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Abstract— The arc-length continuation framework is used for 

the design of state feedback control laws that enable a 
microscopic simulator trace its own open-loop coarse bifurcation 
diagram. The steering of the system along solution branches is 
achieved through the manipulation of the bifurcation parameter, 
which becomes our actuator. The design approach is based on the 
assumption that the eigenvalues of the linearized system can be 
decomposed into two well separated clusters: one containing 
eigenvalues with large negative real parts and one containing 
(possibly unstable) eigenvalues close to the origin. 
 

Index Terms—Arc-length Continuation, Bifurcation diagram,  
Microscopic Simulators, State-Feedback Control, Time-Steppers. 
 

I. INTRODUCTION 
frequent feature of the solution branches of nonlinear 
systems depending on parameters is the occurrence of 

bifurcation points (such as turning points) involving exchange 
of stability. Numerical bifurcation theory is well established 
and used for the computation of such bifurcation diagrams in 
the modeling of nonlinear systems ranging form ecology to 
materials science and engineering.  Open loop unstable steady 
states are typically found as fixed points of augmented sets of 
algebraic equations, through contraction mappings (like 
Newton-Raphson). Alternatively, assuming system 
controllability, an arsenal of existing controller design 
techniques can be used to achieve system stabilization.  The 
interface between bifurcation theory and feedback control is an 
active area of current research. Representative examples 
include the local feedback stabilization and control of static 
and Hopf bifurcations of nonlinear systems [1,2,7]; bifurcation 
control, based on normal forms, via state feedback with a 
single uncontrollable mode [9]; the incorporation of washout 
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filters [12, 20] to stabilize equilibria in the presence of model 
structural uncertainties; and global stabilization of 
bifurcations, using Lyapunov tools, changing the type of 
bifurcation from subcritical to supercritical [11]. All these 
approaches presume the availability of macroscopic 
mathematical models in closed form. However, it is often the 
case that macroscopic balance equations are not available in 
closed form, and the best available model is a 
microscopic/stochastic simulator (molecular dynamics, MD, 
kinetic Monte Carlo, KMC, kinetic theory based Lattice-
Boltzmann, LB, or Markov chain simulators). Under these 
circumstances, conventional computational algorithms cannot 
be used explicitly for bifurcation analysis and controller 
design. Our group has established over the last few years      
[4, 14, 15, 18] that “coarse timesteppers” can serve as a bridge 
between microscopic / stochastic system descriptions and 
macroscopic tasks such as coarse bifurcation analysis and 
control computations.  

In this paper we address the development of a feedback 
control scheme, which, implemented –under appropriate 
conditions- as a shell around existing microscopic simulators 
enables them to automatically trace, exploiting an arc-length 
parametrization, their “coarse” bifurcation diagram. Steering 
of the system (microscopic timestepper) along solution 
branches is achieved through the manipulation of the 
bifurcation parameter, which becomes our actuator. We 
demonstrate the results of implementing the proposed 
methodology for tracing the coarse (macroscopic) bifurcation 
branch of a KMC model of a surface reaction, which exhibits 
two turning points. The approach is conceptually also 
applicable to physical experiments. 

 

II. BRANCH TRACING AND THE FEEDBACK SCHEME 
We briefly describe this feedback control approach for the 

case continuous time, autonomous nonlinear systems of the 
type  

 
) ,( pxfx =D , f : Rm x R→Rm        (1) 

 
where x∈Rm denotes the state vector, accessible through 
measurement, p∈R is the bifurcation parameter and f is a 
smooth function. Consider the design of feedback control laws 
that stabilize (1) locally around an equilibrium (x*, p*), which 
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however is characterized by uncertainty.  
 
To cope with equilibrium uncertainty, dynamic state feedback 
is used (in contrast to static state feedback which would most 
likely be applied if the system equilibrium was precisely 
known beforehand). An additional state variable q defined by 

 
),((t) pgq x=D , g: RmxR→R         (2) 

 
is incorporated. Motivated by arc-length continuation [10], we 
choose g(x, p) to be the linearized pseudo arc-length 
condition. Assuming that two equilibrium points (x0, p0) and 
(x1, p1) are already known from following the steady state 
solution branch, the condition, with pseudo arc-length step 
∆S, reads: 
 

∆S-)(
)(

)(
)(

) ,(

1
01

1
01 pp

S
pp

S

pg
T

−
∆

−
+−

∆

−

≡

xxxx
x

  

(3) 
 

 
These equilibrium points can be computed using two ways 

when working with a model to the computer: the first way is 
what we would have done in an experiment: we set initial and 
operating conditions, and “run” (evolve) in time until nothing 
visibly changes. The second way refers to numerical analysis 
assisted tools (contraction mappings like Newton-Raphson or 
so-called Newton-Picard timestepper based algorithms using 
Krylov subspace iterations (e.g. the Recursive Projection 
Method of Shroff and Keller, [16]) which help to extract 
information from models “easier, faster, better” than simple 
simulation (see also [13,19]).  
 
The linearization of (1) is performed around the second 
equilibrium point (x1, p1): 
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where 
11 p,xx

fA
∂

∂
≡ is the Jacobian of the system, 

11 pp ,x

fB
∂

∂
≡ is the control matrix, ∆x 1xx −≡ , 

∆p 1pp −≡  denote the deviation state and control variables. 
 
For the local stabilization of (1)-(3), the choice here is to 
employ a state linear feedback controller of the form 
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The gain matrix [ ]21 kk  is calculated on the basis of 

placing the critical (slowest) eigenvalues at certain prescribed 
values in the left half of the complex plane so that local 
stabilization of (1)-(3) is achieved. The control law (5) then 
drives the system (1)-(3) to a steady state, where 0=∆ xD , 

0=qD ( ∞→t ) and thus both the steady state and the arc-
length conditions are satisfied. 

  
Note that in general, both the Jacobian and the control 

matrix of the augmented system at the new steady state       
(x*, p*) will be slightly, for small values of arc-length step 
∆S, different from those at equilibrium point (x1, p1). A guess 
for the Jacobian and the control matrix at the uncertain 
equilibrium point (x*, p*) is obtained by taking an Euler step 
of length ∆S along the tangent at (x1, p1).  

 
A basic assumption for the validity of the above design 

procedure is that the linearized augmented model (3)-(4) 
should be controllable or at least stabilizable; indeed, for 
systems undergoing only simple limit points, the augmented 
linearized system (3)-(4) is controllable.  

 
From the Popov-Belevitch-Hautus (PBH) test for 

Controllability [9], a linearized system of the form 
pnxn BxAx +=� , is controllable if and only if rank         

[sI-A; B]   = n for all s. 
 
Clearly this condition will be met for all s that are not 
eigenvalues of A, because then Det (sI - A) ≠ 0. From the 
linearized system (3)-(4) the PBH test reads:  
 
 

rank 






 −

β
  

s
0 B

a
AIs

 = n+1, where  

 

≡
∆

−
=

∂

∂

S
pg T)(),( 01 xx

x
x α        (6a) 

 

 ≡
∆

−
=

∂

∂

S
pp

p
pg 01 )(),x( β        (6b) 

 

But rank 






 −

β
  

s
0 B

a
AIs

= rank 






 −

s
0

  
βa
BAIs

.  

 



 
 

3

The matrix 




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 is nonsingular at simple limit 

points [10].  

Indeed: rank 



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= n+1 and as a consequence  
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The design of discrete time control systems is similar in 

principle, and the procedure we described above can be 
applied for the stabilization of the corresponding discrete-time 
fixed points (fixed points of the time-T map arising from 
integrating the continuous time ODEs). It is in the discrete 
time context that microscopic simulators are “coarsely” 
stabilized. 

 
The main assumption behind the concept of designing 

coarse controllers for microscopic simulators is that, if coarse 
closed models exist (but are unavailable in closed form) then 
the higher moments of microscopically evolving distributions 
are quickly slaved to a few, say ρ, lower moments of these 
distributions (refer to [4,14,17] for a more detailed 
discussion). Coarse controller design is based on the 
information extracted, with the aid of coarse timestepper, at 
the system level from microscopic models, sidestepping the 
derivation of an explicit, closed form macroscopic description. 
The coarse timestepper provides a framework for estimating 
on demand (“just in time” [3]) quantities we need from the the 
unavailable macroscopic system equations (the right-hand-
sides of equations, the action of slow Jacobians, coarse 
derivatives with respect to parameters etc.). In short, what a 
controller design algorithm would obtain from a macroscopic 
model through function evaluations, is now estimated through 
short, appropriately initialized “bursts” of microscopic 
simulation.  

Coarse (macroscopic) steady states can be obtained as fixed 
points, using T as the sampling time, of the mapping 

Τ
Φ  

under which x(k+1) = 
Τ

Φ (x(k), p), 
Τ

Φ : Rm x R→Rm. 

Here the vector x denotes the coarse statistics (typically 
zeroth- or first-order moments of the microscopically evolving 
probability densities) that could deterministically describe in 
an efficient manner the long-term macroscopic behavior of the 
system under study. 

 

III. SIMULATION RESULTS 
Our illustrative model is a KMC “stochastic simulation 

algorithm” [5, 6] Monte Carlo realization of a simplification 
(7) of the kinetics of NO oxidation reaction by H2 on Pt and 
Rh surfaces: 

 

 θθγθθαθ 2)1()1( −−−−= rkD       (7) 
 

where θ is the coverage of adsorbed NO, α is the rate constant 
for adsorption, γ is the rate constant for desorption of NO, and 
kr is the reaction rate constant. Simulation results were 
obtained at: α = 1, γ = 0.01; kr is the bifurcation parameter 
(and, in our scheme, the control variable).  The deterministic 
version of the model exhibits two turning points (at kr ≈ 3.96 
and kr ≈  26). KMC simulations approximate the solution of 
the corresponding master equation, which describes the 
evolution of the probability (PDF) of finding the system in a 
certain configuration. For the stochastic simulations the values 
of the number of available sites (system size) say N and Nrun  
(number of realizations) were chosen as 800x800 and 100 
respectively.  
 
The coarse timestepper θ(k+1) = Φ(θ(k), kr(k)) of the KMC 
model is used as a “black box”. The coarse, Jacobian and 
control matrix are estimated by wrapping a computational 
superstructure like Newton’s method as a shell around the 
coarse timestepper (see [14]). The coarse identified model 
(Jacobian and control matrix) is then used in the controller 

design procedure we discussed to iteratively trace the solution 
branch. The bifurcation diagram is given in Figure 1.  
 
The eigenvalue of the discrete time open loop system, as 
calculated from the estimated coarse Jacobian, is given in 
figure 2. The sampling time was set to T=0.5.   
Figure 3 shows how, using two already found coarse steady 
states: (θ0, kr0)≈ (0.4657, 3.985) (θ1, kr1)≈ (0.4920, 
3.9617), the procedure can drive the microscopic simulator to 
a (stabilized) unstable coarse steady state (θ*, kr

*)≈ (0.5157, 
3.9617) beyond the turning point. The estimates of the 
Jacobian and control matrix of the unknown macroscopic 
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Fig. 1 Coarse bifurcation diagram of a KMC simulator based on eq.(7),
obtained through pseudo-arclength (S) augmentation and feedback 
stabilization 



 
 

4

equation computed by taking an Euler step at (θ1, kr1), were 
1.0405 and -0.063 respectively, while the values of a and β 
were: a =1.0544 and β = -0.9319. A value of ∆S=0.025 was 
chosen.  
To perform the continuation, we placed the eigenvalues of the 
corresponding augmented linearized system, as obtained from 
eqs (3)-(4), to λ1 =0.93, λ2 = 0.91. The required gains were    
k1 ≈  0.0662, k2 ≈  -0.2196. 
 
The corresponding microscopic transients are shown in Fig. 4. 
Upon convergence the procedure is updated, a new stabilizing 
controller is designed, and the “next” point on the coarse 
branch is found. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Open loop eigenvalues of the steady states in Fig.1 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Stabilization of a coarse stationary state (x*,p*) beyond the turning 
point, with the help of two previously computed steady states (x0,p0), (x1, p1). 
 
 
 

IV. CONCLUSION 
In summary, we have developed a feedback-control based 

scheme, which, under appropriate conditions, enables a 
microscopic/stochastic simulator to trace its “coarse” 
bifurcation diagram.  This procedure might be helpful in the 
analysis of systems for which microscopic simulators are 

available, but no coarse macroscopic equations exist in closed 
form. 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Closed loop transients (a, b) and phase portrait (c) of the approach of 
the coarse state θ and the control action kr to a new (open-loop unstable) 
coarse steady state of the microscopic simulator past the turning point (see 
Fig.3). 
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