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Dynamical tunneling in molecules: role of the classical resonances and chaos
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In this letter we study dynamical tunneling in highly excited symmetric molecules. The role of
classical phase space structures like resonances and chaos on the tunneling splittings are illustrated
using the water molecule as an example. It is argued that the enhancements in the splittings due to
resonances (near-integrable phase space) and due to chaos (mixed phase space) are best understood
away from the fluctuations associated with avoided crossings. In particular we provide an essential
difference between the two mechanisms in terms of high order perturbation theory. The analysis,
apart from testing the validity of a perturbative approach, suggests such systems as prime candidates
for studying dynamical tunneling.

The concept of dynamical tunneling emerged more
than two decades ago in the context of studying near de-
generate vibrational states of symmetric molecules. As
an example in the water molecule the symmetry of the
OH bonds implies that a state (n1 = 3, n2 = 0) which has
three quanta of excitation in one of the OH bond (n1 = 3)
and zero quanta of excitation in the other equivalent OH
bond (n2 = 0) is degenerate with the state (0, 3). The
two states are not coupled through any classical process
i.e., a classical trajectory started with initial conditions
corresponding to the state (3, 0) will remain localized in-
definitely without ever evolving to the part of the phase
space corresponding to the state (0, 3). However, Lawton
and Child[1] realized that a generalized form of tunneling
mixes the two degenerate states giving rise to a character-
istic splitting. In an influential work Davis and Heller[2]
refined and generalized the earlier observations and in-
troduced the term dynamical tunneling to distinguish it
from the usual tunneling through potential barriers in
coordinate space. One of the important outcomes of the
study was the suggestion that the underlying phase space
of the system is the proper setting to understand dynam-
ical tunneling.

In an apparently unrelated developement researchers
studying the problem of intramolecular energy redistri-
bution (IVR) discovered purely quantum energy flow be-
tween modes which would be otherwise uncoupled. A de-
tailed analysis by Hutchinson, Sibert and Hynes[3] estab-
lished that the mechanism for such clasically forbidden
energy flow between degenerate vibrational modes arose
from indirect state-to-state explorations involving a se-
quence of intermediate states. Important insights were
provided by Stuchebrukhov and Marcus[4] who estab-
lished that one could view dynamical tunneling as a high
order perturbative process involving a sequence of off-
resonance virtual states (“vibrational superexchange”).
Interestingly it was also shown that the perturbative ap-
proach to the tunneling splitting was related in a simple
way to the usual semiclassical JWKB solution.

Despite this important prior work the explicit demon-
stration of the role of various classical phase space struc-
tures in dynamical tunneling has only recently been es-

tablished. In particular the work of Bohigas, Tomsovic
and Ullmo[5] elucidating the role of chaos on dynamical
tunneling has led to a resurgence of interest in the field.
A key observation that emerged from numerous studies[6]
of chaos-assisted tunneling (CAT) is that such a process
necessarily requires atleast a three level mechanism. One
of the hallmarks of CAT has to do with erratic fluctua-
tions of the tunnel splittings with variations in energy or
system parameters. The fluctuations were explained on
the basis of a tunnel doublet, associated with regular re-
gions in the phase space, invoved in an avoided crossing
with a third state inhabiting the chaotic region of the
phase space.

However, very recently classical nonlinear resonances
in the near-integrable phase space regimes have also
been implicated to play a dominant role in dynamical
tunneling[7, 8]. This has been dubbed, in analogy with
CAT, as resonance-assisted tunneling (RAT) and studies
revealed that tunnel splitting fluctuations, possibily more
intense than in CAT, occur in near-integrable systems as
well due to crossing of the regular tunnel doublets with a
regular third state. The sheer richness of the phase space
perspective in dynamical tunneling is further exemplified
by the work of Frischat and Doron[9]. At present the con-
sensus regarding dynamical tunneling seems to be that
CAT and RAT are manifestations of the more general
phenomenon of transport-assisted tunneling[9].

The preceeding discussion makes it clear that splitting
fluctuations can occur in general nonintegrable systems
and tunneling can be ascribed to chaos or resonances de-
pending on the phase space nature of the third ’intruder’
state. It therefore seems natural to focus attention away
from the avoided crossings in order to gain insights into
the process[8]. The present work is concerned with the
study of dynamical tunneling in molecules from such a
perspective. An essential difference from the work of
Brodier, Schlagheck and Ullmo[8] is that the focus in
this work is entirely on a perturbative evaluation of the
splittings to quantitative accuracies. The splittings ∆ as-
sociated with the doublet states |i〉 and symmetry related
|f〉 are calculated by high order nondegenerate perturba-
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FIG. 1: State space and the location of the various resonances
for water with P = 8. The 2:2 zone has been supressed for
clarity. Two minimal perturbative paths Γ600 (open circles)
and Γ221 (filled circles) in state space are shown as examples.

tion theory involving the unperturbed states {αr} as

∆
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=
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∆Ei1∆Ei2 . . .∆Enf

, (1)

where V̂ (r) are the local perturbations that connect the

intermediate states through V
(r)
qr = 〈αq|V̂

(r)|αr〉 with
∆Eir = (Ei−Er). The sum over the intermediate states
can be viewed as a sum over paths in the state space and
the number of intermediate states is related to the length
of a path. The perturbative treatment is valid as long as

V
(r)
qr /2 << ∆Eir and hence the method cannot be used

to calculate splittings for states involved in avoided cross-
ings. In principle, an infinite number of high order per-
turbative chains (paths in state space) exist which con-
nect the two degenerate states. The hope has been that
perhaps a few such paths would dominate the dynami-
cal tunneling in the integrable and near-integrable cases.
In this work we show that even in near-integrable cases
there is no single dominant perturbative path. However,
it is possible to identify a certain family of perturbative
chains (“minimal paths” in state space) that are suffi-
cient to provide quantitative results. Parameteric varia-
tions tune the phase space from the near-integrable limit
to the mixed regime and it is observed that the mini-
mal paths are not sufficient anymore to reproduce the
splittings.
The purpose of this letter is to illustrate the observa-

tions above and accentuate the various mechanisms of
dynamical tunneling. The system of choice is the water
molecule which can be described by an effective spectro-
scopic Hamiltonian[10]

Ĥeff = Ĥ0 + gV̂
(12)
1:1 + γV̂

(12)
2:2 + β(V̂

(1b)
2:1 + V̂

(2b)
2:1 ), (2)

where Ĥ0 is diagonal in the number basis (n1, n2, nb) and
g, γ, β represent the strengths of the various perturba-
tions. The various parameters of Ĥeff are given in the

work of Baggott[10]. The zeroth order quantum numbers
(n1, n2, nb) represent the excitation quanta in the two,
equivalent OH-stretches and the bend mode respectively.
The perturbations V̂ are off-diagonal in the number basis
and have the form:

V̂ (ij)
m:n =

[
(âi)

n(â†j)
m + h.c.

]
(3)

where âi and â†i are the annhilation and creation op-
erators for the mode i. The resonant perturbations

V̂
(ij)
m:n are responsible for the exchange of quanta (energy)

between the modes i and j. Classical-quantum corre-
spondence studies[11] have established that the classi-

cal limit Hamiltonian corresponding to Ĥeff is nonlinear
and multiresonant. The location of the various resonance
zones[11] in state space are shown in Fig. (1). Note that
the previous studies[1, 4] on water correspond to inte-
grable phase space regimes.
Clearly Ĥeff is symmetric under n1 ↔ n2 and P ≡

n1 + n2 + nb/2 is a conserved quantity. Consequently

Ĥeff for a given P is of the order (P + 1)(P + 2)/2 mak-
ing the numerical investigations rather straightforward.
In addition Ĥeff exhibits a wide range of behaviour from
integrable to near-integrable to mixed classical dynam-
ics. Due to the exact C2v symmetry tunneling doublets
exist over the entire range of the classical dynamics. In
this work six tunneling doublets with P = 8, denoted by
|m,±m,nb〉 with m = n1 + n2 are studied. The labels
used for the states are appropriate in the absence of the
2:1 resonances. We will continue to use them for con-
venience keeping in mind that the actual assignments of
these states are different[11]. The energies of the states
approximately span the range [24256, 25574] cm−1 above
the ground state. For comparison the various resonant
strengths have the typical values β ≈ 27 cm−1, g ≈ −50
cm−1 and γ ≈ −1.0 cm−1.
Reperesentative phase space sections are shown in

Fig. (2) for the highest energy state among the dou-
blets considered. In Fig. (3) the doublet splittings, ∆m,
are shown for the various states |m,±m,nb〉. Note that
the states in Fig. (3) are not energy ordered and in par-
ticular the state |8,±8, 0〉 is lower in energy than the
state |5,±5, 6〉. The splittings for the integrable cases
(only 1:1 and 1:1+2:2) are shown in the inset to Fig. (3).
As expected[4] the splittings show a monotonic decrease
with increasing amount of stretch excitation and no fluc-
tuations are observed. Even within the integrable cases
it is relevant to note that the addition of the weak 2:2
results in a significant increase in ∆. High order per-
turbation calculation[4] essentially reproduces the split-
tings to quantitative accuracy as is apparent from the
inset in Fig. (3). Inclusion of the 2:1 stretch-bend reso-
nances renders the system nonintegrable and clear devia-
tions from the integrable cases are seen. In the main part
of Fig. (3) the splittings are shown as one proceeds from
near-integrable to the full, mixed scenario. The nature of
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FIG. 2: Poincaré surface of sections at energy corresponding
to the doublet |6,±6, 4〉. The action variable J = (I1 − I2)/2
and the conjugate angle variable φ = θ1 − θ2. (a) Integrable
1:1+2:2 (b) Near-integrable 2:1 (c) Near-integrable 2:1+2:2
and (d) full system. The 2:1 islands are centered at φ = 6π
and J ≈ ±3 while the 1:1 islands appear around J = 0. The
surface of section is symmetric with respect to reflection about
the J = 0 axis.

the underlying phase space clearly reflects the transition
from near-integrable to the mixed regime (cf. Fig. (2b-
d)). The main difference from the integrable case is the
nonmonotonic behaviour of ∆m. The intense fluctuations
for the state |7,±7, 2〉 are associated with its proximity to
an avoided crossing. The key observation here is that the
fluctuation due to avoided crossing is a robust feature and
persists in the full system. Indeed it has been confirmed
that in the 2:1 only case there is a strong doublet-doublet
crossing which transforms into a singlet-doublet crossing
in the full system and for the deuterated analog D2O a
similar calculation shows absence of fluctuations in the
full system despite the presence of significant chaos[12].
Thus it is crucial to shift the focus away from the fluc-
tuations to uncover the effect of chaos and resonances on
dynamical tunneling in the system.

In Fig. (3) the phenomenon of RAT is evident in going
from the 2:1 only system to the 2:1+2:2 system. The
enhancements of the splittings are even more dramatic
considering the fact that states with odd m do not split
at all if only the 2:2 resonance is present. Similarly the
enhancement of the splittings on going from the 2:1+2:2
to the full system can be ascribed to CAT. Note that the
enhancement due to CAT are typically an order of mag-
nitude smaller than those due to RAT as has been ear-
lier observed in the annular billiard studies[9]. A crucial
difference between CAT and RAT arises from the per-
turbative viewpoint. In order to highlight this difference
we begin by noting that the structure of the resonances
imply, in terms of order, β4 ∼ g2 ∼ γ. Hence a consis-
tent perturbative calculation of the splitting for the state
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FIG. 3: Dynamical tunneling splittings for the nonintegrable
cases. Squares (only 2:1), triangles (2:1+2:2), and the full
system (circles). The perturbative results (converged) using
minimal paths are shown by filled symbols. Mean level spac-
ings ≈ 100 cm−1. (Inset) Splittings for the integrable cases
of the 1:1 (squares) and 1:1+2:2 (triangles). The high order
perturbation results are shown as dashed and dotted lines
respectively. The full case is also shown for comparison.

|m,±m,nb〉 is obtained as:

∆m =
∑

a,b,c

βagbγc
∑

n

∆m(Γ
(n)
abc) (4)

where n indexes all possible paths Γabc for a particular
choice of a, b, c satisfying the constraint a+2b+4c= 2m.
It is clear that all possible paths have not been included in
the above calculation of ∆m. The paths included, called
minimal paths, are all of the effective order 2m. Ex-
amples of the minimal paths Γ600 and Γ221 relevant for
calculating ∆3 and ∆5 respectively are shown in Fig. (1).
One of the observations from this work is that for near-
integrable systems a particular family of the minimal
paths is dominant. In contrast, more than one family and
higher order paths are required in the presence of signifi-
cant chaos. As an example consider the case of ∆5. This
state is involved in a weak avoided crossing and hence
provides a stringent test for the nondegenerate pertur-
bation theory. In the near-integrable cases the family of
paths Γ1000, Γ202, and Γ601 are sufficient. Perturbative
calculations yield the splittings ∆5(Γ1000) = 6.1 × 10−5

cm−1 and ∆5(Γ202,601) = 7.2 × 10−3 cm−1 as com-
pared to the numerically exact values of 1.7× 10−5 and
6.2 × 10−3 cm−1 respectively. As mentioned earlier the
2:1 only system is less accurate due to the avoided cross-
ing. In the integrable cases the perturbative results
∆5(Γ050) ≈ 7.0× 10−2 and ∆5(Γ050,031,012) ≈ 0.23 cm−1

are in good agreement with the exact values of 6.7×10−2

and 0.23 cm−1 respectively. However, for the full system
neither the near-integrable nor the integrable families are
sufficient to reproduce the splitting (≈ 1.6 cm−1). In fact
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the families Γ430,Γ240,Γ221 play an important role and
yield a splitting of about 3.4 cm−1. For mixed systems,
in general, a large number of families in the minimal set
as well as higher order paths have to be included for
a quantitatively accurate calculation of ∆m. Thus, for
instance, a minimal path calculation of ∆6 yields a split-
ting which is about an order of magnitude large. The
correlation of the preceeding observation with increas-
ing amount of chaos in the phase space is an interesting
possibility[12]. As an example we mention that tuning
the parameter γ from about 1 → 4 cm−1 turns the near-
integrable 2 : 1 + 2 : 2 system into a mixed system.
The splitting ∆5 is seen to increase by about a factor of
22 whereas the minimal perturbative calculation predicts
an accelaration by a factor of 12. Clearly one anticipates
higher order paths to play a significant role in mixed sys-
tems.
In conclusion we have shown that molecular systems

with symmetry are prime candidates to study both chaos
and resonance assisted dynamical tunneling[13]. High
resolution spectroscopic studies of rovibrationally excited
states are typically analysed in terms of such effective
Hamiltonians[14]. The splitting patterns are crucial for
understanding the extent of IVR in the molecule and
hence the importance of dynamical tunneling[15]. This
work is the first one to perform a detailed analysis of the
possible mechanisms of dynamical tunneling in molecules
with the hope that both CAT and RAT can be experi-
mentally observed in the high resolution spectra. We
have argued that a clear distinction between CAT and
RAT can be established by focusing attention away from
the avoided crossings. In addition high order perturba-
tion theory, when valid, is quite successful in reproduc-
ing the tunnel splittings in the case of integrable and
near-integrable systems. A single family of perturbative
paths is sufficient but it is important to point out that
among the many individual paths possible there is no
single dominant path. For instance in the calculation
of ∆5 the family Γ1000 has 242 paths which come with
both positive and negative contributions and one needs
to sum over all the paths to obtain accurate splittings.
The indications are that more than one family of paths
including those of order larger than the minimal order is
needed as soon as there is a significant amount of chaos in
the system. The situation is reminiscent of the multistep

indirect paths invoked in the annular billiard studies[9].
This provides important clues to the underlying mech-
anism of dynamical tunneling in the system. However,
a semiclassical viewpoint on these perturbative minimal
paths would lead to better insights into the process of
dynamical tunneling from a phase space viewpoint.

It is a great pleasure to acknowledge Arul Lakshmi-
narayan for helpful and critical discussions. This work
was supported by funds from the Department of Science
and Technology and the Council for Scientific and Indus-
trial Research, India.

[1] R. T. Lawton and M. S. Child, Mol. Phys. 37, 1799
(1979).

[2] M. J. Davis and E. J. Heller, J. Chem. Phys. 75, 246
(1981).

[3] J. S. Hutchinson, E. L. Sibert III, and J. T. Hynes, J.
Chem. Phys. 81, 1314 (1984).

[4] A. A. Stuchebrukhov and R. A. Marcus, J. Chem.
Phys.98, 8443 (1993).

[5] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223,
43 (1993).

[6] Tunneling in Complex Systems, edited by S. Tomso-
vic (World Scientific, Singapore, 1998) and references
therein; W. A. Lin and L. E. Ballentine, Phys. Rev.
Lett. 65, 2927 (1990); R. Utermann, T. Dittrich, and
P. Hänggi, Phys. Rev. E 49, 273 (1994).

[7] R. Roncaglia, L. Bonci, F. M. Izrailev, B. J. West, and
P. Grigolini, Phys. Rev. Lett. 73, 802 (1994); L. Bonci,
A. Farusi, P. Grigolini, and R. Roncaglia, Phys. Rev. E
58, 5689 (1998).

[8] O. Brodier, P. Schlagheck, and D. Ullmo, Phys. Rev.
Lett. 87, 064101 (2001); O. Brodier, P. Schlagheck, and
D. Ullmo, arXiv:nlin.CD/0205054.

[9] E. Doron and S. D. Frischat, Phys. Rev. Lett. 75, 3661
(1995); S. D. Frischat and E. Doron, Phys. Rev. E 57,
1421 (1998).

[10] J. E. Baggott, Mol. Phys. 65, 739 (1988).
[11] S. Keshavamurthy and G. S. Ezra, J. Chem. Phys. 107,

156 (1997).
[12] S. Keshavamurthy, to be published.
[13] Chaos-assisted tunneling has also been implicated in a

molecule with internal rotation. See J. Ortigoso, Phys.
Rev. A 54, R2521 (1996).

[14] M. Gruebele, Adv. Chem. Phys. 114, 193 (2000); G. S.
Ezra, Adv. Class. Traj. Meth. 3, 35 (1998).

[15] E. J. Heller, J. Phys. Chem. 99, 2625 (1995).

http://arxiv.org/abs/nlin/0205054

