategy to soliton equations.
After defining the proper spectral transform S(k, t) for the given IBV problem,
we apply the EbR procedure eliminating the unknown boundary values from
the equations defining S(k, t) and characterizing S(k, t) via a nonlinear integral
equation. This approach, presented on the prototype example of the nonlinear
Schrödinger (NLS) equation on the semiline, can be in principle generalized to
the segment case. Since the EbR technique operates on the spectral variables
conjugated to the space ones, it works well either using the space-time trans-
form or just the space transform. In the linear case we find it simpler to work
with the space-time FT, while in the nonlinear case it seems more convenient to
use the space transform, namely the well-known Inverse Scattering (Spectral)
Transform (IST). We finally show the equivalence between IBV problems for
soliton equations on the semiline and some specific forced initial value problems
on the whole line. An important application of this equivalence is that, from the
well-known asymptotics of soliton equations on the whole line, one can obtain
immediately the asymptotic behaviour for IBV problems on the semiline with
decaying boundary data. We have confined the relevant literature to §4.

The results contained in this paper are an expansion of part of the material
presented by the authors at the Euroconference “NEEDS 2001” and at the
workshop: “Boundary Value Problems”, the first and last events of the Semester:
Integrable Systems, held at the Isaac Newton Institute of Cambridge during the
period July - December 2001.

2 The Elimination-by-Restriction Approach:

The Linear Case

It is well -known that the Fourier Transform (FT) is the proper tool to solve
initial - boundary value (IBV) problems for linear PDE’s in Rn+1 with decaying
boundary values:

L(▽, ∂
∂t
)u(x, t) = f(x, t), x = (x1, .., xn) ∈ Rn, t > 0,
u(x, 0) = u0(x), u(x, t) → 0, |x| → ∞,

(1)
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where▽ = ( ∂
∂x1

, ··, ∂
∂xn

), L is a constant coefficients partial differential operator,
u(x, t) is the unknown field, f(x, t) is a given forcing and u0(x) is the given initial
condition.

In this section we present a very effective approach, in Fourier space, for
solving more complicated IBV problems, defined on compact or semi - compact
space domains V :

L(▽,
∂

∂t
)u(x, t) = f(x, t), x ∈ V ⊂ Rn, t > 0, (2)

with Dirichelet or Neumann or mixed boundary conditions on ∂V .

2.1 The Fourier Transform and its properties

The natural FT associated with the space - time domain D = V ⊗ (0,∞) (in
short: FTD) is defined by

F̂ (k, q) =

∫

D

dxdte−i(k·x+qt)F (x, t) (3)

for any smooth function F (x, t), (x, t) ∈ D, assuming that F (x, t) → 0, t → ∞
fast enough; here k = (k1, .., kn) ∈ Rn, q ∈ R and k · x =

∑

j kjxj . Its inverse:

F (x, t)χD(x, t) =

∫

Rn+1

dkdq

(2π)n+1
ei(k·x+qt)F̂ (k, q) (4)

reconstructs F (x, t) in D and zero outside, where χD(x, t) is the characteristic
function of the domain D: χD(x, t) = 1, (x, t) ∈ D, χD(x, t) = 0, (x, t) /∈ D
(therefore: χD(x, t) = χV (x)H(t), where H(t) is the usual Heaviside (step)
function).

If the space domain is the whole space: V = Rn, the FTD (3) is defined in
A = Rn ⊗ Īq, where Īq is the closure of the lower half q-plane Iq, analytic in
q ∈ Iq, ∀k ∈ Rn and exhibits a proper asymptotic behaviour for large |q| in the
analyticity region. If the space domain V is compact, the FTD acquires strong
analyticity properties in all the Fourier variables: it is defined in A = Cn ⊗ Īq,
analytic in q ∈ Iq, ∀k ∈ Cn, entire in every complex kj , j = 1, .., n ∀q ∈ Īq
and exhibits a proper asymptotic behaviour, for large (k, q), in the analyticity
regions. If the space domain is semi - compact, then the analyticity in the
Fourier variables kj , j = 1, .., n is limited to open regions of the complex plane,
depending on the geometric properties of the domain V .

To express the FTD of the solution in terms of the FTD’s of the forcing
and of the IB conditions we make use of the well - known Green’s formula
(identity):

bLa− aL̃b = div J(x, t), (5)
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and of its integral consequence, the celebrated Green’s integral identity:

∫

D

(bLa− aL̃b)dxdt =

∫

∂D

J(x, t) · νdσ, (6)

obtained by integrating (5) over the domain D and by using the divergence
theorem. In equation (5), L̃ is the formal adjoint of L: L̃ = L(−▽,− ∂

∂t
), J(x, t)

is an (n+ 1)-dimensional vector field, div is the (n+1)-dimensional divergence
operator and a(x, t) and b(x, t) are arbitrary functions. In equation (6), dσ is
the hypersurface element of the boundary and ν is its outward unit normal. We
remark that, given L, its formal adjoint L̃ and two arbitrary functions a and
b, an (n+ 1)-dimensional vector field J(x, t) satisfying the Green’s formula (5)
always exists and can be algorithmically found to be a linear expression of a, b
and their partial derivatives of order up to N − 1, if L is of order N .

The arbitrariness of a and b allows one to extract from (5) and (6) several
important informations on the BV problem; with the particular choice

a = u(x, t), b = e−i(k·x+qt)/L(ik, iq), (7)

where L(ik, iq) is the eigenvalue of the operator L, corresponding to the eigen-
function ei(k·x+qt), the vector field J takes the following form:
J = e−i(k·x+qt)J ′(x, t;k, q)/L(ik, iq) and the Green’s integral identity (6) gives
the FTD of the solution in terms of the FTD’s (or, maybe, of generalized FT’s)
of the forcing and of all the initial - boundary values:

û(k, q) =
f̂(k, q)−

∫

∂D
e−i(k·x+qt)J ′(x, t;k, q) · νdσ

L(ik, iq)
=:

N̂ (k, q)

L(ik, iq)
, (k, q) ∈ A.

(8)
In general, L(ik, iq), the denominator of the above equation, is an entire and,
most frequently, polynomial function of all its complex variables and its zeroes
may lie on the real axis; therefore, before calculating the inverse FT, we must
regularize it:

L(ik, iq) → Lreg(ik, iq); (9)

i.e., we must move a bit the singularities off the real axis, outside the domain
A.

Its inverse transform (4) gives the corresponding Fourier representation
of the solution:

U(x, t) = u(x, t)χD(x, t) =

∫

Rn+1

dkdq

(2π)n+1
ei(k·x+qt) N̂ (k, q)

Lreg(ik, iq)
, (x, t) ∈ Rn+1.

(10)
Clearly this is not the end of the story since, in general, the RHS of equation
(8) depends on known and unknown boundary values.
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2.2 Elimination-by-Restriction in Fourier space

The traditional ways in which IBV problems for linear PDE’s are solved consist
in finding convenient strategies for eliminating the unknown boundary conditions

from the representation of the solution. On this idea is based the celebrated
Green’s function (GF) approach, in which:
i) one constructs the Green’s integral representation

u(x, t) =

∫

D

dx′dt′g̃(x, t;x′, t′)f(x′, t′)−

∫

∂D

J(x, t;x′, t′) · νx′dσx′ , (x, t) ∈ D.

(11)
of the solution of the IBV problem (2) as another application of (6), correspond-
ing to the choice: a(x, t) = u(x, t) and b(x, t) = g̃(x′, t′;x, t), where g̃ is any
Green’s function of L̃x: L̃xg̃(x

′, t′;x, t) = δ(x− x′)δ(t− t′), (x, t), (x′, t′) ∈ D.
ii) One uses the arbitrariness of g̃ and constructs that particular Green’s func-
tion which allows one to eliminate contributions depending on unknown bound-
ary values. On the elimination idea is also based the eigenfunction expansion
method, essentially equivalent to the GF approach, in which one constructs a
set of eigenfunctions of L with proper boundary conditions which allow again
to eliminate the unknown boundary values. Both approaches are of functional
analytical nature.

In this section we shall show how the elimination strategy can be conve-
niently implemented working in the Fourier space defined by (3) (the elimination
strategy in spectral space has been already investigated for soliton equations on
the semiline (see §4)).

Equation (8), defined in a proper domain A ⊂ Cn+1, usually exhibits several
symmetry properties which are consequence of the structure of L and of the
geometry of the space domain V . The first and more critical part of the method
consists in constructing a linear operator E which, by exploiting systematically
these symmetry properties in Fourier space, annihilates, in the RHS of (8), the
contributions coming from the unknown boundary values:

E û(k, q) = E(
N̂

L
)(k, q) = {only known quantities}, (k, q) ∈ A′ ⊂ A. (12)

The elimination procedure, described by the linear operator E , allows one to
construct E û in a subspace A′ of the original space of definition of û. It is
necessary therefore to establish if this information is sufficient to reconstruct
the solution u; i.e., if E û defines an invertible spectral transform in D.

Using equation (3), this new spectral transform is defined by:

E û(k, q) =
∫

D
dxdtϕ̃k,q(x, t)u(x, t), (k, q) ∈ A′

ϕ̃k,q(x, t) := E(e−i(k·x+qt)),
(13)

and is invertible provided an eigenfunction ϕk,q(x, t) of L exists with the prop-
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erty of satisfying the completeness condition:
∑

(k,q)∈A′

ϕk,q(x, t)ϕ̃k,q(x
′, t′) = δ(t− t′)δ(x− x′), (x, t), (x′, t′) ∈ D. (14)

In this case the inverse transform allows one to construct a function Ũ(x, t),
defined in general on the whole space-time, which coincides with the solution in
D:

Ũ(x, t) =
∑

k,q

ϕk,q(x, t)E(
N̂
L )(k, q), (x, t) ∈ Rn ⊗ (0,∞),

Ũ(x, t) = u(x, t), (x, t) ∈ D.
(15)

In equations (14) and (15)
∑

k,q indicates a sum and/or an integral, depending
on the nature of the domain A′ of definition of the new spectral transform.
Summarizing:
Although the direct transform we started with is the Fourier trans-
form û defined in (3), the elimination-by-restriction procedure per-
formed on it leads to a new direct transform E û (13), whose inversion
usually differs considerably from (4). This implies that the recon-
structed function Ũ(x, t) coincides with the solution u(x, t) in D but is
not zero outside D, inheriting the symmetry properties of the eigen-
function ϕk,q(x, t).

2.3 Illustrative Example

In this section we apply the EbR approach to the IBV problem (2) corresponding
to

L = i ∂
∂t

+△, △ = ▽ ·▽ =
n
∑

j=1

∂2

∂xj
2 ,

V = {x : 0 ≤ xj ≤ Lj , j = 1, .., n};
(16)

i.e., we solve IBV problems for the (n+1)-dimensional Schrödinger equation in
an n-dimensional rectangular box.

Then:

L̃ = −i ∂
∂t

+△, J = (iab, b▽ a− a▽ b),
L(ik, iq) = −(q + k2) ⇒ Lreg(ik, iq) = −(q + k2 − i0),

(17)

where k2 = k · k. Equations (8) and (17) give the following expression of the
Fourier transform of the solution in terms of the Fourier transforms of the forcing
and of all the initial - boundary values:

û(k, q) = − N̂ (k,q)
q+k2−i0 , (k, q) ∈ A,

N̂ (k, q) := f̂(k, q) + iû0(k) +
n
∑

j=1

{[ŵ0j(kj , q) + ikj v̂0j(kj , q)]−

e−ikjLj [ŵLj(kj , q) + ikj v̂Lj(kj , q)]},

(18)
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in the definition domain A = Cn ⊗ Īq, where f̂ , û0, v̂0j , v̂Lj , ŵ0j , ŵLj are the
FTs of the forcing and of the following IB values:

u0(x) = u(x, t)|t=0, v0j(xj , t) = u(x, t)|xj=0, vLj(xj , t) = u(x, t)|xj=Lj
,

w0j(xj , t) =
∂u
∂xj

(x, t)|xj=0, wLj(xj , t) =
∂u
∂xj

(x, t)|xj=Lj
;

(19)

i.e., for instance:

û0(k) =
∫

V

dxe−ik·xu0(x), v̂0j(kj , q) =
∞
∫

0

dt
∫

Vj

dxje
−i(kj ·xj+qt)v0j(xj , t). (20)

In equations (18)-(20), as well as in the following, xj = (x1, .., x̌j , .., xn) ∈ Rn−1,

kj = (k1, .., ǩj , .., kn) ∈ Rn−1,
∫

Vj
dxj =

∫ L1

0
dx1 · ·(

ˇ∫ Lj

0
dxj) · ·

∫ Ln

0
dxn with the

understanding that the superscript ˇ indicates that the quantity underneath is
removed.

Of course, if all the above boundary values were known, the solution u would
be given by the formula (10):

U(x, t) = u(x, t)χV (x)H(t) = −
∫

Rn+1
dkdq

(2π)n+1 e
i(k·x+qt) N̂ (k,q)

q+k2−i0 =

−
∫

Rn+1
dqdk

(2π)n+1 e
i(k·x+qt) f̂(k,q)

q+k2−i0 +H(t)
∫

Rn
dk

(2π)n e
i(k·x−k2t)û0(k)+

n
∑

j=1

∫

Rn−1

dkj

(2π)n−1 e
ikj ·xj

∫

γ

dkj

2πi{e
i(kj |xj |−k2t)[ŵ0j(kj ,−k2) + isign(xj)kj v̂0j(kj ,−k2)]−

ei(kj |xj−Lj |−k2t)[ŵLj(kj ,−k2) + isign(xj − Lj)kj v̂Lj(kj ,−k2)]},

(21)

where dkj = dk1.. ˇdkj ..dkn and γ = (i∞, 0) ∪ (0,∞).
In view of the distinguished parity properties of the Fourier transforms in

(18), in the following we shall make use of the parity operators:

∆± =

n
∏

l=1

(1±σ̂l), ∆
(j)
± =

n
∏

l=1
l 6=j

(1±σ̂l), (22)

where σ̂j is the involution σ̂j : kj → − kj .
Suppose we are interested in solving the Dirichelet problem; applying the

parity operator ∆− to (18) eliminates all ŵ0’s:

∆−û(k, q) = −

(

∆−[f̂(k, q) + iû0(k)] + 2i
n
∑

j=1

kj∆
(j)
− v̂0j(kj , q)+

2i
n
∑

j=1

[sin(kjLj)∆
(j)
− ŵLj(kj , q)− kj cos(kjLj)∆

(j)
− v̂Lj(kj , q)]

)

/(q + k2 − i0), (k, q) ∈ A.

(23)

To eliminate also the ŵL
′s, the values of kj must be restricted to the discrete

set kj = hj :=
πmj

Lj
, mj ∈ Z, so that the original domain A is finally restricted
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to:

(k, q) ∈ A′ = {(h, q); q ∈ Īq, h = (h1, .., hn), hj =
πmj

Lj

, mj ∈ Z, j = 1, .., n}.

(24)
Therefore the EbR operator E of this example reads:

E· =

∫

Rn

dkδ(k − h)∆−· (25)

and its application to û leads to the wanted result:

E û(k, q) = (∆−û)(h, q) = −{∆−[f̂(h, q) + iû0(h)]+

2i
n
∑

j=1

hj∆
(j)
− [v̂0j(hj , q)− (−)mj v̂Lj(hj , q)]}/(q + h2 − i0),

(26)

where hj = (h1, .., ȟj , .., hn) and h2 = h·h. The transform E û(k, q) generated by
the EbR procedure is the well-known multidimensional discrete sine transform:

∆−û(h, q) =
∫

D
dtdxϕ̃h,q(x, t)u(x, t),

ϕ̃h,q(x, t) := ∆−(e
−i(h·x+qt)) = (−2i)ne−iqt

n
∏

l=1

sin(hlxl).
(27)

For its inversion we use:

ϕh,q(x, t) =
in

L1 · ·Ln

eiqt

2π

n
∏

l=1

sin(hlxl),
∑

k,q

=

∫

R

dq

∞
∑

m1=1

· ·
∞
∑

mn=1

, (28)

so that (15) yields the function Ũ(x, t), defined in the whole space time, which
coincides with the solution u(x, t) of the IBV problem under scrutiny for (x, t) ∈
D:

Ũ(x, t) = in

L1··Ln

∞
∑

m1=1
· ·

∞
∑

mn=1

n
∏

l=1

sin(hlxl)
∫

R

dq
2π e

iqt∆−

(

N̂(h,q)
L(ih,iq)

)

, (x, t) ∈ Rn+1,

Ũ(x, t) = u(x, t). (x, t) ∈ D.
(29)

Equation (29) implies, due to the symmetry properties of ϕh,q(x, t), that Ũ
is the odd (2L)-periodic extension of the solution outside D and provides the
discrete sine-Fourier representation of the solution:

u(x, t) = − in

L1··Ln
{
∑

h,S

n
∏

l=1

sin(hlxl)[
∫

R

dq
2π e

iqt ∆−f̂(h,q)
q+h2−i0 − e−ih2t∆−û0(h)]+

n
∑

j=1

Lj

∑

hj,S

∏

l 6=j

sin(hlxl)
∫

γ

dkj

π

ikje
−i(k2

j
+hj·hj)t

sin(kjLj)
∆

(j)
− [sin kj(Lj − xj)v̂0j(hj ,−k2j − hj · hj)+

sin(kjxj)v̂Lj(hj ,−k2j − hj · hj)]}, (x, t) ∈ D,

(30)
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where

∑

h,S

=

∞
∑

m1=1

· ·
∞
∑

mn=1

,
∑

hj ,S

=

∞
∑

m1=1

· ·





∞̌
∑

mj=1



 · ·
∞
∑

mn=1

(31)

and the integral
∫

γ
dkj is regularizedmoving the singularities kj = (πmj/Lj), mj ∈

Z+ a bit off the first Quadrant.
The Neumann problem can be treated similarly, leading to the discrete cosine

transform:

E· =
∫

Rn dkδ(k − h)∆+·

ϕ̃h,q(x, t) := ∆+(e
−i(h·x+qt)) = 2ne−iqt

n
∏

l=1

cos(hlxl),

ϕh,q(x, t) =
1

2nL1··Ln

eiqt

2π

n
∏

l=1

cos(hlxl),
∑

k,q

=
∫

R

dq
∞
∑

m1=−∞
· ·

∞
∑

mn=−∞

(32)

and to the following discrete cosine representation of the solution:

u(x, t) = − 1
2nL1··Ln

{
∑

h,C

n
∏

l=1

cos(hlxl)[
∫

R

dq
2π e

iqt ∆+f̂(h,q)
q+h2−i0 − e−ih2t∆+û0(h)]−

2
n
∑

j=1

Lj

∑

hj ,C

∏

l 6=j

cos(hlxl)
∫

γ

dkj

π
e
−i(k2

j
+hj ·hj)t

sin(kjLj)
∆

(j)
+ [cos kj(Lj − xj)ŵ0j(hj ,−k2j − hj · hj)−

cos(kjxj)ŵLj(hj ,−k2j − hj · hj)]}, (x, t) ∈ D,

(33)

where

∑

h,C

=

∞
∑

m1=−∞

· ·
∞
∑

mn=−∞

,
∑

hj ,C

=

∞
∑

m1=−∞

· ·





∞̌
∑

mj=−∞



 · ·
∞
∑

mn=−∞

(34)

and the integral
∫

γ
dkj is regularized as in (30).

Using the convolution theorem, one immediately recovers from equations
(30) and (33) the Green’s integral representation (11) of the solution, corre-
sponding respectively to the following retarded Dirichelet and Neumann Green’s
functions:

GRD(x, t;x′, t′) = 2ni
L1··Ln

H(t− t′)
∞
∑

m1=1
· ·

∞
∑

mn=1
e−ih2(t−t′)

n
∏

l=1

sin(hlxl) sin(hlx
′
l),

GRN (x, t;x′, t′) = −i
L1··Ln

H(t− t′)
∑

m1∈Z
· ·

∑

mn∈Z
e−ih2(t−t′)

n
∏

l=1

cos(hlxl) cos(hlx
′
l).

(35)

In the case of semicompact domains the proper spectral transform generated
by the EbR approach has, in general, a continuous support. For instance, in
the Dirichelet problem for the Schrödinger equation on the n-Quadrant

V = {x ∈ Rn : xj ≥ 0, j = 1, .., n}, (36)
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the elimination operator E = ∆−, which restricts the definition domain to A′ =
Rn ⊗ Īq, leads to the continuous sine Fourier transform:

ϕ̃k,q(x, t) = (−2i)ne−iqt

n
∏

l=1

sin(klxl), ϕk,q(x, t) =
ei(k·x+qt)

(2π)n+1
,
∑

k,q

=

∫

R

dq

∫

Rn

dk

(37)
and to the continuous multidimensional sine-Fourier representation of the solu-
tion:

u(x, t) = −
∫

Rn+1
dqdk

(2π)n+1 e
i(k·x+qt) ∆−f̂(k,q)

q+k2−i0 +
∫

Rn
dk

(2π)n e
i(k·x−k2t)∆−û0(k)+

n
∑

j=1

∫

Rn−1

dkj

(2π)n−1

∫

γ

dkj

π
ei(k·x−k2t)kj∆

(j)
− v̂0j(kj ,−k2), (x, t) ∈ D.

(38)

From the above illustrative examples it appears that the EbR procedure in
Fourier space is very effective and, perhaps, simpler than the Green’s function
approach, which is its counterpart in configuration space. The comparison be-
tween these two methods of elimination in examples in which the GF approach
fails is postponed to a subsequent paper.

3 The Elimination-by-Restriction Approach:

The Nonlinear Case

In this section we turn our attention to IBV problems associated with nonlin-
ear evolution PDE’s which are integrable by the inverse scattering (spectral)
transform method. Because of the limited scope of this paper, we content our-
selves with illustrating our method of solution by considering, as a prototype,
the nonlinear Schrödinger (NLS) equation

iqt + qxx + c|q|2q = 0, q = q(x, t), (39)

where c is an arbitrary real parameter, but this method applies as well to other
1 + 1 dimensional soliton equations (f.i. to the Korteweg de Vries (KdV) equa-
tion). Moreover, we confine our treatment below to solutions of (39) in the first
quadrant of the (x, t) plane, namely on the semiline 0 ≤ x ≤ ∞ for t ≥ 0.
Besides the initial value q(x, 0) = q0(x), the boundary value which uniquely
specifies the solution is

f(t) = a1v(t) + a2w(t), t ≥ 0, (40)

where we have set
v(t) = q(0, t), w(t) = qx(0, t). (41)

Here a1 and a2 are given real constants and, if a2 = 0 (a1 = 0) this is the
Dirichelet (Neumann) BV problem. Thus the problem is that of constructing
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the solution q(x, t) of (39) when the initial value q0(x) and the boundary value
f(t) are given functions in an appropriate functional space (we may assume that
they are complex valued functions which rapidly decay as x → ∞ and t → ∞).

The key-property of the NLS equation (39) is that it is the integrability
condition for the following pair of 2 × 2 matrix linear Ordinary Differential
Equations (ODEs),

Ψx = (ikσ3 +Q)Ψ, Ψt = 2ik2[σ3,Ψ] +MΨ (42)

where σ3 = diag (1,−1) and

Q(x, t) =

(

0 −cq̄(x, t)
q(x, t) 0

)

, M(x, t, k) = 2kQ− iσ3Qx+ iQ2σ3. (43)

The solution Ψ(x, t, k) of these equations is defined by the asymptotic condition

Ψ(x, t, k)e−ikxσ3 → I, x → ∞ (44)

which uniquely defines the scattering matrix S(k, t) in the standard way, namely
as the boundary value

S(k, t) = Ψ(0, t, k). (45)

Well-known facts, which will be instrumental in the method below, are the
following. The matrix solution Ψ and, therefore (see (45)), the scattering matrix
S have unit determinant,

det Ψ(x, t, k) = det S(k, t) = 1. (46)

Moreover, the property

Q† = −CQC−1, C :=

(

1 0
0 c

)

(47)

of the matrix Q, see (43), induces the corresponding property

Ψ†(x, t, k) = CΨ−1(x, t, k̄)C−1, S†(k, t) = CS−1(k̄, t)C−1, (48)

on the Jost solution Ψ and on the scattering matrix S (the superscript † indicates
hermitian conjugation). As a consequence, it is convenient to parametrize the
matrix S by introducing the two functions α(k, t) and β(k, t) according to the
definition

S(k) =

(

α(k) −cβ̄(k̄)
β(k) ᾱ(k̄)

)

. (49)

As for the k-dependence (here the complex spectral variable k plays the same
role as the Fourier variable in the linear case), the functions α(k, t) and β(k, t)
turn out to be analytic in the UHP (Im k > 0) and to have there the asymptotic
behaviour

α(k, t) = 1 +O(k−1), β(k, t) = O(k−1), (50)
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for large |k|. Finally, we remind the reader that these analyticity properties of
α(k, t) and β(k, t) provide the way to solve the inverse problem, i.e. S(k, t) →
Q(x, t), for any fixed t ≥ 0; the basic equations of the inverse problem, which
are not reported here, read as either Cauchy-type integral equations in the k
variable or, equivalently, as Marchenko-type integral equation in the x-variable.

Let us now look at the time evolution. Here the real crux of the spectral
method appears in the evolution equation of the scattering matrix, see (42) and
(45),

St = 2ik2[σ3, S] + Z(k, t)S, (51)

since the matrix Z(k, t) has a separate dependence on both the boundary data
v(t) and w(t) (see (41)) according to the following expressions

Z(k, t) = 2kV (t)− iσ3W (t) + iV 2(t)σ3,
V (t) = Q(0, t), W (t) = Qx(0, t).

(52)

As a consequence, the evolution equation (51) cannot be immediately integrated
to yield the scattering matrix whose knowledge is essential to reconstruct Q(x, t)
via the solution of the inverse problem. Since only the boundary datum (40) is
given, in analogy with the elimination strategy of the linear case, we introduce
at this point the novel matrix

S̃(k, t) = A−1(k)S−1(−k, t)A(k)S(k, t), A(k) := a1I + 2ika2σ3, (53)

because of its two important properties. First, its determinant is unit (see (46))
and its asymptotic value as |k| → ∞ is the unit matrix:

det S̃(k, t) = 1, S̃(k, t) = I +O(k−1); (54)

second, it satisfies an evolution equation which contains only the given boundary
value (40), namely

S̃t = 2ik2[σ3, S̃] + 4kA−1(k)S−1(−k, t)F (t)S(k, t),

F (t) = a1V (t) + a2W (t) =

(

0 −cf̄(t)
f(t) 0

)

.
(55)

Though this is an important step, it does not yield the solution of our problem
since the unknown scattering matrix S(k, t) still appears in the evolution (55a).
Thus one has to find the way to relate S(k, t) and S̃(k, t) to each other. The
relation S(k, t) → S̃(k, t) is of course trivial as it is given by the definition (53)
itself. This relation yields the initial value S̃(k, 0) for the integration of the evo-
lution equation (55), i.e. Q(x, 0) → Ψ(x, 0, k) → S(k, 0) = Ψ(0, 0, k) → S̃(k, 0).
As for the inverse relation, S̃(k, t) → S(k, t), one has instead to set up a RH
problem, which finally leads to a Cauchy-type integral equation. Starting with
rewriting (53) in the form A(k)S(k, t) = S(−k, t)A(k)S̃(k, t), and noting that
the first column of S(k, t) in (49) is analytic in the UHP with the asymptotic be-
haviour (50), one can write down two coupled integral equations for α(k, t) and
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β(k, t) in terms of S̃(k, t) by going through the standard RH problem technique.
By assuming, just for the sake of simplicity, that no poles occur in the UHP,
and by substituting S̃(k, t) with its expression obtained by formally integrating
the evolution equation (55), one finally ends up with the two coupled nonlinear
integral equations

α(k, t) = 1 + c
2πi

∞
∫

−∞

dk′

k′−(k+i0)e
−4ik′2th(k′, t)β̄(k′, t),

β(k, t) = − 1
2πi

∞
∫

−∞

dk′

k′−(k+i0)e
−4ik′2th(k′, t)ᾱ(k′, t),

(56)

whose nonlinearity is due to the fact that the function h(k, t) depends itself on
the unknowns α(k, t) and β(k, t) through the integral (in t) relation

h(k, t) = {a(k)α0(k)β0(−k)− a(−k)α0(−k)β0(k)−

4k
t
∫

0

dt′e4ik
2t′ [f(t′)α(k, t′)α(−k, t′) + cf̄(t′)β(k, t′)β(−k, t′)]}/

{a(−k)α0(−k)ᾱ0(k) + ca(k)β0(−k)β̄0(k)−

−4kc
t
∫

0

dt′[f(t′)α(−k, t′)β̄(k, t′)− f̄(t′)ᾱ(k, t′)β(−k, t′)]},

(57)

where a(k) = a1+2ika2 and α0 and β0 are, respectively, the known initial values
α(k, 0) and β(k, 0).

The discussion of these, admittedly complicate, equations, and of their im-
plications in various directions is beyond the scope of this paper, and will be
reported elsewhere. Here we merely note that this formulation naturally sin-
gle out the so-called linearizable IBV problems, these being those for which
the boundary value f(t), see (40), vanishes: f(t) = 0. Indeed, in this case,
the kernel function h(k, t) (57) does not depend on the unknowns α(k, t) and
β(k, t), and the equations (56) become linear. As a side remark, we also note
that setting c = 0 eliminates the nonlinearity in all the formulae given above,
so that (39) becomes the linear Schrödinger equation and our equations (56),
(57) yield α(k, t) = 1 while β(k, t) coincides with the usual explicit expression
of the Fourier transform of the solution q(x, t).

Finally, we deem of interest to report here also an approach to the IBV
problem for the NLS equation (39) which is different from the one given above,
and yet equivalent as it eventually leads to the same equations (56) and (57).
The main feature of this approach is that the IBV problem is reformulated on
the whole line, i.e. for x ∈ (−∞,∞), and that the matrix S̃(k, t), as defined by
(53), acquires now a spectral meaning within the standard direct and inverse
problem associated with the Lax equation, say the first ODE in (42). The price
one pays to arrive at this more familiar formulation is that the nonlinear PDE
one has to solve now is the NLS equation with a inhomogeneous source term
rather than the NLS equation (39). This approach is briefly sketched here with
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two limitations which are merely dictated by the sake of simplicity; namely we
confine our treatment to the Dirichelet and Neumann BV problems and, second,
we assume that the spectral data at any time t ≥ 0 have no discrete spectrum
component.

The starting observation is that, if q(x, t) is a solution of the NLS equation
(39) for x ∈ (0,∞) and t ≥ 0, then the function

q̃(x, t) = q(x, t)H(x) − ηq(−x, t)H(−x), η = ±1, (58)

as defined for any real value of x, satisfies the PDE

iq̃t + q̃xx + 2c|q̃|2q̃ = (1 + η)v(t)δ′(x) + (1− η)w(t)δ(x). (59)

where δ(x) is the Dirac delta distribution, δ′(x) is its derivative and v, w are
defined in (41). Obviously, η = 1 (η = −1) is the appropriate choice when one
deals with the Dirichelet (Neumann) IBV problem.

As implied by the spectral method based on the Lax equations, it is conve-
nient to rewrite (58) and (59) in matrix form by introducing the 2×2 off-diagonal
matrix (see (43))

Q̃(x, t) = Q(x, t)H(x) − ηQ(−x, t)H(−x), η = ±1, (60)

and the PDE
iQ̃t − σ3(Q̃xx − 2Q̃3) = Σ(x, t) (61)

which is, of course, equivalent to (59) if the source term is (see (52b))

Σ(x, t) = −σ3[(1 + η)V (t)δ′(x) + (1− η)W (t)δ(x)]. (62)

The spectral approach to the equation (61) is based on the spectral equation

Ψ̃x = (ikσ3 + Q̃(x, t))Ψ̃, Ψ̃ = Ψ̃(x, t, k), (63)

and it is standard. The Jost solution Ψ̃ is defined by the asymptotic condition
(44), Ψ̃exp(−ikxσ3) → I, x → ∞, which readly provides its expression in terms
of the solution Ψ(x, t, k) introduced above on the semiline,

Ψ̃(x, t, k) = Ψ(x, t, k)H(x) + EΨ(−x, t,−k)ES̃(k, t)H(−x), (64)

where E = diag (1, η) and

S̃(k, t) = ES−1(−k, t)ES(k, t), (65)

is precisely the scattering matrix which is defined in the usual way, namely

Ψ̃(x, t, k) → eikxσ3 S̃(k, t), x → −∞. (66)
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At this point we note that this scattering matrix S̃(k, t) coincides with the
matrix (53) with a2 = 0 in the Dirichelet case (η = 1) and with a1 = 0 in the
Neumann case (η = −1).

It is common expedient now to introduce also the other Jost solution of (63),

Φ̃(x, t, k) = Ψ̃(x, t, k)S̃−1(k, t), (67)

and to take into account the identity

S̃t + 2ik2[S̃, σ3] = i

∞
∫

−∞

dxΦ̃−1(x, t, k)[iQ̃t − σ3(Q̃xx − 2Q̃3)]Ψ̃(x, t, k), (68)

which, together with the inhomogeneous PDE (61), entails the evolution equa-
tion for the scattering matrix,

S̃t = 2ik2[S̃, σ3] + i

∞
∫

−∞

dxΦ̃−1(x, t, k)Σ(x, t)Ψ̃(x, t, k). (69)

It is now easy to show that inserting in the integral in the RHS of this equation
the expressions (67), (64) and (62) yields precisely the evolution equation (55)
for the Dirichelet and Neumann IBV problems, say

S̃t = 2ik2[σ3, S̃]+2k(1+η)S−1(−k, t)V (t)S(k, t)−i(1−η)σ3S
−1(−k, t)W (t)S(k, t).

(70)
We end this paper remarking that a good side of the present approach, which
we will refer to as the “source-method”, is that one may take advantage of the
more traditional inverse scattering (spectral) technique on the whole line. In
particular, to investigate the large time behaviour of the solution q(x, t) of the
IBV problem since the asymptotic expression, if the boundary value rapidly
vanishes as t → ∞, are readly at hand in the usual spectral theory on the whole
line.

4 Literature

The classical idea of eliminating unknown boundary values from the represen-
tation of the solution is the essence of the Green’s function approach [1], which
makes essential use of the image method [2] to construct the proper Green’s
function which eliminates the unknown boundary values. The Elimination-by-
Restriction approach introduced here is a natural and effective implementation
of the elimination strategy in Fourier space. To the best of our knowledge this
method for linear PDEs has never been presented before.

An alternative method, which we term the Analyticity approach, is also
possible, and it is motivated by Fokas discovery of the global relation and of
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its use to solve IBV problems [3], [4], [5], [6], [7]. Our contribution to this
method consists in using systematically the analyticity properties of all the
Fourier transforms involved in (8), to derive a set of analyticity constraints
which allow one to express unknown boundary values in terms of known ones
and, in general, to study the unique solvability of IBV problems (see [8]).

Different approaches to deal with the problem of unknown boundary data
in the study of IBV problems for soliton equations have been developed during
the last few decades. In [9], Fokas introduced a nonlinear analogue of the sine
transform. In [10], Sabatier constructed an “elbow scattering” in the (x, t)-
plane to deal with the semiline problem for KdV, leading to a Gel’fand - Levitan
- Marchenko formulation. In [3, 4] a different approach, based on a simultaneous
x-t spectral transform, has been introduced by Fokas and rigorously developed
in [11, 12], to solve IBV problems for soliton equations on the semiline. It allows
one for a rigorous asymptotics [13] and captures in a natural way the known
cases [14] of linearizable boundary value problems. In [15] we have introduced
two alternative approaches to the study of IBV problems for soliton equations
on the segment and on the semiline. In the first method we expressed the
unknown boundary values in terms of elements of the scattering matrix S(k, t),
thus obtaining a nonlinear integro-differential evolution equation for S. In the
second method, which can be viewed as the nonlinear analogue of the EbR
approach developed in §2, we constructed the nonlinear evolution equation (55)
for S, which does not contain unknown boundary values and captures in a
natural way the case of linearizable IBV problems.

In some nongeneric cases of soliton equations corresponding to singular dis-
persion relations, like the stimulated Raman scattering (SRS) equations and the
sine Gordon (SG) equation in light-cone coordinates, the evolution equation of
the scattering matrix does not contain unknown boundary data. The SG equa-
tion on the semiline has been treated using the x-t spectral transform [3]; the
SRS and the SG equations on the semiline have also been treated using a more
traditional x- transform method respectively in [16] by Leon and Mikhailov and
in [17] by Leon and Spire; the x- spectral data used in this last approach satisfy
a nonlinear evolution equation of Riccati type.

Apart from the simultaneous x − t transform, all the above approaches are
based on the traditional IST [18]. The spectral formalism for studying forced
soliton equations has been developed by several authors, expecially in connection
to the theory of perturbations (see, for instance, [19]).

The results presented here in the nonlinear context are: i) the construction,
via the RH technique, of the closed form integral equation (56), (57) satisfied
by the elements of the scattering matrix. ii) The formulation of the Dirichelet
and Neumann IBV problems on the semiline for soliton equations as forced
initial value problems on the whole line. The equivalence between the semiline
and whole-line problems has been already used in [9], although the relevant
equations for the spectral data given there differ from those presented here.
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