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Abstract

Cooperative effects of periodic force and noise in globally coupled sys-

tems are studied using a nonlinear diffusion equation for the number den-

sity. The amplitude of the order parameter oscillation is enhanced in an

intermediate range of noise strength for a globally coupled bistable sys-

tem, and the order parameter oscillation is entrained to the external peri-

odic force in an intermediate range of noise strength. These enhancement

phenomena of the response of the order parameter in the deterministic

equations are interpreted as stochastic resonance and stochastic synchro-

nization in globally coupled systems.

PACS: 05.40.+j, 05.70.Ln, 02.50-r

1 Introduction

Recently, various noise effects for nonlinear systems have been studied. In
stochastic resonance, the response of a bistable system or an excitable sys-
tem to a periodic force is enhanced with the addition of noise. The stochastic
resonance improves signal detection by the superposed noise [1, 2, 3]. Noise-
enhanced frequency locking is observed in stochastic bistable systems driven by
a relatively strong periodic force or a chaotic signal and phase diagrams similar
to the Arnold tongues are obtained [4, 5, 6]. Noise induced entrainment among
coupled oscillators is found experimentally in Belousov-Zhabotinsky reactions
and brain waves [7, 8]. Stochastic resonance has been studied also in globally
or locally coupled systems of many bistable elements and it was shown that
the coupling can lead to the enhancement of the response [9, 10, 11, 12]. Var-
ious types of Fokker-Planck equations have been used to study the stochastic
resonance theoretically.
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On the other hand, various types of collective dynamics in globally coupled
oscillators have been studied [13, 14]. Globally coupled phase oscillators un-
der external noises can be studied with a nonlinear diffusion equation for the
number density. The nonlinear diffusion equation is obtained from the mean
field approximation of the Fokker-Planck equation for the N oscillators, which
is considered to be correct in the globally coupled system in the limit N → ∞
[13]. The nonlinear diffusion equation for the globally coupled phase oscillators
can be transformed into coupled nonlinear equations for the Fourier amplitudes
of the number density. The numerical simulation of the coupled nonlinear equa-
tions for the Fourier modes is relatively easy. Various nonequilibrium phase
transitions were found in the globally coupled phase oscillators using the nu-
merical simulation of the coupled equations for the Fourier modes and their
bifurcation analysis [15].

In this paper, we study an extended model of the coupled phase oscilla-
tors, in which an external periodic force is added to the model studied in [15].
Each element may exhibit stochastic resonance and stochastic synchronization,
however, we study dynamical behaviors of the order parameter. The nonlinear
diffusion equation is a deterministic equation, and the stochastic behaviors for
each element are averaged out in the description of the order parameter. The
resonant response and the synchronization to a periodic force are more clearly
shown in this deterministic system.

2 Stochastic resonance in globally coupled bistable

systems

At first, we consider a globally coupled bistable system. Each phase oscillator
evolves according to an equation

dφ

dt
= −b sin 2φ− c sinω0t sinφ, (1)

where φ is the phase of the oscillator, b and c are positive constants, and ω0

is the frequency of the periodic force. There are two stationary solutions: φ =
0 and π. If the coefficient of the second term on the right-hand side is not
temporally periodic as c sinω0t but constant c0, the two solutions are bistable
for |c0| ≤ 2b. In that case, the dynamical system has a potential function
U(φ) = −b/2 cos2φ− c0 cosφ, and the solution φ = 0 has a lower potential for
c0 > 0 and a higher potential for c0 < 0 than the solution φ = π. A model of a
globally coupled system with a noise term is written as

dφi

dt
= −b sin 2φi − c sinω0t sinφi −

K

N

N
∑

j=1

sin(φi − φj) + ξi, (2)

where N is the total number of elements, and the second term on the right-hand
side represents the periodically forcing term and the third term represents mu-
tual coupling, and the last term represents Gaussian white noise characterized
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by
〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dδijδ(t− t′),

where D represents noise strength. The mean field treatment holds exactly in
the limit of N → ∞. The normalized number density defined by

n(φ, t) =
1

N

∑

m

∑

j

δ(φj − φ− 2πm)

obeys a nonlinear diffusion equation

∂

∂t
n(φ, t) = − ∂

∂φ

{

−b sin 2φ− c sinω0t sinφ−K

∫ π

−π

dφ′ sin(φ− φ′)n(φ′, t)

}

n(φ, t)

+D
∂2

∂φ2
n(φ, t) (3)

The 2π-periodic function n(φ, t) can be expanded as

n(φ, t) =
1

2π

∞
∑

m=−∞

ρm(t)eimφ

The nonlinear equation (3) is rewritten with coupled ordinary differential equa-
tions,

dρm
dt

= m{K/2(ρ1ρm−1−ρ−1ρm+1)+b/2(ρm−2−ρm+2)+c/2 sinω0t(ρm−1−ρm+1)}−Dm2ρm.

(4)
We have performed numerical simulation of Eq. (4) retaining the first 50 modes
with the Runge-Kutta method of timestep ∆t = 0.0001. The order parameter
is expressed as

σ = (1/N)

N
∑

j=1

eiφj =

∫ π

−π

dφeiφn(φ, t) = ρ−1(t) = ρ∗1.

In this model, the order parameter takes a real value, that is, Imρ1(t) = 0.
Figure 1 displays three time evolutions of σ(t) at D = 0.4, 0.57 and 1 for
b = 0.2, c = 0.05, ω0 = 0.3 and K = 1. The order parameter is regularly
oscillating with the frequency ω0 of the external force. The average value of
the order parameter takes a nonzero value at D = 0.4 and zero at D = 0.57
and 1. The amplitude of the periodic oscillation is maximum at D = 0.57. We
have calculated the average values 〈σ〉 of the order parameter and the temporal
fluctuations around the average value, 〈(δσ(t))2〉1/2, where δσ(t) = σ(t) − 〈σ〉.
The results are shown in Fig. 2. The average values of order parameters take
nonzero values for D < Dc ∼ 0.56. This is a kind of symmetry breaking phase
transition induced by noises. The amplitude of the periodic oscillation of the or-
der parameter takes a maximum near the phase transition point. The response
function to the periodic modulation becomes large in an intermediate range of
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Figure 1: Time evolutions of σ(t) by Eq. (4) at D = 0.4 (b) D = 0.57 and (c)
D = 1 for b = 0.2, c = 0.05, ω0 = 0.3 and K = 1.

noise strength. This is interpreted as a kind of stochastic resonance in this glob-
ally coupled bistable system. A phase transition in a globally coupled bistable
system without a periodic force and the enhancement of the susceptibility to
a weak periodic force was discussed in [9],[10]. We have found that a kind of
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Figure 2: (a) Average value 〈σ〉 of the order parameter and (b) the temporal
fluctuations 〈(δσ)2〉1/2 as a function of D for b = 0.2, c = 0.05, ω0 = 0.3 and
K = 1.

phase transition occurs even for nonzero amplitude of periodic modulation.
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3 Stochastic synchronization in globally coupled

phase oscillators

Next, we consider a globally coupled oscillator system. Each phase oscillator is
assumed to obey an equation

dφ

dt
= ω − (b+ c sinω0t) sinφ, (5)

where φ is the phase of the oscillator, ω, b and c are positive constants, and
ω0 is the frequency of the periodic force. If c = b = 0, this equation describes
a simple phase rotator, since the solution is φ = ωt, where ω is the natural
frequency. If c = 0, and b 6= 0 but b < ω, dφ/dt is not constant but always
takes a positive value, and this equation describes still a phase rotator. The
natural frequency of the oscillator is given by

√
ω2 − b2. When c = 0 and b < ω

but b is close to ω, the oscillator behaves like the relaxation oscillation (it may
be suitable to call it relaxation oscillation of phase), since the phase motion is
clearly separated into fast motion and very slow motion near φ = π/2 + 2nπ
(n is an integer). On the other hand, when ω < b and c = 0, the equation
has a stable stationary solution given by φ = sin−1(ω/b) and all trajectories
are attracted to the stable point. If c = 0, and b > ω but b is close to ω, the
system behaves like an excitable system, since one-cycle rotation is excited by
some small perturbation to the stationary state. The parameter b is a parameter
which determines a transition from an excitable system to an oscillatory system.
The threshold value is b = bc = ω. The parametric perturbation b + c sinω0t
implies that the threshold value is periodically modulated. It is known in an
experiment of light-sensitive Belousov-Zhabotinsky reaction that illumination
can control the threshold . The noise entrainment was observed by controlling
the illumination [7]. The periodic modulation in our model may be related to
such periodic modulation of the threshold value in experimental systems.

A model of a globally coupled system with a noise term is written as

dφi

dt
= ω − (b + c sinω0t) sinφi −

K

N

N
∑

j=1

sin(φi − φj) + ξi, (6)

where N is the total number of elements, and the third term represents mutual
coupling, and the last term represents Gaussian white noise characterized by

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dδijδ(t− t′).

A coupled phase oscillator model similar to this equation was studied by Kim et
al. [16]. In their model, time delay was further assumed. In their system with
time delay, there are multistable states, i.e., fast and slow synchronized states
and a desynchronized state. They studied noise induced transitions among the
multistable states in one oscillator system and a coupled system of 10 oscil-
lators. We do not consider such time delay effect and study the stochastic
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synchronization using a nonlinear diffusion equation for a coupled system in the
limit N → ∞. The normalized number density obeys

∂

∂t
n(φ, t) = − ∂

∂φ

{

ω − (b+ c sinω0t) sinφ−K

∫ π

−π

dφ′ sin(φ− φ′)n(φ′, t)

}

n(φ, t)

+D
∂2

∂φ2
n(φ, t) (7)

The corresponding coupled ordinary differential equations are written as

dρm
dt

= m{K/2(ρ1ρm−1−ρ−1ρm+1)+(b+c sinω0t)/2(ρm−1−ρm+1)}−(imω+Dm2)ρm.

(8)
We have performed numerical simulation of Eq. (8) retaining the first 50 modes
with the Runge-Kutta method of timestep ∆t = 0.0005. In this model, the
order parameter σ = ρ−1 is a complex variable. Figure 3 displays three time

Figure 3: Time evolutions of σ(t) by Eq. (8) at D = 0.04 (b) D = 0.08 and (c)
D = 0.12 for b = 1, c = 0.02, ω = 1.005, ω0 = 0.3 and K = 1.

evolutions of Reσ(t) at D = 0.04, 0.08 and 0.12 for ω = 1.005, K = 1, ω0 = 0.3
and c = 0.02. The order parameter is entrained to the external periodic force
at D = 0.08. However, the motion of the order parameter is not completely en-
trained to the periodic force at D = 0.04 and 0.12, and quasi-periodic motions
appear. Figure 4(a) displays the frequency ω̄ of the motion of the order param-
eter as a function of D for ω = 1.005, K = 1, b = 1ω0 = 0.3 and c = 0.02. The
frequency was calculated from the rotation number of (Reσ(t), Imσ(t)) around
the origin (0, 0). The frequency of the order parameter increases with the noise
strengthD. It can be understood from the dynamical behavior of each oscillator.
Each oscillator behaves like the relaxation oscillation and the phase motion be-
comes slow near φ = π/2+2nπ when D = 0, since ω ∼ b. An effect of noises is to
make the regular slow motion randomly faster, and then the average frequency
increases with the noise strength. The periodic modulation is further applied.
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Figure 4: (a) Frequency ω̄ of the order parameter oscillation vs. D for b =
1, c = 0.02, ω = 1.005, ω0 = 0.3 and K = 1. (b) Fourier amplitude A =

(1/T )|
∫ T

0
dtσ(t) exp(−iω0t)| vs. D. (c) Phase diagram for the entrainment in

K −D plane. The entrainment is observed in the parameter range surrounded
by two curves.

The frequency entrainment is observed between 0.058 < D < 0.094. This is a
kind of the stochastic synchronization, although the motion of the order param-
eter is not stochastic. Figure 4(b) displays the Fourier amplitude of the order

parameter motion with frequency ω0, that is, (1/T )|
∫ T

0
dtσ(t) exp(−iω0t)|. The

Fourier amplitude takes a maximum in the parameter range where the stochas-
tic synchronization is observed. Figure 4(c) displays a parameter region in the
K −D parameter space, in which the synchronization is observed. This phase
diagram seems to be the Arnold tongues discussed in [4-6], however, the ordi-
nate is not the amplitude c of the periodic forcing but the coupling constant
K, so the meaning is different. For a fixed value of noise strength, the coupling
constant also needs to take an intermediate value for the stochastic synchroniza-
tion to appear, as shown in this figure. Too large coupling constant makes the
distribution of the number density too narrow, and noise effects are effectively
reduced.

Even for a parameter range ω < b − c, in which each elemental system is
purely excitable without noises, noises can induce phase slips and the oscilla-
tion is observed on an average. When the periodic force is further applied, the
stochastic synchronization can occur. We have performed a numerical simula-
tion for ω = 0.97, b = 1, K = 2, ω0 = 0.3 and c = 0.02. Figure 5(a) displays
the frequency of the motion of the order parameter as a function of D. The
frequency entrainment is observed for 0.245 < D < 0.305. Figure 5(b) displays
the Fourier amplitude of the order parameter motion with frequency ω0 = 0.3.
The Fourier amplitude also has a maximum in an intermediate value of noise
strength.
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Figure 5: (a) Frequency ω̄ of the order parameter oscillation vs. D and (b)

Fourier amplitude A = (1/T )|
∫ T

0
dtσ(t) exp(−iω0t)| vs. D for b = 1, c =

0.02, ω = 0.97, ω0 = 0.3 and K = 2.

4 Summary

We have proposed globally coupled phase oscillator models and performed nu-
merical simulations of the corresponding nonlinear diffusion equations for the
number density. The response to the periodic force becomes large in an inter-
mediate range of noise strength. It can be interpreted as a stochastic resonance
or a stochastic synchronization, although the motion of the order parameter is
regular. We have shown numerical results for parametrically perturbed system,
but we have also studied an additively perturbed model:

dφi

dt
= ω − b sinφi + c sinω0t−

K

N

N
∑

j=1

sin(φi − φj) + ξi,

and another type of forced model:

dφi

dt
= ω − b sinφi − c sin(φi − ω0t)−

K

N

N
∑

j=1

sin(φi − φj) + ξi.

We have observed similar stochastic synchronization also in these systems. It
does not seem to depend on the detailed form of periodic forcing. The stochastic
synchronization may be found in many systems driven by noises and periodic
forcing, if the parameter for each element is near a transition point between an
excitable state and an oscillatory state.
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