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1 Introduction.

In this work we consider quadratic Hamiltonians of the form

H = (M,AM) + (M,Bγ) + (γ, Cγ) + (P,M) + (Q, γ). (1)

where M = (M1,M2,M3), γ = (γ1, γ2, γ3) and A,C are constant symmet-
ric matrices, B is a general constant matrix and P,Q are constant vectors.
Without loss of generality we choose

A = diag(a1, a2, a3). (2)
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The equations of motion are given by

dMi

dt
= {H,Mi},

dγi

dt
= {H, γi}

where Poisson brackets are defined by

{Mi,Mj} = εijk Mk, {Mi, γj} = εijk γk, {γi, γj} = 0 (3)

with εijk being the totally anti-symmetric tensor. These linear Poisson brack-
ets are related to the Lie algebra e(3).

Because they admit the two Casimir functions

J1 = (γ, γ), J2 = (γ,M) (4)

we need only one additional first integral for Liouville integrability [1]. In our
paper we restrict ourselves to polynomial first integrals. The relevance of the
combination of quadratic Hamiltonians (1) with Poisson brackets (3) arises
from the Euler-Poinsot model describing motion of a rigid body around a
fixed point under gravity and from the Kirchhoff model describing the motion
of a rigid body in ideal fluid [2, 3, 4].

In section 2 we give a list of known integrable quadratic Hamiltonians
with additional polynomial integrals of motion. Results of our search are
given in section 3.

It is known from literature that for pairwise non-equal a1, a2, a3 in (2) no
extra integrable cases besides those mentioned in section 2 exist. In addition
all Hamiltonians (1) with linear or quadratic first integral are known too.
Hamiltonians with cubic first integral are discussed in [7]. We therefore
study first integrals I of fourth degree and consider the case a1 = a2 6= a3.

The motivation for a systematic investigation of this ansatz arose from
the recent finding of V. Sokolov of a new integrable Hamiltonian of this form
with a fourth degree first integral. Our investigation is in so far more gen-
eral as we consider quadratic Hamiltonians with linear terms. Our complete
classification of this problem resulted in new integrable Hamiltonians with
complex coefficients. The simplest example of such a kind is

H = M2

1
+M2

2
+ 2M2

3
+ iM1 +M2

which commutes with some fourth degree polynomial under so(3)-brackets.
We also were inspired by the Goryachev-Chaplygin Hamiltonian [5, 6]

which admits a fourth degree integral exclusively on the Casimir level J2 = 0.
Unfortunately our complete classification did not result in new integrable
cases.

2



In section 4 we follow [17, 18] and consider the quantum counterpart

[Mi,Mj ] = εijk Mk, [Mi, γj] = εijk γk, [γi, γj] = 0 (5)

of the Poisson bracket (3). Here Mi, γj are elements of an associative algebra
with commutator relations (5). The Hamiltonian is a (non-commutative)
polynomial of second degree and first integrals are polynomials which com-
mute with the Hamiltonian. Also here we classify quadratic Hamiltonians
with linear terms having a fourth degree first integral and obeying the restric-
tion a1 = a2 6= a3. We find four cases, among them the quantum analogue
of the above mentioned integrable Hamiltonian of V. Sokolov.

In all three investigations an ansatz for the Hamiltonian and an ansatz for
a fourth degree polynomial were made, the Poisson bracket or commutator
were computed and set to zero, resulting in large non-linear over-determined
algebraic systems. Although they are linear in the coefficients of H and
linear in the coefficients of the first integral, the algebraic systems are still
very large (see table 1) and challenging to solve.

We used the computer algebra program Crack which was originally de-
signed to solve over-determined PDE-systems. But its interactive capabilities
allowed to solve large algebraic systems at first interactively and in doing so
to learn how to take advantage of the bi-linearity. Due to an ongoing effort
to generalize gathered experience and to incorporate it into the program it
is now able to solve large bi-linear systems, for example the first and third
system in table 1 automatically and the second system with only few man-
ual interactions. An overview of essential features of the program and other
applications requiring the solution of bi-linear systems is given in [7].

type of problem e(3) e(3), J2 = 0 e(3) quant.

# of unknowns (H ,I,total) 17,200,217 17,176,193 17,200,217
# of equations 451 396 451
total # of terms 5469 5243 9681
average # of terms/equ. 12.1 13.2 21.5
time to solve 18h 53min ≈ 15h 11h 43min
details in section 3.1 3.2 4

Table 1. An overview of the solved algebraic systems

Times are measured on a 1.7GHz Pentium 4 running a 120 MByte REDUCE
session under Linux.
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2 Known integrable Hamiltonian on e(3)

In the following we list all known integrable Hamiltonian of type (1) on e(3).
First let us consider all cases where the matrices A = {aij}, B = {bij} and
C = {cij} are diagonal, i.e. the Hamiltonian takes the form:

H = a1M
2

1
+ a2M

2

2
+ a3M

2

3
+ 2b1M1γ1 + 2b2M2γ2 + 2b3M3γ3+

c1γ
2

1
+ c2γ

2

2
+ c3γ

2

3
+ p1M1 + p2M2 + p3M3 + q1γ1 + q2γ2 + q3γ3.

(6)

Kirchhoff’s problem of the motion of a rigid body in ideal fluid.
In this case the Hamiltonian does not contain linear terms, i.e. we have
pi = qi = 0. For this problem there are three known classical integrable cases
of Kirchhoff [8], Clebsch [9] and Steklov-Lyapunov [10, 11].

The Kirchhoff case is defined by the identities

a1 = a2, b1 = b2, c1 = c2.

The additional integral I is linear: I = M3.
For the Clebsch case the coefficients ai are arbitrary and the remaining

parameters satisfy the following conditions:

b1 = b2 = b3,

c1 − c2

a3
+

c3 − c1

a2
+

c2 − c3

a1
= 0.

If not all ai are equal then the Hamiltonian can be represented in the form

H = a1M
2

1
+ a2M

2

2
+ a3M

2

3
+ a2a3γ

2

1
+ a3a1γ

2

2
+ a1a2γ

2

3
.

The additional quadratic integral admitted by H is

I = M2

1
+M2

2
+M2

3
+ (a2 + a3)γ

2

1
+ (a3 + a1)γ

2

2
+ (a1 + a2)γ

2

3
.

If a1 = a2 = a3 then we get the Neumann Hamiltonian

H = M2

1
+M2

2
+M2

3
+ c1γ

2

1
+ c2γ

2

2
+ c3γ

2

3
.

The additional integral in this case coincides with H .
For the Steklov-Lyapunov case the coefficients ai are arbitrary and the

remaining parameters satisfy the following conditions:

b1 − b2

a3
+

b3 − b1

a2
+

b2 − b3

a1
= 0,
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c1 −
(b2 − b3)

2

a1
= c2 −

(b3 − b1)
2

a2
= c3 −

(b1 − b2)
2

a3
.

If not all the ai are equal then the Hamiltonian can be represented in the
form

H = a1M
2

1
+ a2M

2

2
+ a3M

2

3
+ 2a2a3M1γ1 + 2a3a1M2γ2 + 2a1a2M3γ3

+a1(a2 − a3)
2γ2

1
+ a2(a3 − a1)

2γ2

2
+ a3(a1 − a2)

2γ2

3
.

The additional integral is quadratic:

I = M2

1
+M2

2
+M2

3
+ 2(a2 + a3)M1γ1 + 2(a3 + a1)M2γ2 + 2(a1 + a2)M3γ3

+(a2 − a3)
2γ2

1
+ (a3 − a1)

2γ2

2
+ (a1 − a2)

2γ2

3
.

If a1 = a2 = a3 we have to interchange the Hamiltonian H and the integral
I just as in the Clebsch case.

Recently in the paper [12] by Sokolov a Hamiltonian with non-diagonal
matrix B having an integral of fourth degree was presented. One of the
possible forms of this Hamiltonian is:

H = M2

1
+M2

2
+ 2M2

3
+ 2 (a1γ1 + a2γ2)M3 − (a2

1
+ a2

2
) γ2

3
. (7)

The integral can be represented as a product I = k1 k2, where k1 = M3 and

k2 = (M2

1
+M2

2
+M2

2
)M3 + 2 (a1M1 + a2M2) (M1γ1 +M2γ2)

+2 (a1γ1 + a2γ2)M
2

3
+ (a1γ1 + a2γ2)

2M3

−(a2
1
+ a2

2
) (2M1γ1 + 2M2γ2 +M3γ3) γ3.

This case appears to be similar in its properties to the Kowalewski case given
below.

The problem of motion of a rigid body around a fixed point.
Hamiltonians describing such situations have the form (6), where bi = ci =
pi = 0. The following integrable cases are known.

The Lagrange case:

H = M2

1
+M2

2
+ a3M

2

3
+ q3γ3 (8)

where a3, q3 are arbitrary. The additional integral I is linear: I = M3.
The Euler case:

H = a1M
2

1
+ a2M

2

2
+ a3M

2

3
(9)

with an additional quadratic integral:

I = M2

1
+M2

2
+M2

3
.
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The Kowalewski case:

H = M2

1
+M2

2
+ 2M2

3
+ q1γ1 + q2γ2 (10)

with arbitrary parameters q1, q2. The additional integral of fourth degree can
be written as I = G2

1
+G2

2
, where

G1 = M2

1
−M2

2
− q1γ1 + q2γ2, G2 = 2M1M2 − q2γ1 − q1γ2.

We note, that if q2 6= iq1, then the transformation M → T M , Γ → T Γ,
where

T =





cosφ sinφ 0
− sin φ cosφ 0

0 0 1



 (11)

can be used to make q2 to zero.
Generalizations. Terms linear in the moments Mi that occur in the

Hamiltonian could be interpreted as an action of hydrostatic forces ([4]). We
have no comments on the physical meaning of other mixed Hamiltonians (1)
(i.e. Hamiltonians having both B 6= 0 or C 6= 0, and Q 6= 0 ).

For example, an obvious hybrid of Lagrange’s and Kirchhoff’s Hamilto-
nians (with additional hydrostatic member) is

H = M2

1
+M2

2
+ s1M

2

3
+ s2γ3M3 + s3γ

2

3
+ s4M3 + s5γ3, (12)

3 Results

3.1 The classical case.

For the Hamiltonian (1) on e(3) we consider the case of A being diagonal:

A = diag(a1, a2, a3),

where
a1 = a2 6= a3, ai 6= 0, i = 1, 2, 3.

Without loss of generality matrix B can be considered as low-triangular, i.e.

b12 = b13 = b23 = 0.

Note, that the addition of Casimir functions (4) to the Hamiltonian does
not influence the equation of motion. By subtracting an appropriate linear

6



combination of J1 and J2 we can make b11 = c11 = 0 and get

H = M2

1
+M2

2
+ a3M

2

3
+

b21γ1M2 + b31γ1M3 + b32γ2M3 + b22γ2M2 + b33γ3M3 +

c12γ1γ2 + c13γ1γ3 + c22γ
2

2
+ c23γ2γ3 + c33γ

2

3
+ (13)

p1M1 + p2M2 + p3M3 + q1γ1 + q2γ2 + q3γ3.

Lemma. For a Hamiltonian of type (13), a canonical transformation can
be used to obtain b21 = 0.

Thus we will consider only the following Hamiltonian:

H = M2

1
+M2

2
+ a3M

2

3
+ b31γ1M3 + b32γ2M3 + b22γ2M2 + b33γ3M3 +

c12γ1γ2 + c13γ1γ3 + c22γ
2

2
+ c23γ2γ3 + c33γ

2

3
+ (14)

p1M1 + p2M2 + p3M3 + q1γ1 + q2γ2 + q3γ3.

Theorem 1.The Hamiltonian of the above form commutes with a poly-

nomial integral of 4th degree iff it coincides with one of the following:

• (12), where si - are arbitrary, or

•

H = M2

1
+M2

2
+M2

3
+ 2s1γ3M3 − s2

1
γ2

3
+ s2γ1 + s3γ2 + s4γ3+

λ
(

2s1M
2

3
+ s2M1 + s3M2 + s4M3 + s1(s2γ1 + s3γ2)

)

,
(15)

•
H = M2

1
+M2

2
+ 2M2

3
+ s1(iγ1 + γ2)M3+

s2(−iM1 +M2) + s3M3 + s4(iγ1 + γ2)− s1s2γ3,
(16)

•

H = M2

1
+M2

2
+ 2M2

3
+ 2(s1γ1 + s2γ2)M3 − (s2

1
+ s2

2
)γ2

3
+

s3 (M3 + s1γ1 + s2γ2) + s4γ1 + s5γ2,
(17)

where si are parameters constrained only by the condition:

s2s5 + s1s4 = 0.

Remarks
1. The case (15) was founded by Rubanovskiyi [13].
2. Under the conditions s1 = s2 = s3 = 0 the formula (17) describes the
Kowalewski case. If s3 = s4 = s5 = 0 we have the Sokolov case for which
the general formula (17) was presented in [14] and the Lax pair was found
by Sokolov and A.V. Tsiganov [15].
3. The Hamiltonian (16) is probably new.
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3.2 Classical case with additional condition.

We now consider the case of the area integral J2 being equal to zero. In this
case the following additional integrable Hamiltonians are known.

The Goryachev-Chaplygin Hamiltonian [5, 6]

H = M2

1
+M2

2
+ 4M2

3
− s1γ1 (18)

belongs to the class of Hamiltonians describing the motion of a rigid body
around a fixed point. The additional integral is of third degree.

For the Kirchhoff problem is known the Hamiltonian by Chaplygin:

H = M2

1
+M2

2
+ 2M2

3
+ cγ2

1
− cγ2

2
. (19)

Here the additional integral has fourth degree.
Theorem 2. The Hamiltonian of the form (14) commutes with a poly-

nomial integral of fourth degree with additional condition (M, γ) = 0, iff it

coincides with one of the Hamiltonian from Theorem 1 or with the following:

•

H = M2

1
+M2

2
+ 2M2

3
+ s1(γ

2

1
− γ2

2
) + s2γ1γ2 + s3M3 + s4γ1 + s5γ2,

(20)
where si - are arbitrary parameters.

The Hamiltonian (20) is the generalization of Chaplygin’s case [5, 6, 16].

4 Quantum case.

In the papers by Komarov, Sklyanin [17, 18, 19] and others quantum gener-
alizations of classical Hamiltonians on e(3) and so(4) were considered. Sim-
ilarly, instead of the Poisson bracket (3) we investigate the commutator re-
lations (5) in an associative algebra with generators M1,M2,M3, γ1, γ2, γ3.
We can consider Mi, γi to be operators. Due to commutator relations (5)
any monomial always could be ordered such, that Mi come before any γi and
indices increase (such a presentation is unique). Thus Hamiltonians have the
same form (1) as in the classical case, but the multiplication is now non-
commutative. In this case, any element I from the associative algebra that
satisfies [H, I] = 0 is called an integral.

Theorem 3. The Hamiltonian of the above form commutes with a poly-

nomial integral of 4th degree iff it coincides with one of the following:
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•

H = M2

1
+M2

2
+ s1M

2

3
+ s2γ3M3 + s3γ

2

3
+ s4M3 + s5γ3, (21)

where si - are arbitrary parameters;

•

H = M2

1
+M2

2
+M2

3
+ 2s1γ3M3 − s2

1
γ2

3
+ s2γ1 + s3γ2 + s4γ3+

λ
(

2s1M
2

3
+ s2M1 + s3M2 + s4M3 + s1(s2γ1 + s3γ2)

)

,
(22)

•
H = M2

1
+M2

2
+ 2M2

3
+ s1(iγ1 + γ2)M3+

s2(−iM1 +M2) + s3M3 + s4(iγ1 + γ2)− s1s2γ3,
(23)

•

H = M2

1
+M2

2
+ 2M2

3
+ 2(s1γ1 + s2γ2)M3 − (s2

1
+ s2

2
)γ2

3
+

s3 (M3 + s1γ1 + s2γ2) + s4γ1 + s5γ2,
(24)

where si are parameters constrained only by the condition:

s2s5 + s1s4 = 0;

Notice that this list looks exactly as the list of subsection 3.1 although a

priori this coincidence is not predictable. The most interesting here is Hamil-
tonian (24), which is a quantum generalization of the Sokolov Hamiltonian.
If s1 = s2 = s3 = 0 we have the quantum Kowalewski Hamiltonian [17, 20].
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