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Abstract

Dirac deformation of Poisson operators of arbitrary rank is considered.

The question when Dirac reduction does not destroy linear Poisson pen-

cils is studied. A class of separability preserving Dirac reductions in the

corresponding quasi-bi-Hamiltonian systems of Benenti type is discussed.
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1 Introduction

Recently a new (quasi)-bi-Hamiltonian separability theory of Liouville integrable
finite dimensional systems was constructed [1]-[15] based on general properties
of Poisson pencils on manifolds. A natural further step within this theory is to
investigate admissible integrable and separable reductions of these integrable /
separable systems onto appropriate submanifolds. The most natural approach
seems to be the one based on the Dirac theory of constrained dynamics [16],[17].
The presented paper contains only some special cases of such reductions, but
even in these cases the problem is far from being trivial. The difficulties we met
during our research inclined us to reconsider the Dirac formalism from the point
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of view of Poisson bivectors rather then from the point of view of constrained
dynamics.

The paper is organized as follows. In this introductory part we remind ba-
sic concepts of Poisson geometry and of (quasi-)bi-Hamiltonian systems. In
Section 2 we formulate the theory of Dirac reductions of Poisson brackets in
terms of Poisson bivectors. Our construction is more general than usually met
in literature since we consider reduction procedure on the whole foliation of
submanifolds. Here we also explain that our approach indicates that Dirac
classification of constraints onto those of ”first” and of ”second class” requires
further discussion as our further results show. In Section 3 we review the re-
cent results on separability theory of quasi-bi-Hamiltonian systems of Benenti
type. In section 4 we perform Dirac reduction of Poisson pencil and corre-
sponding quasi-bi-Hamiltonian chain of Benenti type onto a particularly chosen
submanifold. Chosen constraints preserve the Liouville integrability as well as
the coordinates of separation of considered system. The main obstacle of such
a choice is that these constraints are nonexpressible in natural (original) coor-
dinates. Hence, in Section 5 we modify constraints introduced in the previous
section and obtain an equivalent reduction, that is expressible directly in origi-
nal coordinates. Finally, in Section 6 we illustrate the results by two nontrivial
examples of constrained separable dynamics.

Let us first remind few basic facts from Poisson geometry. Given a manifold
M, a Poisson operator π on M is a mapping π : T ∗M → TM that is fibre-
preserving (i.e. π|T∗

xM : T ∗
xM → TxM for any x ∈ M) and such that the

induced bracket on the space C∞(M) of all smooth real-valued functions on M

{., .}π : C∞(M) × C∞(M) → C∞(M) , {F,G}π
def
= 〈dF, π dG〉 (1)

(where 〈., .〉 is the dual map between TM and T ∗M) is skew-symmetric and sat-
isfies Jacobi identity (the bracket (1) always satisfies the Leibniz rule {F,GH}π =
G {F,H}π +H {F,G}π). Throughout the whole paper the symbol d will denote
the operator of exterior derivative. The operator π can always be interpreted
as a bivector, π ∈ Λ2(M) and in a given coordinate system (x1, . . . , xm) on M
we have

π =

m
∑

i<j

πij ∂

∂xi
∧

∂

∂xj
.

A function C : M → R is called Casimir function of the Poisson operator π
if for arbitrary function F : M → R we have {F,C}π = 0 (or, equivalently, if
πdC = 0). A linear combination πξ = π1−ξπ0 (ξ ∈ R) of two Poisson operators
π0 and π1 is called Poisson pencil if the operator πξ is Poisson for any value
of the parameter ξ. In this case we say that π0 and π1 are compatible. Given
a Poisson pencil πξ = π1 − ξπ0 we can often construct a sequence of vector
fields Yi on M that have a twofold Hamiltonian form (a so called bi-Hamiltonian
chain)

Yi = π1dhi = π0dhi+1 (2)

where hi : M → R are called Hamiltonians of the chain (2) and where i is
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some discrete index. This sequence of vector fields may or may not truncate
(depending on existence of Casimir functions). In the case when the Poisson
pencil πξ is degenerated but projectable into a symplectic leaf N (of dimension
2n) of π0 the bi-Hamiltonian chain (2) on M turns into a so called quasi-bi-
Hamiltonian chain on N of the form

θ1dHi = θ0dHi+1 +

n
∑

j=1

j 6=i+1

αijθ0dHj , i = 1, . . . , n, Hn+1 ≡ 0, (3)

where θi are projections of πi onto N , the functions Hj are restrictions of hj
to N : Hj = hj |N , and αij are some multipliers (real functions). And vice
versa: having a quasi-bi-Hamiltonian chain (3) on the manifold N one can
lift it to a bi-Hamiltonian chain (2) on the extended manifold M. (Quasi-)bi-
Hamiltonian chains (called also (quasi-)bi-Hamiltonian systems) possess very
interesting differential-algebraic properties and are one of key notions in the
theory of integrable systems, due to the fact that in many cases the systems
(2) and (3) are Liouville integrable [18]. Recently, much effort has been spent
in order to exploit the procedure of solving these systems by the method of
separation of variables [2]-[15]. In this article we will mainly work with the quasi-
bi-Hamiltonian chains (3) rather than bi-Hamiltonian ones, since the pencil
θξ = θ1 − ξθ0 is always non-degenerated.

2 Dirac reduction of Poisson bivectors

We begin by considering the Dirac reduction procedure in a more general setting
that is usually met in literature. Let π be a Poisson bivector, in general degen-
erated on some manifold M. Let S = F0 be a submanifold in a foliation F of
the manifold M defined by m functionally independent functions (constraints)
ϕi : M → R, i = 1, . . . ,m.

Fs = {x ∈M : ϕi(x) = si, i = 1, . . . ,m}

Thus, S is a submanifold of codimension m in M. Moreover, let Zi, i = 1, ...,m
be some vector fields transversal to Fs, spanning a regular distribution Z in M
of constant dimensionm (that is a smooth collection of m-dimensional subspaces
Zx ⊂ TxM at every point x in M). The word ’transversal’ means here that no
vector field Zi is at any point tangent to the submanifold Fs passing through
this point. Hence, the tangent bundle TM splits into a direct sum

TM = TF ⊕ Z

(which means that at any point x in M we have TxM = TxFs⊕Zx with s such
that x ∈ Fs ) and so does its dual

T ∗M = T ∗F ⊕ Z∗,

3



where T ∗F is the annihilator of Z and Z∗ is the annihilator of TF . That means
that if α is a one form in T ∗F then α(Zi) = 0 for all i = 1, . . . ,m and if β is
a one-form in Z∗ then β vanishes on all vector fields tangent to Fs. Moreover,
we assume that the vector fields Zi which span Z are chosen in such a way that
dϕi, i = 1, ...,m is a basis in Z∗ that is dual to the basis Zi of the distribution
Z,

〈dϕi, Zj〉 = Zj(ϕi) = δij , (4)

(this is no restriction since for any distribution Z transversal to Fs we can
choose its basis so that (4) is satisfied). Finally, let us define m vector fields Xi

on M and m2 functions ϕij : M → R on M through

Xi = π(dϕi), ϕij = {ϕi, ϕj}π = 〈dϕi, π dϕj〉 = Xj(ϕi). (5)

The functions ϕij define an m-dimensional skew-symmetric matrix ϕ = (ϕij) ,
i, j = 1, . . .m. It can be easily shown that

[Xj , Xi] = X{ϕi,ϕj}π
= π d{ϕi, ϕj}π = π dϕij , (6)

where {., .}π is a Poisson bracket defined by our Poisson bivector π and [X,Y ] =
LXY = X(Y )−Y (X) is the Lie bracket (commutator) of the vector fields X,Y .

A very special choice of our transversal vector fields Zi originates by taking
linear combinations of fields Xj with coefficients being the entries of the matrix
ϕ−1.

Zi =

m
∑

j=1

(ϕ−1)jiXj i = 1, ...,m. (7)

Since the constraint functions ϕi are functionally independent, the vector fields
Zi in (7) will indeed be transversal to the foliation F . Moreover, they will auto-
matically satisfy the orthogonality condition (4) as Zi(ϕj) =

∑m
k=1(ϕ−1)kiXk(ϕj)

=
∑m

k=1(ϕ−1)kiϕjk = δij .
Let us now consider the following deformation (modification) of the bivector

π:

πD = π − 1
2

m
∑

i=1

Xi ∧ Zi, (8)

where ∧ denotes the wedge product in the algebra of multivectors. This new
bi-vector πD can be properly restricted to Fs for any s ∈ R

m (and thus also to
S = F0), since the image of πD considered on a given leaf Fs of the foliation F
lies in TFs for all s. This is the content of the following theorem.

Theorem 1 Suppose x ∈ Fs. Then for any α ∈ T ∗
xM the vector πD(α) is

tangent to Fs i.e. πD(T ∗
xM) ⊂ TxFs.

Proof. We will show, that πD(dϕk) = 0, k = 1, ...,m, since it means that
the constraints ϕi, i = 1, ...,m are Casimirs of πD (and so are then ϕi − si)
which obviously implies the thesis of the theorem. Using the definition (8) of
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πD, the obvious fact that (Xi ∧ Zi)dϕk = (Xi ⊗ Zi)dϕk − (Zi ⊗ Xi)dϕk =
〈dϕk, Zi〉Xi − 〈dϕk, Xi〉Zi = Zi(ϕk)Xi −Xi(ϕk)Zi we have

πD(dϕk) = π(dϕk) − 1
2

∑

i

Zi(ϕk)Xi + 1
2

∑

i

Xi(ϕk)Zi

= Xk −
1
2

∑

i

δikXi + 1
2

∑

i,j

ϕki(ϕ
−1)jiXj

= Xk −
1
2Xk −

1
2

∑

i

δkiXi = 0

due to the fact that ϕij = −ϕji.

Theorem 2 The bivector πD in (8) with Zi as in (7) satisfies the Jacobi iden-
tity.

Proof. It is easy to check that our operator πD defines the following bracket
on M

{F,G}πD
= {F,G}π −

m
∑

i,j=1

{F, ϕi}π(ϕ−1)ij{ϕj , G}π, (9)

(where F,G : M → R are two arbitrary functions on M) which is just the well
known Dirac deformation [16] of the bracket {., .}π associated with π, and as
was shown by Dirac [17] it satisfies the Jacobi identity.

Remark 3 If C : M → R is a Casimir function of π, then it is also a Casimir
function of πD, since in this case (9) yields

{F,C}πD
= {F,C}π −

m
∑

i,j=1

{F, ϕi}π(ϕ−1)ij{ϕj , C}π = 0 − 0 = 0.

We also know from Theorem 1 that the constraints ϕi are Casimirs of the de-
formed operator πD. Thus, we can informally state that Dirac deformation
preserves all the old Casimir functions and introduces new Casimirs ϕi.

It is now possible to restrict our Poisson operator πD (or our Poisson bracket
{., .}πD

) to a Poisson operator (bracket) on the submanifold S (i.e. a symplectic
leaf ϕ1 = ... = ϕm = 0 of πD) in a standard way (reduction to a symplectic
leaf). Namely, for arbitrary functions f, g : S → R one defines the reduced
Dirac bracket {f, g}R on S (with the corresponding Poisson operator πR) as the
restriction of the bracket of arbitrary prolongations of f and g to M, i.e.

{f, g}R = {F,G}D|S

where F,G : M → R are two functions such that f = F |S and g = G|S .
Of course, an identical construction can be induced on any leaf Fs from the
foliation F . There arises, of course, a question how ’robust’ this construction
is, i.e. to what extent the obtained deformation πD and the reduction πR are
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independent of the choice of particular functions ϕi that define our submanifold
S. This issue will be partially addressed in next sections.

The results of this section as well as the results presented in Sections 4 and
5 suggest that the concept of the classification of constraints as being either
of ”first-class” or of ”second-class”, proposed by Dirac, should be reexamined
when one looks on the problem from the point of view of Poisson geometry.
First of all it is clear that the procedure called Dirac reduction has two different
levels. The first level we call Dirac deformation as we deform a Poisson bivector
π from manifold M to another Poisson bivector πD on the same manifold M.
A sufficient condition for the existence of πD for a given set of constraints ϕi,
i = 1, ...,m is a nondegeneracy of the Gram matrix ϕ. From the construction
all constraints ϕi are Casimirs of πD.The second level of the construction we
call Dirac restriction as we restrict a Poisson bivector πD to its symplectic leaf
Fs. In the original Dirac construction it was a particular one, namely F0 = S.
A Poisson bivector on Fs is denoted by πR. For the existence of the second
step additional restrictions on ϕi have to be imposed. Actually, πR has to
be nonsingular. In a standard classification it means that we have to exclude
constraints of first-class. Let us remind that a constraint ϕk is of first class if
its Poisson bracket with all the remaining constants ϕi vanishes on S, that is if

{ϕk, ϕi}π|S = 0, i = 1, ...,m. (10)

Otherwise ϕk is of second-class. In general, first-class constraints make πR sin-
gular so that the Dirac reduction procedure can not be performed. Nevertheless,
the condition (10) seems to be too strong. In sections 4 and 5 we demonstrate
situations where constraints are of first-class but the singularity is ’removable’
and so the Poisson bivector πR is well defined. It suggests that the classification
of constraints given by Dirac should be reformulated in the context of Poisson
pencils and Poisson geometry.

3 Separable quasi-bi-Hamiltonian chains of Be-

nenti type

In the following section we briefly remind basic facts about separable Hamilto-
nian systems on Riemannian manifolds, which form a special class of quasi-
bi-Hamiltonian chains [3],[11], known also as the so called Benenti systems
[21],[22]. Let (Q, g) be a Riemannian manifold with covariant metric tensor
g = (gij) and with the inverse (contravariant metric tensor) g−1 = G = (Gij).
Let (q1, ..., qn) be some coordinate system on Q and let (q1, ..., qn, p1, ..., pn) be
the corresponding canonical coordinates on the phase space N = T ∗Q with the
associated Poisson tensor

θ0 =

(

0n In
−In 0n

)

(11)

where In is n× n unit matrix and 0n is the n× n matrix with all entries equal
to zero. Let us consider the Hamiltonian E : N → R for the geodesic flow on
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Q:

E = E(q, p) =

n
∑

i,j=1

Gij(q)pipj . (12)

As it is known, a (1, 1)-type tensor B = (Bi
j) (or a (2, 0)-type tensor B =

(Bij)) is called a Killing tensor with respect to g if
{
∑

(BG)ijpipj , E
}

θ0
= 0

(or
{
∑

(B)ijpipj , E
}

θ0
= 0). An important generalization of this notion is

formulated in the following definition.

Definition 4 Let L = (Li
j) be a second order mixed type (i.e. (1, 1)-) tensor

on Q and let L : N →R be a function on N defined as L = 1
2

n
∑

i,j=1

(LG)ijpipj ,

where LG is a (1, 1) tensor with components (LG)ij =

n
∑

i,j=1

Li
kg

kj. If

{L,E}θ0 = αE, where α =

n
∑

i,j=1

Gij ∂f

∂qi
pj , f = Tr(L),

then L is called a special conformal Killing tensor with the associated potential
f = Tr(L) [11].

The importance of this notion lies in the fact that on manifolds with tensor
L the geodesic flows are separable. There exist, in this case, n constants of
motion, quadratic in momenta, of the form

Er =

n
∑

i,j=1

Aij
r pipj =

n
∑

i,j=1

(KrG)ijpipj , r = 1, ..., n, (13)

(KrG)ij =

n
∑

k=1

(Kr)
i
kG

kj

where Ar and Kr are Killing tensors of type (2, 0) and (1, 1), respectively. More-
over, all the Killing tensors Kr are given by the following ’cofactor’ formula

cof(ξI − L) =

n−1
∑

i=1

Kn−iξ
i, (14)

where cof(A) stands for the matrix of cofactors, so that cof(A)A = (detA)I.
Notice that K1 = I, hence A1 = G and E1 ≡ E. Since the tensorsKr are Killing,
with a common set of eigenfunctions, the functions Er satisfy {Es, Er}θ0 = 0
and thus they constitute a system of n constants of motion in involution with
respect to the Poisson structure θ0. So, for a given metric tensor g, the existence
of a special conformal Killing tensor L is a sufficient condition for the geodesic
flow on N to be a Liouville integrable Hamiltonian system.
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The special conformal Killing tensor L can be lifted from Q to a (1, 1)-type
tensor on N = T ∗Q where it takes the form

N =

(

L 0n
F LT

)

, F i
j =

∂

∂qi
(Lp)j −

∂

∂qj
(pTL)i. (15)

The lifted (1, 1) tensor N is called a recursion operator. An important property
of N is that when it acts on the canonical Poisson tensor θ0 it produces another
Poisson tensor

θ1 = Nθ0 =

(

0 L
−LT F

)

,

compatible with the canonical one (actually θ0 is compatible with Nkθ0 for any
integer k).

It is now possible to show that the geodesic Hamiltonians Er satisfy on
N = T ∗Q the set of relations

θ0dEr+1 = θ1dEr + ρrθ0dE1, En+1 = 0, r = 1, ..., n, (16)

where the functions ρr(q) are coefficients of the characteristic polynomial of
L (i.e. minimal polynomial of N), which is a special case of the quasi-bi-
Hamiltonian chain (3) [1].

It turns out that with the tensor L we can (generically) associate a coordinate
system on N in which the flows associated with all the functions Er separate.
Namely, let (λ1(q), ..., λn(q)) be n distinct, functionally independent eigenvalues
of L, i.e. solutions of the characteristic equation det(ξI−L) = 0. Solving these
relations with respect to q we get the transformation λ→ q

qi = αi(λ), i = 1, ..., n. (17)

The remaining part of the transformation to the separation coordinates can
be obtained as a canonical transformation reconstructed from the generating
function W (p, λ) =

∑

i piαi(λ) in the standard way by solving the implicit

relations µi = ∂W (p,λ)
∂λi with respect to pi obtaining pi = βi(λ, µ). In the (λ, µ)

coordinates, known as the Darboux-Nijenhuis coordinates (DN), the tensor L
is diagonal L = diag(λ1, ..., λn) ≡ Λn, while the Hamiltonians (13) of our quasi-
bi-Hamiltonian chain attain the form [3]

Er(λ, µ) = −
n
∑

i=1

∂ρr
∂λi

fi(λ
i)µ2

i

∆i

r = 1, ..., n,

where
∆i =

∏

k=1,...n, k 6=i

(λi − λk),

ρr(λ) are symmetric polynomials (Viéte polynomials) defined by the relation

det(ξI − Λ) = (ξ − λ1)(ξ − λ2)...(ξ − λn) =
n
∑

r=0

ρrξ
r, (18)

8



and where fi are arbitrary smooth functions of one real argument.

It turns out that there exists a sequence of generic separable potentials V
(k)
r ,

k ∈ Z, which can be added to geodesic Hamiltonians Er such that the new
Hamiltonians

Hr(q, p) = Er(q, p) + V (k)
r (q), r = 1, ..., n, (19)

are still separable in the same coordinates (λ, µ). These generic potentials are
given by some recursion relations [4],[10]. The Hamiltonians Hr : N → R in
(19) satisfy the following quasi-bi-Hamiltonian chain

θ0dHr+1 = θ1dHr + ρrθ0dH1, Hn+1 = 0, r = 1, ..., n. (20)

In the DN coordinates the Hamiltonians Hr attain the form [3]

Hr(λ, µ) = −
n
∑

i=1

∂ρr
∂λi

fi(λ
i)µ2

i + γi(λ
i)

∆i

, r = 1, ..., n, (21)

where potentials V
(k)
r enter Hr as γi(λ

i) = (λi)n+k−1. From (21) it immediately
follows that in (λ, µ) variables the contravariant metric tensor G and all the
Killing tensors Kr are diagonal

Gij =
fi(λ

i)

∆i

δij , (Kr)ij = −
∂ρr
∂λi

δij.

Moreover, in the (λ, µ) coordinates the recursion operator and the tensor θ1
attain the form

N =

(

Λn 0n
0n Λn

)

, θ1 =

(

0n Λn

−Λn 0n

)

while θ0 remains in the form (11) since the transformation (q, p) → (λ, µ) is
canonical.

The quasi-bi-Hamiltonian chain (20) on N can easily be lifted to a bi-
Hamitonian chain (2) on the extended manifold M = T ∗Q × R = N × R

[11].
Having such a complete picture of separable quasi-bi-Hamiltonian chains on

Riemannian manifolds, one can ask a question: what kind of holonomic con-
straints can be imposed on considered systems so that this quasi-bi-Hamiltonian
separability schema is preserved? The simplest admissible case of such con-
straints will be considered in the next sections.

4 Reduction λ
n = 0

Let us consider a particle moving in our Riemannian manifold Q equipped with
the coordinates (q1, ..., qn). Suppose that this particle is subordinated to some
holonomic constraints on Q defined by the set of relations

ϕk(q) = 0, k = 1, ..., r (22)

9



that define some submanifold of Q. The velocity v =
∑

i v
i ∂
∂qi

of this particle
must then remain tangent to this submanifold so that

0 = 〈dϕk, v〉 =

n
∑

i=1

∂ϕk

∂qi
vi.

and thus in our coordinates vi =
∑

j G
ijpj the motion of the particle in the

phase space N = T ∗Q is constrained not only by the r relations (22) but also
by the r relations

ϕr+k(q, p) ≡
n
∑

i,j=1

Gij(q)
∂ϕk(q)

∂qi
pj = 0, k = 1, ..., r. (23)

that are nothing else than the lift of (22) to N . We will call the constraints
(23) a g-consequence of the constraints (22), as they are natural differential
consequences of (22) at given metric tensor g. The constraints (22)-(23) define
a submanifold S of N of dimension n− 2r.

Let us now consider our quasi-bi-Hamiltonian chain (20) in N . We would
like to know what types of holonomic constraints (22) on Q do not destroy the
separability of the constrained chain? This is a complicated question and due
to its nature it is most convenient (for a moment) to consider it directly in
our separation coordinates (λ, µ). Thus, in this section we will analyze only
a very special choice of the functions ϕk in (22). Namely, we put r = 1 (so
that n − 2r = n − 2 which corresponds to m = 2 in Section 2) and define the
corresponding function ϕ′

1 in (λ, µ) variables as

ϕ′
1(λ) = λn (24)

Since the metric tensor G = (Gij) has in (λ, µ) coordinates the diagonal form
G = diag

(

fi(λ
i)/∆i

)

, i = 1, . . . , n and since the equation (23) has an invariant
form (i.e. in (λ, µ) coordinates it has the same form with q and p replaced by λ
and µ respectively) the g-consequence of (24) reads as

ϕ′
2(λ, µ) =

fn(λn)

∆n

µn (25)

(we use ′ here since soon we will modify the constraints (24)-(25) to a simpler
form). These two constraints define a subset S ′ = {ϕ′

1 = 0, ϕ′
2 = 0} of N . We

will however restrict us to a submanifold S = {λn = 0, µn = 0} neglecting the
term fn(λn)/∆n in ϕ′

2 (for ∆n 6= 0 S ⊂ S ′ and in case of the systems when fn
never vanishes S and S ′ coincide). The reason for this is that various calculations
with the help of these new constraints λn = 0, µn = 0 are simpler. Let us now
perform the Dirac reduction of our Poisson operators θ0 and θ1

θ0 =

(

0n In
−In 0n

)

, θ1 =

(

0n Λn

−Λn 0n

)

(26)

10



and of the corresponding quasi-bi-Hamiltonian chain (16) (geodesic case) or
(20) (potential case) on the submanifold S. We can do it either by using the
constraints (24)-(25) or by the constraints that directly describe S:

ϕ1(λ) ≡ λn = 0 , ϕ2(λ, µ) ≡ µn = 0 (27)

(of course ϕ1 ≡ ϕ′
1). It turns out that the corresponding Dirac deformations

(given by (8) or equivalently by (9)) θ0,D and θ′0,D of θ0 are not equal. Similarly,
θ1,D 6= θ′1,D. However, after reducing θ0,D and θ′0,D on S we obtain the same
Poisson operator (and similarly with θ1,D and θ′1,D).

Theorem 5 With the notation as above, the reduced operators θi,R and θ′i,R on
S satisfy θ′0,R = θ0,R and θ′1,R = θ1,R. If we parametrize S by the variables

(λ1, . . . , λn−1, µ1, . . . , µn−1) then

θ0,R =

(

0n−1 In−1

−In−1 0n−1

)

, θ1,R =

[

0n−1 Λn−1

−Λn−1 0n−1

]

(28)

with Λn−1 = diag(λ1, . . . , λn−1).

Proof. Let us start by calculating θ0,D. In this case the 2× 2 Gram matrix
ϕ = ({ϕi, ϕj}θ0) is of the form

ϕ =

[

0 1
−1 0

]

and thus according to (7) we have Z1 = X2 and Z2 = −X1. The formula (8)
yields

θ0,D = θ0 −X1 ∧X2 = θ0 −
∂

∂λn
∧

∂

∂µn

=

n−1
∑

i=1

∂

∂λi
∧

∂

∂µi

,

since X1 = θ0dϕ1 = −∂/∂µn and X2 = θ0dϕ2 = ∂/∂λn. So, in (λ, µ)
coordinates we have

θ0,D =









0n
In−1 0(n−1)×1

01×(n−1) 0
−In−1 0(n−1)×1

01×(n−1) 0
0n









(29)

The operator (29) has thus the n-th and the last column and the n-th and the
last row filled with zeros. These two rows and two columns of zeros correspond
to the fact (see Theorem 1) that the constraints ϕ1 = λn and ϕ2 = µn are
now Casimir functions for θ0,D. We can thus directly project θ0,D onto the
symplectic leaf S = {λn = µn = 0} of θ0,D by simply removing the two zero
columns and zero rows from (29), which yield the operator θ0,R that written in
coordinates (λ1, . . . λn−1, µ1, . . . µn−1) on S attains the form as in (28). Similar
computations show that in the case of θ1,D

ϕ =

[

0 λn

−λn 0

]

=

[

0 ϕ1

−ϕ1 0

]
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and thus (see (10)) ϕ1 and ϕ2 are first-class constraints. Indeed, following (7)
we have Z1 = 1

λnX2 and Z2 = − 1
λnX1 and the formula (8) yields

θ1,D = θ1 −
1

λn
X1 ∧X2

which seems to be singular on S. Nevertheless this singularity is ’removable’
since X1 = θ1dϕ1 = −λn∂/∂µn, X2 = θ1dϕ2 = λn∂/∂λn and hence

θ1,D = θ1 − λn
∂

∂λn
∧

∂

∂µn

=
n−1
∑

i=1

λi
∂

∂λi
∧

∂

∂µi

.

So, the matrix form of θ1,D in (λ, µ) coordinates becomes

θ1,D =









0n
Λn−1 0(n−1)×1

01×(n−1) 0
−Λn−1 0(n−1)×1

01×(n−1) 0
0n









and the projection of this operator onto the symplectic leaf S = {λn = µn = 0}
of θ1,D yields exactly θ1,R as in (28).

Passing to ϕ′
1, ϕ

′
2 notice that

ϕ′
12 = {ϕ′

1, ϕ
′
2}θ0 =

fn(λn)

∆n

,

so one can have a situation when ϕ′
12|S = 0 which again leads to first-class

constraints according to Dirac classification. Nevertheless, calculations similar
to these for ϕ1, ϕ2 show that singularities are again ’removable’ and we end up
with the same form of θ0,D and θ1,D.

Of course, the reduced operators θ0,R and θ1,R are compatible. Moreover, it
is easy to see that the Hamiltonians (21) restricted to S become

Hr,R(λ1, . . . λn−1, µ1, . . . µn−1)

= Hr|S = −
n−1
∑

i=1

∂ρr,R
∂λi

fi,R(λi)µ2
i + γi,R(λi)

∆i,R

, r = 1, ..., n− 1,

Hn,R = Hn|S = 0

where fi,R(λi) = fi(λ
i)/λi , γi,R(λi) = γi(λ

i)/λi, i = 1, . . . , n − 1 and ρr,R(λ)
are Viéte polynomials of dimension n − 1. Having all this is mind, we can
formulate the following corollary.

Corollary 6 Both Dirac reductions (24)-(25) and (27) of the quasi-bi-Hamiltonian
system (20) onto S lead to the same quasi-bi-Hamiltonian system of the form

θ0,RdHr+1,R = θ1,RdHr,R + ρr,Rθ0,RdH1,R, Hn,R = 0, r = 1, ..., n− 1.

which is thus separable in the variables (λ1, . . . λn−1, µ1, . . . µn−1) that coincide
on S with ’first’ n− 2 separation coordinates from our coordinate system (λ, µ)
that separates (20).
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Because the reduced quasi-bi-Hamiltonian chain has exactly the form (20),
it can be put into a bi-Hamiltonian chain on S×R.

Of course this procedure of Dirac reduction, in principle could be performed
directly in (q, p) coordinates, since the formula (8) has a tensor character and
thus yields the same result no matter what coordinate system we choose for
actual calculating of deformations θ0,D and θ1,D. There is however a major
obstacle here: we are usually not able to express the constraint λn = 0 in
’physical’ coordinates (q, p), as equations (17) are noninvertible in general, i.e.
there is no algebraic way of solving them with respect to λ (if we could, then the
second constraint (25) could be computed as the g-consequence of the first one
calculated directly in (q, p) coordinates, with the help of (23)). Thus, although
the picture presented in this section is clear, nevertheless it is somehow useless
once we are given the quasi-bi-Hamiltonian chain in natural (q, p) coordinates.
In the next section we will demonstrate how this problem can be defused by the
use of the so called Hankel-Frobenius coordinates.

5 Reduction in Hankel-Frobenius coordinates

As it was demonstrated in the previous section, the constraints ϕ1 = λn, ϕ2 =
µn preserve the separability on the constrained submanifold S but are very
inconvenient to handle with, as in general we do not know how to express them
in the original coordinates (q, p). More convenient for this purpose is the set
of so called Hankel-Frobenius coordinates (ρi, vi)

n
i=1 [24],[25]. They are non-

canonical coordinates, related to the separated coordinates in the following way

ρi = ρi(λ), i = 1, ..., n,

vi =
∑

j

(V −1
n )ijµj =

∑

k

∂ρi
∂λk

1

∆k

µk, i = 1, ..., n, (30)

where

Vn =







(λ1)n−1 · · · λ1 1
...

...
...

...
(λn)n−1 · · · λn 1







is a Vandermonde matrix and ρi are Viéte polynomials (18). The mapping (30)
is not a point transformation on Q and therefore it makes no sense to distinguish
covariant and contravariant indices now. Applying the map (30) we obtain the
form of operators θ0 and θ1 and the 2n-dimensional recursion operator Nn (15)
in (ρ, v) coordinates:

θ0 =

(

0 Un

−Un 0

)

, Un =











0 0 · · · 1
0 · · · 1 ρ1
... · · · · · ·

...
1 ρ1 · · · ρn−1











, (31)

θ1 = Nnθ0 =

(

0 FnUn

−FnUn 0

)

, FnUn = UnF
T
n . (32)
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Nn =

(

Fn 0
0 Fn

)

, Fn =















−ρ1 1 · · · · · · 0
−ρ2 0 1 · · · 0

...
...

...
−ρn−1 0 · · · · · · 1
−ρn 0 · · · · · · 0















.

We will now consider yet another deformation (8) of θ0 and θ1, given in (λ, µ)
variables by the constraints

ϕ′′
1 = ρn(λ) = (−1)nλ1λ2 · · ·λn (33)

ϕ′′
2 = vn(λ) = (−1)n

n
∑

j=1

µj

∆j

λ1λ2 · · ·λj−1λj+1 · · ·λn

equal to last pair of Hankel-Frobenius coordinates. The constraints (33) are
related with the constraints (27) as

ϕ′′
1 = ψ1ϕ1 (34)

ϕ′′
2 = ψ2ϕ1 + ψ3ϕ2

where the functions

ψ1 = (−1)nλ1λ2 · · ·λn−1

ψ2 = (−1)n
n−1
∑

j=1

µj

∆j

λ1λ2 · · ·λj−1λj+1 · · ·λn−1

and ψ3 = (−1)nλ1λ2 · · ·λn−1/∆n never vanish at S = {ϕ1 = ϕ2 = 0} (in fact,
ψ2|S = −1 and ψ3|S = −(µ1 + . . .+µn−1) ) and thus the constraints (33) define
(locally) the same submanifold S as the constraints (27). The corresponding
deformations θ′′0,D and θ′′1,D of θ0 and θ1 will of course not be equal to θ0,D and
θ1,D, but again it turns out that their reductions on S will coincide with the
corresponding reductions of θ0,D and θ1,D on S.

Theorem 7 In the notation as above, θ′′0,R = θ0,R and θ′′0,R = θ0,R

Proof. We will use (9) rather than (8) since it turns out that the calculations
are in this case simpler when one uses bracket definition of Dirac deformation
than bivector definition. Applying (9), we easily get that for any two functions
A,B : N → R

{A,B}θ0,D = {A,B}θ0 +
{A,ϕ2}θ0 {B,ϕ1}θ0 − {A,ϕ1}θ0 {B,ϕ2}θ0

{ϕ1, ϕ2}θ0

where of course {ϕ1, ϕ2}θ0 = 1 and so it does not vanish on S. Similarly

{A,B}θ′′

0,D
= {A,B}θ0 +

{A,ϕ′′
2}θ0 {B,ϕ

′′
1}θ0 − {A,ϕ′′

1}θ0 {B,ϕ
′′
2}θ0

{ϕ′′
1 , ϕ

′′
2}θ0

. (35)
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Using the relations (34) between the deformed constraints ϕ′′
i and the original

constraints ϕi, the Leibniz property of Poisson brackets and the fact that ψ1

and ψ3 depend only on λ, we obtain

{ϕ′′
1 , ϕ

′′
2}θ0 = ψ1ϕ1 {ϕ1, ψ2}θ0 + ϕ2

1 {ψ1, ψ2}θ0 +

+ ψ1ψ3 {ϕ1, ϕ2}θ0 + ϕ1ϕ2 {ψ1, ψ3}θ0,

so that {ϕ′′
1 , ϕ

′′
2}θ0 |S = ψ1ψ3 {ϕ1, ϕ2}θ0 |S = ψ1ψ3|S . Similar calculations show

that
(

{A,ϕ′′
2}θ0 {B,ϕ

′′
1}θ0 − {A,ϕ′′

1}θ0 {B,ϕ
′′
2}θ0

)∣

∣

S

= ψ1ψ3

(

{A,ϕ2}θ0 {B,ϕ1}θ0 − {A,ϕ1}θ0 {B,ϕ2}θ0
)∣

∣

S

and thus the factors ψ1ψ3 in the numerator and in the denominator of (35)
cancel and we conclude that

{A,B}θ′′

0,D

∣

∣

∣

S
= {A,B}θ0,D

∣

∣

∣

S

which is the same as to claim that θ′′0,R = θ0,R. The proof that θ′′1,R = θ1,R is
similar: first one shows that

{ϕ′′
1 , ϕ

′′
2}θ1 |S = ψ1ψ3 {ϕ1, ϕ2}θ1 |S = ψ1ψ3|S λ

n

which is by the way equal to zero on S. However , we also get
(

{A,ϕ′′
2}θ1 {B,ϕ

′′
1}θ1 − {A,ϕ′′

1}θ1 {B,ϕ
′′
2}θ1

)∣

∣

S

= ψ1ψ3

(

{A,ϕ2}θ1 {B,ϕ1}θ1 − {A,ϕ1}θ1 {B,ϕ2}θ1
)∣

∣

S

so that on S

{A,B}′′θ1,D

∣

∣

∣

S
= {A,B}θ1

∣

∣

S
+
ψ1ψ3

(

{A,ϕ2}θ1 {B,ϕ1}θ1 − {A,ϕ1}θ1 {B,ϕ2}θ1
)

ψ1ψ3 {ϕ1, ϕ2}θ1

∣

∣

∣

∣

∣

S

= {A,B}θ1
∣

∣

S
+

{A,ϕ2}θ1 {B,ϕ1}θ1 − {A,ϕ1}θ1 {B,ϕ2}θ1
λn

∣

∣

∣

∣

S

= {A,B}θ1,D

∣

∣

∣

S

since the term λn in the last expression does not cause any singularity: for
every possible combination A,B = λi, µj the numerator in the above expression
is either zero or some multiple of λn. This proves that θ′′1,R = θ1,R.

Before we proceed with the main theme of this article, let us make a digres-
sion: we will establish the form of θ0,R and θ1,R in (ρ, v)-coordinates.

Lemma 8 In (ρ, v)-coordinates we have

θ0,R = (Nn−1)−1

(

0 Un−1

−Un−1 0

)

=

(

0n−1 (Fn−1)
−1
Un−1

− (Fn−1)
−1
Un−1 0n−1

)

θ1,R =

(

0 Un−1

−Un−1 0

)
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This lemma can be proved either by direct calculating of the deformation
formula (8) in (ρ, v)-coordinates or by transforming both θ0,R and θ1,R with
the map that is the restriction of the map (30) to S. This restricted map has
no longer the form (30) and this is why the operators θ0,R and θ1,R does not
transform respectively to the operators of the form (31) and (32) with n replaced
by n− 1.

Having established Theorem 7 we can now, for a given (quasi)-bi-Hamiltonian
system (20), perform the Dirac reduction λn = µn = 0 directly in physical coor-
dinates (q, p) by performing the equivalent reduction ρn = vn = 0 provided that
we are able to express the constraints (33) directly in physical coordinates. The
first of the constraints in (33), i.e. ρn = 0 is given directly in (q, p) coordinates
once the system (16) has been given (this is the reason for which we consider
this constraint and Hankel-Frobenius coordinates). Below we shall show how to
express the second constraint (vn = 0) in physical coordinates.

Let us first observe that in case of systems for which fi(λ
i) = const (that

does not depend on i) the constraint vn = 0 calculated in (λ, µ) coordinates is
just the g-consequence of the first one (ρn = 0) , so that in this particular case
we can easily get the function φ′′2 (q, p) by calculating the expression (23) with
an appropriate metric tensor g that can be found in h1. When the functions fi
are more complicated, we must proceed differently.

Theorem 9 Assume that fi(λ
i) = f(λi), i.e. that the functions fi do not

depend on i. Let also F be the matrix given by (32). Then the coordinates vi
expressed in (q, p) coordinates have the following form

vi(q, p) =

n
∑

j=1





(

f(F )−1
)

ij

n
∑

k,l=1

Gkl(q)
∂ρj
∂qk

pl



 (36)

with F being expressed in q.

Proof. Let us expand the function f in a formal Laurent series

f(λ) =
∑

m

amλ
m , am ∈ R , m ∈ Zf ⊂ Z. (37)

Let also v′k , k = 1, . . . , n be the g-consequence of ρk so that

v′k(λ, µ) =

n
∑

i=1

fi
∆i

∂ρk
∂λi

µi and v′k(q, p) =

n
∑

i,j=1

Gij(q)
∂ρk
∂qi

pj. (38)

Setting µ = (µ1, . . . , µn)T , v = (v1, . . . , vn)T , v′ = (v′1, . . . , v
′
n)T and using the

fact (30) that µ = V v (where V is the Vandermonde matrix) we easily obtain
that

v′ = V −1 diag(f(λ1), . . . , f(λn))V v

Moreover, from the transformation between (λ, µ) and (ρ, v) coordinates one
finds that

V −1ΛmV = U(FT )mU−1 = Fm.
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so that due to (37)

v′ = V −1
∑

m

am diag
(

(λ1)m, . . . , (λn)m
)

V v = V −1

(

∑

m

am Λm

)

V v

=

(

∑

m

am V −1ΛmV

)

v =

(

∑

m

amF
m

)

v = f(F )v.

This relation is valid in every coordinate system and thus v(q, p) = f(F (q))v′(q, p)
which due to (38) yields (36).

In case when the assumption of the theorem is not satisfied, we can not
express vn in (q, p) variables using the method presented in the proof. Since in
practice this situation is very rare, we choose not to discuss it in this article.
Notice that if f = const then f(F ) = const I and the formula (36) for vn reduces
to the g-consequence of ρn, as it should be.

Remark 10 One can ask the question why, in the case of f 6= const, instead of
taking ϕ′′

2 = νn as above, we do not choose ϕ′′
2 to be simply the g-consequence of

ϕ′′
1 = ρn, as both pairs of constraints describe the same S. The answer is due to

one of the fundamental observations of presented paper, mentioned at the end
of section 2. Actually, a constrained submanifold S can be defined by infinitely
many different pairs of constraints, all of them of the first class according to
the classical Dirac classification. That is, either the Gram matrix is singular:
{ϕ′′

1 , ϕ
′′
2}θ = 0, or {ϕ′′

1 , ϕ
′′
2}θ |S = 0, for one or both θi, hence, in principle, there

is no Dirac deformation θi,D or the restriction of θi,D on S is not possible.
However, among all these pairs of constraints, there are exceptional pairs, like
(λn, µn) or (ρn, νn), for which singularities are ’removable’ and Dirac restricted
Poisson pencil is nonsingular. So in fact, these particular constraints have to
be considered as second order constraints.

Notice also that in order to determine the constraint vn from (36) we have
first to find the function f for example from E1, written in (λ, µ) coordinates.
So in practice, we cannot avoid the calculation of separation coordinates, and
this is the price we have to pay. Nevertheless, in general, it is not difficult to
find the transformation (17) and then the geodesic Hamiltonian E1(λ, µ) for the
original system. Also, one has to bear in mind that even though the reduction
procedure looks trivial in (λ, µ)-coordinates, it is usually not possible to express
the obtained reduced system back in (q, p)-coordinates since our Hamiltonians
Er,R have different function f than the Hamiltonians Er. That is why we had
to use Hankel-Frobenius coordinates.

6 Examples

In this chapter we will illustrate the introduced ideas by two examples. In
our first example of Dirac reductions of separable systems we will consider the
so called first Newton representation of the seventh-order stationary flow of
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the KdV hierarchy [26],[2]. It is a Lagrangian system of second order Newton
equations

q1,tt = −10(q1)2 + 4q2

q2,tt = −16q1q2 + 10(q1)3 + 4q3

q3,tt = −20q1q3 − 8(q2)2 + 30(q1)2q2 − 15(q1)4 + c

(where the subscript , t denotes the differentiation with respect to the evolu-
tion parameter t ∈ R). The above system can be represented as a quasi-bi-
Hamiltonian system on N belonging to a quasi-bi-Hamiltonian chain of the
form (20) with n = 3, with Hamiltonians

H1 = p1p3 + 1
2p

2
2 + 10(q1)2q3 − 4q2q3 + 8q1(q2)2 − 10(q1)3q2 + 3(q1)5 (39)

H2 = 1
2q

3p23 −
1
2q

1p22 + 1
2q

2p2p3 −
1
2p1p2 −

1
2q

1p1p3 + 2(q1)2(q2)2 + 5
2 (q1)4q2

− 5
4 (q1)6 − 2(q2)3 + (q3)2 − 6q1q2q3 (40)

H3 = 1
8 (q2)2p23 + 1

8 (q1)2p22 + 1
8p

2
1 + 1

4q
1p1p2 + 1

4q
2p1p3 −

1
4q

1q2p2p3

− 1
2q

3p2p3 − 3(q1)3(q2)2 + q1(q2)3 + 5
4 (q1)5q2 + 2q1(q3)2

+ 5
4 (q1)4q3 + (q2)2q3 − (q1)2q2q3

with the corresponding canonical operator θ0 (11) and θ1 of the form

θ1 =
1

2

















0 0 0 q1 −1 0
0 0 0 q2 0 −1
0 0 0 2q3 q2 q1

−q1 −q2 −2q3 0 p2 p3
1 0 −q2 −p2 0 0
0 1 −q1 −p3 0 0

















.

and with ρ1 = −q1, ρ2 = 1
4 (q1)2 + 1

2q
2, ρ3 = − 1

4q
1q2 − 1

4q
3.

From the form of H1 one can directly see that the inverse metric tensor G
expressed in (q, p) variables has in this example an anti-diagonal form

G =
1

2





0 0 1
0 1 0
1 0 0



 (41)

while the conformal Killing tensor L has the form

L =
1

2





q1 −1 0
q2 0 −1
2q3 q2 q1





which substituted in (14) yields the geodesic parts of all the Hamiltonians (40).
Our quasi-bi-Hamiltonian system turns out to be separable in (λ, µ) coordinates
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defined as above and it turns out that in this case fi = 1/8 = const and
γi(λ

i) = 16(λi)7 in (21). Thus, we can easily find out the constraints ρ3 =
v3 = 0 directly in (q, p) coordinates. From the form of H3 in (40) one can
see that ϕ′′

1 = ρ3(q) = − 1
4 (q1q2 + q3) and that ϕ′′

2 = v3(q, p) is just the g-
consequence of ρ3. An easy computation of (23) with the use of (41) yields that
v3(q, p) = − 1

8 (p1 + p2q
1 + p3q

2). Performing the Dirac deformation (8) of θ0
and θ1 with the use of constraints ϕ′′

1 and ϕ′′
2 yields

θ0,D =
1

2q2 + (q1)2

















0 0 0
0 0 0
0 0 0

q2 + (q1)2 −q1 −1
−q1q2 2q2 −q1

−(q2)2 −q1q2 q2 + (q1)2

−∗T
0 q1p2 − q2p3 p2

q2p3 − q1p2 0 p3
−p2 −p3 0

















and

θ1,D =
1

2

















0 0 0 q1 −1 0
0 0 0 q2 0 −1
0 0 0 −2q1q2 q2 q1

−q1 −q2 2q1q2 0 p2 p3
1 0 −q2 −p2 0 0
0 1 −q1 −p3 0 0

















so that θ1,D differs from θ1 only at entries (3,4) and (4,3), where q3 was deformed
to −q1q2 (notice that on S indeed we have q3 = −q1q2). We will now pass to
the Casimir variables chosen as variables

(q1, q2, ϕ′′
1 (q), ϕ′′

2 (q, p), p2, p3) (42)

since due to the fact that it is easiest to eliminate q3 and p1 from the system of
equations ϕ′′

1 = ϕ′′
1(q), ϕ′′

2 = ϕ′′
2 (q, p) we will parametrize our submanifold by

the coordinates (q1, q2, p2, p3). In the variables (42) the operators θi,D attain
the form

θ0,D =
1

2q2 + (q1)2

















0 0 0 0 −q1 −1
0 0 0 0 2q2 −q1

0 0 0 0 0 0
0 0 0 0 0 0
q1 2q2 0 0 0 p3
1 q1 0 0 −p3 0

















and

θ1,D =
1

2

















0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

















respectively. Observe that in these new variables all the entries at third and
fourth rows and columns are zero, as it should be, since now the Casimirs ϕ′′

1
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and ϕ′′
2 are part of our coordinate system. We can now write down the reduced

operators θ0,R and θ1,R in variables (q1, q2, p2, p3) by simply removing the zero
rows and columns (we would also have to put ϕ′′

i = 0 but our matrices θi,D do
not contain any variables ϕ′′

i in their entries). This yields

θ0,R =
1

2q2 + (q1)2









0 0 −q1 −1
0 0 2q2 −q1

q1 −2q2 0 p3
1 q1 −p3 0









, θ1,R = −
1

2

[

02 I2
−I2 02

]

so that θ1,R attains in the variables (q1, q2, p2, p3) the canonical form. An easy
calculation yields that the Hamiltonians Hi restricted to S become

H1,R(q1, q2, p2, p3) = H1|S = −q1p2p3 + 1
2p

2
2 − q2p23 − 20(q1)3q2

+ 12q1(q2)2 + 3(q1)5

H2,R(q1, q2, p2, p3) = H2|S =
(

q2 + 1
2 (q1)2

)

p2p3 + 9(q1)2(q2)2

+ 5
2 (q1)4q2 − 5

4 (q1)6 − 2(q2)3

H3,R(q1, q2, p2, p3) = H3|S = 0

while the functions ρi,R are: ρ1,R = −q1, ρ2,R = 1
4 (q1)2 + 1

2q
2, ρ3,R = 0. Thus,

we have obtained on S a new separable quasi-bi-Hamiltonian system of the form
(20) with n = 2. This concludes our first example.

As a second example we will consider a separable (quasi)-bi-Hamiltonian
system with a non-trivial function f . More specifically, we shall consider a
Lagrangian system of second order Newton equations

q1,tt = 16q1(1 + q2)

q2,tt = 8(q1)2 + 4(q3)2 + 64q2 + 48(q2)2 + 4c+ 24

q3,tt = 4q3(3 + 4q2)

This system is a part of a quasi-bi-Hamiltonian chain with Hamiltonians

H1 = p21 + p22 + p23 − 4(q1)2(1 + q2) − (q3)2(3 + 4q2)

− 4
(

3q2 + 4(q2)2 + 2(q2)3
)

H2 = −
(

2q2 + 1
)

p21 + 2q1p1p2 − p22 + 2q3p2p3 − 2p23(q
2 + 1) (43)

− (q1)2
(

(q1)2 + 2(q3)2 + 4(q2)2 + 4q2 + 2
)

− (q3)2
(

(q3)2 + 4(q2)2 + 2q2
)

+ 8(q2)3 + 16(q2)2 + 12q2

H3 = −(q3)2p21 + 2q1q3p1p3 − 2q3p2p3 +
(

1 + 2q2 − (q1)2
)

p23

+
(

(q1)2 + 4(q2)2 + (q3)2 + 6q2 + 3
)

(q3)2,
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with the canonical Poisson tensors θ0 and

θ1 =

















0 0 0 1 q1 0
0 0 0 q1 2q2 + 1 q3

0 0 0 0 q3 0
−1 −q1 0 0 −p1 0
−q1 −2q2 − 1 −q3 p1 0 p3

0 −q3 0 0 −p3 0

















and with the functions

ρ1(q) = −2(q2 + 1) , ρ2(q) = 1 − (q3)2 − (q1)2 + 2q2 , ρ3(q) = (q3)2

The above system is a particular example of so called bi-cofactor systems [27],
[28], [23], [29], [30] separated recently in [15]. In Darboux-Nijenhuis coordinates
(λ, µ) it turns out that now f(λi) = 4λi(λi − 1) and γi(λ

i) = (λi)5. This means
that in order to find the constraint ϕ′′

2(q, p) we have to use the formula (36) with
ϕ′′
1(q) = (q3)2. Plugging these functions into (36) and using the above forms of
G and F we get a rather complicated expression for ϕ′′

2

ϕ′′
2 (q, p) ≡ v3(q, p) =

1

4

(

p1
(q1)2 + (q3)2

q1
− p2 + p3

(

−q3 +
2q2 + (q1)2 − 1

q3

))

Notice that the constraint ϕ′′
2 seems to have a singularity on the surface ϕ′′

1 = 0.
However, it turns out that on the submanifold S = {ϕ1 = ϕ2 = 0} we have p3 =
0 and the singularity disappears (see below). Having obtained the constraints
ϕ′′
1 and ϕ′′

2 in (q, p) variables we now proceed as in the first example. First we
find

θ0,D =

















0 0 0 1 0 ζ1
0 0 0 0 1 ζ2
0 0 0 0 0 0
−1 0 0 0 0 ζ3
0 −1 0 0 0 ζ4

−ζ1 −ζ2 0 −ζ3 −ζ4 0

















(where ζi are some rational functions of q and p that do not vanish on S) and

θ1,D =





















0 0 0 1 (q3)2

q1
+ q1 0

0 0 0 q1 2q2 + 1 q3

0 0 0 0 0 0

−1 −q1 0 0 p1

(

(q3)2

(q1)2 − 1
)

0

− (q3)2

q1
− q1 −2q2 − 1 0 p1

(

1 − (q3)2

(q1)2

)

0 2p3

0 −q3 0 0 −2p3 0





















(notice that in both cases q3 is a Casimir function). It can be checked that the
Schouten bracket of θ0,D and θ1,D is equal to zero: [θ0,D , θ1,D]

S
= 0 so that
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the operators θ0,D and θ1,D are compatible. Before projecting θ0,D and θ1,D
onto S we perform a transformation of variables to Casimir variables

(q1, q2, ϕ′′
1 (q), p1, p2, ϕ

′′
2 (q, p)) (44)

since this time it is easier to eliminate q3 and p3 from the system of equations
ϕ′′
1 = ϕ′′

1 (q), ϕ′′
2 = ϕ′′

2(q, p). Explicitly we have

q3 = ±
√

ϕ′′
1 (45)

p3 =
√

ϕ′′
1

4ϕ′′
2q

1 + ϕ′′
1p1 + (q1)2p1 − q1p2

2q1q2 + q1 − q1ϕ′′
1 − (q1)3

As we have mentioned, we have now p3|S = 0. We will thus parametrize our
submanifold S by the coordinates (q1, q2, p1, p2). After expressing the operators
θi,D in the variables (44) with the help of relations (45) we can easily project
these operators on S. As the result we get a new (reduced) quasi-bi-Hamiltonian
chain of the form (20) with n = 2, which is the variables (q1, q2, p1, p2) is
determined by

θ0,R =

[

02 I2
I2 02

]

, θ1,R =









0 0 1 q1

0 0 q1 2q2 + 1
−1 −q1 0 −p1
−q1 −2q2 − 1 p1 0









and by the restricted Hamiltonians Hi

H1,R = H1|S = p21 + p22 − 4(q1)2(1 + q2) − 4
(

3q2 + 4(q2)2 + 2(q2)3
)

H2,R = H2|S = −(1 + 2q2)p21 + 2q1p1p2q − p22

− (q1)2
(

(q1)2 + 2(q3)2 + 4(q2)2 + 4q2 + 2
)

+ 8(q2)3 + 16(q2)2 + 12q2

H3,R = H3|S = 0

while the functions ρi,R are given by ρ1,R = −2c(q2 +1), ρ2,R = 1+2q2− (q1)2,
ρ3,R = 0.

Notice that when we take ϕ′′
2 (q, p) = 2q3p3, i.e. the differential consequence

of ϕ′′
1(q, p) = (q3)2, then {ϕ′′

1 , ϕ
′′
2}θ1 = 0 and the Dirac deformation θ1,D does

not exists (see Remark 10).

7 Conclusions

In this article we have focused on the problem of Dirac deformation and Dirac
reduction of Poisson operators and Poisson pencils. We have presented a proce-
dure of performing Dirac reduction in quasi-bi-Hamiltonian systems of Benenti
type that do not destroy the separability of these systems and that moreover
do not change the separation variables. The method presented is not, however,
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general in the sense that it does not provide us with all such reductions, but
only with their subclass. Moreover, for the moment the procedure works only
for those systems, for which the functions fi are all equal, i.e. when fi does not
depend on i. Last but not least, the presented procedure is valid only in case
when one of the Poisson structures of the system is canonical - the non-canonical
case must be studied separately. These issues will be addressed in a separate
paper.
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