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Abstract

The dispersionless KP hierarchy is considered from the point of

view of the twistor formalism. A set of explicit additional symmetries

is characterized and its action on the solutions of the twistor equations

is studied. A method for dealing with the twistor equations by tak-

ing advantage of hodograph type equations is proposed. This method

is applied for determining the orbits of solutions satisfying reduction

constraints of Gelfand–Dikii type under the action of additional sym-

metries.
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1 Introduction

The so-called dispersionless hierarchies [1]-[9] provide an interesting type
of non-linear integrable models which can not be studied by the standard
schemes of the KP theory and require an entirely new approach. From the
point of view of the Lax formalism, dispersionless hierarchies arise as the
quasiclassical limits of Lax pair equations performed by replacing operators
by phase space functions and commutators by Poisson brackets. In this
way, when dealing with dispersionless hierarchies, instead of the associated
auxiliary linear system of the standard formalism of integrable systems the
underlying equations to be solved are of Hamilton–Jacobi type.

Several methods of solution of dispersionless hierarchies have been formu-
lated. In [3]-[4] (see also [11]-[12]) Kodama and Gibbons gave a direct method
based on the use of reductions in which the dependent variables depend on
a finite number of unknown functions. The corresponding reduced hierar-
chy becomes an infinite set of compatible hydrodynamic systems solvable by
hodographic techniques. A ∂̄ scheme has been proposed by Konopelchenko
et al in [13]-[15], which introduces an associated ∂̄ equation of Hamilton–
Jacobi type. In this paper we deal with the twistorial method of Takasaki
and Takebe [9]-[10]. Two important advantages of this method are

1) It provides a convenient scheme for describing the symmetries.

2) All local solutions can be determined by means of the twistor method.

The main aim of this paper is to present a technique for deriving explicit
examples of both additional symmetries and solutions of dispersionless hier-
archies within the framework of the twistor formalism. It requieres a new
formulation of the twistor equations which involves a certain type of gener-
ating functions for canonical transformations of twistor data as well as the
use of hodograph equations. To show our strategy, we concentrate on the
dispersionless KP (dKP) hierarchy, which is the prototype of this kind of
integrable hierarchies. Its Lax pair formulation involves a phase space with
a canonical pair of coordinates (p, x) and an associated Poisson bracket

{F,G} =
∂F

∂p

∂G

∂x
− ∂F

∂x

∂G

∂p
.

It is useful to introduce an enlarged Lax formalism with a pair of canoni-
cally conjugate variables L = L(p, t) and M = M(p, t) (i.e. {L,M} = 1)
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depending on p and an infinite set of time parameters

t := (t1 = x, t2, . . . , tn, . . .),

which are assumed to admit expansions of the form

L = p+
∑

n≥1

un(t)

pn
, M =

∑

n≥2

ntnLn−1 + x+
∑

n≥1

vn(t)

Ln+1
, (1)

as p → ∞ and L → ∞, respectively. The Lax equations of the dKP hierarchy
are

∂L
∂tn

= {Bn,L},
∂M
∂tn

= {Bn,M}, n ≥ 2, (2)

where
Bn := (Ln)≥0.

Here (F)≥0 denotes the projection of a Laurent series F in the variable p on
the subspace generated by the non-negative powers of p (we will also use the
notation (F)≤−1 := F − (F)≥0). The system of compatibility equations

∂Bm

∂tn
− ∂Bn

∂tm
+ {Bm,Bn} = 0, m 6= n, (3)

yields an infinite set of nonlinear equations for the coefficients un of the ex-
pansion (1) of L. In particular for (n,m) = (2, 3) one gets the dKP equation
(Zabolotskaya-Khokhlov equation)

(ut − 3uux)x =
3

4
uyy, u := u1, t := t3, y := t2. (4)

This is an interesting nonlinear model with applications, in the study of
quasi-plane sound beams [17], quasi-transonic flows past thin wings [18] or
Einstein-Weyl spaces [19].

In the next Section we first describe in brief the twistor approach to the
solutions and symmetries of the dKP hierarchy. Then we present a class
of additional symmetries depending on arbitrary functions of one variable,
the action of which can be explicitly determined. As a particular case they
include the symmetries of the dKP equation found by Dunajski, Mason and
Tod in [19]. The first part of Section 3 is devoted to a new formulation of
twistor equations which is appropriate for dealing with the transformation
laws of solutions under the action of symmetries. In the second part of
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Section 3 we show how solutions of the dKP hierarchy satisfying reduction
constraints of Gelfand-Dikii type transform under the class of additional
symmetries introduced in Section 2. Finally, some explicit examples are
worked out.

2 Symmetries in the twistor formalism

2.1 Twistorial structure of the dKP hierarchy

The twistor formalism of the dKP hierarchy is based on the degenerate sym-
plectic form [9]

ω := d p ∧ d x+
∑

n≥2

dBn ∧ d tn. (5)

which plays the role of the Gindikin bundle [16] of curved twistor theory. The
form ω encodes both the Lax equations and their compatibility conditions
into the simple system {

ω = dL ∧ dM,

ω ∧ ω = 0.
(6)

From the first equation we have that

d
(
M dL+ p d x+

∑

n≥2

Bn d tn

)
= 0,

so that there exists a generating function S = S(L, t) for the canonical
transformation (p, x) 7→ (L,M) satisfying

dS = M dL+ p dx+
∑

n≥2

Bn d tn,

or equivalently

M =
∂S

∂L , p =
∂S

∂x
, Bn =

∂S

∂tn
, n ≥ 2. (7)

Notice that from (1) and the first equation of (7) it follows that S can be
defined as

S(L, t) =
∑

n≥1

tnLn −
∑

n≥1

vn(t)

n
L−n.

The twistor scheme for solving the dKP hierarchy is based on the following
result [9]
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Theorem 1. Let (P (p, x), X(p, x)) be a pair of canonically conjugate vari-
ables (i.e. {P,X}=1). Then
1) Given two functions (L(p, t),M(p, t)) of the form (1) such that the com-
posite functions (P (L,B), X(L,B)) have Laurent series expansions in p sat-
isfying the twistor equations

(P (L,M))≤−1 = 0, (X(L,M))≤−1 = 0, (8)

then (L,M) gives a solution of the dKP hierarchy (2). The pair

(P (p, x), X(p, x))

is called the twistor data of the solution (L,M).
2) Each solution of the dKP hierarchy admits a set (P (p, x), X(p, x)) of
twistor data.

In general, we can not assume the existence of appropriate solutions
(L,M) of (8). For example, the canonical variables

P := p2x, X :=
1

p
, (9)

determine the twistor equations

(L2M)≤−1 = 0,
( 1
L
)
≤−1

= 0.

which obviously have no solutions satisfying (1).

2.2 Symmetry transformations

One the main features of the twistor equations is that the symmetry proper-
ties of the dKP hierarchy can be formulated in a convenient way [9]. Indeed,
the natural group acting on the set of twistor data (P (p, x), X(p, x)) is the
group of canonical transformations generated by one-parameter groups of the
form

exp(s{F, ·}) : (P,X) 7→ (P (s), X(s)), F = F (p, x),

P (s) := P (exp(s{F, ·})p, exp(s{F, ·})x),
X(s) := X(exp(s{F, ·})p, exp(s{F, ·})x),

(10)

where

exp(s{F, ·})G := G+ s{F,G}+ s2

2
{F, {F,G}}+ · · · .

It can be proved that [9]
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Theorem 2. A one-parameter group of canonical transformations (10) in-
duces an action (L,M) 7→ (L(s),M(s)) on the set of solutions of the dKP
hierarchy determined by the flow

∂L
∂s

= {L, F (L,M)≤−1},
∂M
∂s

= {M, F (L,M)≤−1}. (11)

Let us consider symmetries of the dKP hierarchy generated by double
series of the form

F (L,M) =
∞∑

i=−∞

∞∑

j=−∞

cijLiMj. (12)

We will concentrate on the (r + 1)-th truncated dKP hierarchies defined as
the sets of the first r + 1 flows of the dKP hierarchy (r ≥ 2). Thus in order
to analyze their symmetries we may set tn = 0, ∀n ≥ r + 1, and so we may
write

M = (r + 1)tr+1Lr + rtrLr−1 + · · ·+ x+O
( 1

L2

)
. (13)

By substituting this expansion in (12), a series expansion of F in powers of
L is obtained. Let us now investigate those symmetries of the
(r+1)-th truncated dKP hierarchy which do not involve the action of higher
dKP flows. To this end, we have to avoid terms of the form {(Ln)≥0,L} with
n > (r + 1) in the right-hand side of the first equation in (11). Hence we
impose cij = 0 for (i+ jr) > (r+1), so that F can be expressed in the form

F (L,M) =
∑

n≤r+1

αn

( M
(r + 1)Lr

)
Ln, (14)

with αn(t) being arbitrary smooth functions. Furthermore, Eq.(11) for L can
be written as

∂L
∂s

=
∂F

∂M + {F (L,M)≥0,L}, (15)

and it is easy to see that only those terms in (14) with n ≥ 1 contribute to
∂u/∂s.

Therefore, we conclude that the symmetries of the (r + 1)-th truncated
dKP hierarchy which do not involve higher dKP flows and define a non-trivial
action on the coefficient u are of the form

F (L,M) =
r+1∑

n=1

αn

( M
(r + 1)Lr

)
Ln. (16)
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This means that, under these conditions, there are essentially r + 1 types of
symmetry generators of the (r + 1)-th truncated dKP hierarchy given by

Fi(L,M) := α
( M
(r + 1)Lr

)
Li, i = 1, . . . , r + 1, (17)

with α = α(t) being an arbitrary function.
The action of the one-parameter groups generated by Fi on the coefficient

u can be explicitly found. Indeed, by identifying the coefficients of 1/p in
both members of (15) one gets a first-order linear partial differential equation
for

u(s, t) := exp(s{Fi, ·})u(t),
the integration of which provides the symmetry transformation

u = u(t) 7→ ũ = u(s, t).

Let us illustrate these facts by considering the case r = 2. We observe
that (13) implies that near points t in the region of analyticity of α

α
(M
3L2

)
= α(t) +

2

3
yα′(t)

1

L +
(1
3
xα′(t) +

2

9
y2α′′(t)

) 1

L2
+O

( 1

L3

)
. (18)

One finds the following results for the corresponding three generators (17):

1. F1

From (15) we have

∂L
∂s

= α′
(M
3L2

) 1

3L + α(t)
∂L
∂x

,

so that
∂u

∂s
= α(t)

∂u

∂x
+

1

3
α′(t). (19)

The solution of this equation is

u = U(x+ sα(t), y, t) +
1

3
sα′(t),

where U is an arbitrary function. It leads to the symmetry

ũ = u(x+ sα(t), y, t) +
1

3
sα′(t). (20)
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2. F2

In this case (15) becomes

∂L
∂s

=
1

3
α′

(M
3L2

)
+

2

3
yα′(t)

∂L
∂x

+ α(t)
∂L
∂y

,

and the equation for u is

∂u

∂s
=

2

3
yα′(t)

∂u

∂x
+ α(t)

∂u

∂y
+

2

9
yα′′(t), (21)

which has the solution

u =U
(
x+

2

3
syα′(t) +

1

3
s2α(t)α′(t), y + sα(t), t

)

+
2

9
syα′′(t) +

1

9
s2α(t)α′′(t),

where U is an arbitrary function. The corresponding symmetry transforma-
tion of the dKP equation is

ũ =u(x+
2

3
syα′(t) +

1

3
s2α(t)α′(t), y + sα(t), t)

+
2

9
syα′′(t) +

1

9
s2α(t)α′′(t).

(22)

2. F3

Now Eq.(15) takes the form

∂L
∂s

=
1

3
α′

(M
3L2

)
L+

(1
3
xα′(t) +

2

9
y2α′′(t)

)∂L
∂x

+
2

3
yα′(t)

∂L
∂y

+ α(t)
∂L
∂t

,

which implies

∂u

∂s
=
(1
3
xα′(t) +

2

9
y2α′′(t)

)∂u
∂x

+
2

3
yα′(t)

∂u

∂y
+ α(t)

∂u

∂t

+
1

3
α′(t)u+

1

9
xα′′(t) +

2

27
y2α′′′(t).

(23)
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The solution of this equation is

u =(c′(t))
2

3U
(
x(c′(t))

1

3 +
2

9
y2

c′′(t)

(c′(t))
2

3

, y(c′(t))
2

3 , s+ c(t)
)

+
1

9
x
c′′(t)

c′(t)
+

2

27
y2
(c′′′(t)
c′(t)

− 4

3

(c′′(t)
c′(t)

)2)
,

where U is an arbitrary function and c(t) is such that c′(t) = 1/α(t). Hence,
by defining T := T (s, t) through the implicit relation

c(T ) = s + c(t),

and by taking into account that

T ′ :=
∂T

∂t
=

c′(t)

c′(T )
,

one finds that the symmetry transformation determined by (23) is

ũ =(T ′)
2

3u
(
x(T ′)

1

3 +
2

9
y2

T ′′

(T ′)
2

3

, y(T ′)
2

3 , T
)

+
1

9
x
T ′′

T ′
+

2

27
y2
(T ′′′

T ′
− 4

3

(T ′′

T ′

)2) (24)

The three symmetries (20),(22) and (24) coincide with the symmetries
of the dKP equation found by Dunajski, Mason and Tod [19] by analyzing
equivalence transformations of Einstein–Weyl spaces.

Transformation law of twistor data

According to (10), the dKP symmetry generated by (17) corresponds
to a canonical transformation law of the twistor data determined by the
Hamiltonian system

d p

d s
= {α(ρ)pi, p}, d x

d s
= {α(ρ)pi, x}, (25)

where we are denoting

ρ :=
x

(r + 1)pr
.

In terms of (p, ρ) this system becomes

d p

d s
= −α′(ρ)

r + 1
pi−r,

d ρ

d s
= i

α(ρ)

r + 1
pi−r−1, (26)
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and by taking into account that the Hamiltonian function

h := α(ρ)pi

is a constant of the motion it follows that the solution of (25) can be written
as

p(s) =
p

(jρ)
1

r+1

, x(s) = (r + 1)j p(s)r. (27)

Here j = j(s, ρ, h) is the evolution law of the variable ρ. That is to say, it is
the solution of the initial value problem

∂j

∂s
= β(ρ, h), j(0, ρ, h) = ρ, (28)

where

β(ρ, h) :=
i

r + 1

(α(ρ)
h

) r+1

i

h.

The expressions (27) define the action of the additional symmetries (17)
on the twistor data. It is important to observe that the solution of (28)
satisfies

s =

∫ j(s,ρ,h)

ρ

d ρ

β(ρ, h)
,

and, as a consequence, one deduces that the first-order derivatives of j with
respect to ρ and h are

jρ =
(α(j)
α(ρ)

) r+1

i

,

jh = s
( i

r + 1
− 1
)(α(j)

h

) r+1

i

=
( i

r + 1
− 1
) s

p(s)r+1
.

(29)

As we will see below, these relations will be useful for determining the action
of the additional symmetries on the solutions of the twistor equations.

3 Solutions of the dKP hierarchy

3.1 Generating functions and hodograph equations

We are going to present a scheme for solving twistor equations which is
particularly suitable to investigate the action of the additional symmetries
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introduced in the above section. An ingredient of our analysis is the use of
a type of generating functions for canonical transformations of twistor data
[20], which allows us to introduce hodograph type equations to formulate
part of the constraints imposed by the twistor equations.

Let (P (p, x), X(p, x)) be a pair of canonically conjugate variables, then
for each positive integer r we have

dP ∧ dX = d p ∧ d x = d(pr+1) ∧ d ρ, ρ :=
x

(r + 1)pr
.

Hence there exists an associated generating function Jr := Jr(P, ρ) of the
canonical transformation (p, x) 7→ (P,X) such that

d Jr = pr+1 d ρ+X dP,

or equivalently

pr+1 =
∂Jr(P, ρ)

∂ρ
, X =

∂Jr(P, ρ)

∂P
. (30)

In this way by denoting

Mr :=
M

(r + 1)Lr
,

we deduce

∂

∂p
Jr(P (L,M),Mr) =

∂Jr

∂P
(P (L,M),Mr)

∂P (L,M)

∂p

+
∂Jr

∂ρ
(P (L,M),Mr)

∂Mr

∂p

= X(L,M)
∂P (L,M)

∂p
+ Lr+1∂Mr

∂p
,

and by taking into account that

Lr+1∂Mr

∂p
=

1

r + 1

∂(LM)

∂p
− ∂S

∂p
,

where S is the function introduced in (7), we deduce that

X(L,M) =

∂

∂p

(
S + Jr(P (L,M),Mr)−

1

r + 1
LM

)

∂

∂p
P (L,M)

. (31)

This formula enables us to state
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Theorem 3. In terms of the function

Sr := S + Jr(P (L,M),Mr)−
1

r + 1
LM, (32)

the second twistor equation (X(L,M))≤−1 = 0 is equivalent to the following
two conditions
1) The expansion of Sr in powers of p satisfies

(Sr)≤−1 = 0. (33)

2) At each zero pi of ∂P (L,M)/∂p it is verified that

∂Sr

∂p
(pi, t) = 0. (34)

Henceforth we will refer to (34) as the hodograph equations.

A natural problem is to determine generating functions Jr(P, ρ) leading
to solvable twistor equations. In this sense, an important class arises when
P = P (p, x) is independent of x and has a finite-order expansion as p → ∞

P (p) =

N∑

n=−∞

anp
n.

The corresponding generating function J0 is of the form

J0(P, x) = f(P ) + g(P )x,

where g(P ) is the inverse function of P = P (p). As a consequence

J0(P (L,M),M) = f(P (L)) + LM,

S0 = S + f(P (L)).

It can be shown that, provided f(P (p)) admits a Laurent expansion as
p → ∞, the twistor equations determined by J0 have a solution. Moreover,
it turns out that solving the hodograph equations for S0 is enough for com-
puting L. Let us illustrate these facts with the following important example

Gelfand-Dikii reductions

12



If we set

J0(P, x) = f(P 1/m) + P 1/mx, f(P 1/m) :=

∞∑

n=−∞

cnP
n/m, (35)

for a given integer m > 1, the associated twistor data are

P = pm, X =
1

mpm−1

(
f ′(p) + x

)
. (36)

Then, the first twistor equation is

Lm = (L)≥0,

so that
Lm = pm + qm−2(u)p

m−2 + · · ·+ q1(u)p+ q0(u), (37)

where the functions qi(u) depend on the (m − 1) first coefficients u :=
(u1, . . . , um−1) of the expansion (1) of L. This constraint defines the m-th
Gelfand–Dikii reduction of the dKP hierarchy.

For example the first few reductions are

m = 2, L2 = p2 + 2u1,

m = 3, L3 = p3 + 3u1p + 3u2,

m = 4, L4 = p4 + 4u1p
2 + 4u2p+ 6u2

1 + 4u3.

To determine L we must find the (m − 1) unknowns ui as functions of
t through the second twistor equation. Thus, according to Theorem 2 we
impose

S0 =S + f(L) =
(
S + f(L)

)
≥0

=
∑

n≥1

(tn + cn)(Ln)n≥0 + c0.

Hence, by using (37) we can express S0 as a function of (p, t,u). If we now
impose the hodograph equations (34), we get (m− 1) implicit equations

(∑

n≥1

(tn + cn)
∂

∂p
(Ln)n≥0

)∣∣∣
p=pi(u)

= 0, i = 1, . . . , m− 1, (38)
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which determine the functions ui(t) and, consequently, L. Furthermore, by
eliminating p in (37) we can express p as a function p = p(L, t), which under
substitution into

S =
∑

n≥1

tnLn −
(∑

n≥1

tnLn − f(L)
)

≤−1
,

leads to M = ∂S/∂L. Thus, it is easy to see that the functions L and M are
solutions of the twistor equations which satisfy (1) and, therefore, they solve
the dKP hierarchy Henceforth these solutions will be called Gelfand–Dikii
solutions of the dKP hierarchy.

For instance if m = 2 (dKdV reduction)

L2 = p2 + 2u, u := u1,

and we set tn = 0, ∀n > 3, one gets the hodograph relation

3ut+ x = F (u), (39)

which solves the dKdV equation ut = 3uux. Here

F (u) : − =
∂

∂p

∑

n≥1

cn · (Ln)n≥0

∣∣∣
p=0

.

can be assumed to be an arbitrary smooth function of u. Some elementary
solutions provided by (39) are

F (u) =cu, u = − x

3t− c
,

F (u) =cu2, u =
1

2c

(
3t+

√
9t2 + 4cx)

)
,

F (u) =cu3, u =
f

2c
+

2t

f
, f :=

(
4x+ 4c2

√
x2 − 4t3

c

) 1

3

.

(40)

3.2 The action of additional symmetries on Gelfand–
Dikii solutions

Our aim now is to characterize solutions of the dKP hierarchy by applying
the symmetry transformations (17) to Gelfand–Dikii solutions. Obviously we
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may start from solutions of the hodograph equations (38) and then perform-
ing the corresponding symmetry transformation. However, in order to do it
we need to know how the coefficients ui of the expansion (1) of L transform
under the symmetries (17), which requires to solve a system of first-order lin-
ear partial differential equations. We are trying instead an alternative way
consisting in determining the generating functions Jr(P, ρ) for the trans-
formed twistor data and then solving the corresponding twistor equations
according to the scheme of Theorem 3. In this alternative procedure the
problem reduces to solving a system of implicit algebraic equations.

The dKP symmetry generated by (17) acts on twistor data according to
the canonical transformation (27). In particular, the twistor data (36) for
the Gelfand–Dikii reductions transform as

P (s) =
( p

(jρ)
1

r+1

)m
,

X(s) =
P

m−1

m

m

(
f ′(P 1/m) + (r + 1)j P r/m

)
.

(41)

Hence, by taking into account that j is a function of (s, ρ, h), it follows that

pr+1 = jρP
r+1

m =
∂

∂ρ

(
jP

r+1

m

)
− ĥρjhP

r+1

m ,

X =
∂

∂P

(
f(P )1/m + jP

r+1

m

)
− ĥP jhP

r+1

m ,

where
ĥ = ĥ(P, ρ) := h(p(P, ρ), ρ) = α(ρ)p(P, ρ)i.

By using now (29) we deduce

pr+1 =
∂J

(i)
r (P, ρ)

∂ρ
, X =

∂J
(i)
r (P, ρ)

∂P
, (42)

where

J (i)
r (s, P, ρ) := f(P 1/m) + j(s, ρ, ĥ)P

r+1

m + s
(
1− i

r + 1

)
ĥ(P, ρ). (43)

Wide families of solutions of the (r + 1)-th truncated dKP can be found
by solving the twistor equations associated with the generating functions

15



(43). The calculations are simple but long and require computer aid. To
illustrate the strategy for computing these solutions let us consider the family
of generating functions J

(i)
r with

i = r + 1 ≥ m. (44)

The choice i = r + 1 means that we are dealing with the orbits of Gelfand–
Dikii solutions under the action of the symmetry generator

Fr+1(L,M) := α
( M
(r + 1)Lr

)
Lr+1. (45)

Thus, according to (29) the function j in (43) is determined from α through
the solution of the initial value problem

∂j

∂s
= α(ρ), j(0, ρ) = ρ. (46)

Hence j is independent of h and by setting s to be a constant, we may take j
as a function of ρ only. Therefore, the generating functions J

(i)
r that we are

considering are

Jr(P, ρ) = f(P
1

m ) + j(ρ)P
r+1

m . (47)

Notice that

P =
pm

(jρ)
m

r+1

, (48)

so that the first twistor equation reads

L
m = (Lm)≥0, (49)

where

L :=
L

jρ(Mr)
, Mr :=

M
(r + 1)Lr

. (50)

From (1) one deduces at once that the integer powers of L have expansions
of the form

LN =pN + · · ·+ an(u1, . . . , uN−n−1)p
n + . . .

+bn(u1, . . . , uN+n−1)
1

pn
+ . . . ,

1

LN
=

1

pN
+ . . .+ cn(u1, . . . , un−N−1)

1

pn
+ . . . .

(51)
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Furthermore, (1) implies that for any smooth function g = g(t) the composite
function g(Mr) can be expanded in the form

g(Mr) = g
(
tr+1 +

rtr
r + 1

1

L + · · ·+ vn(t)

r + 1

1

Ln
+ · · ·

)

= g(tr+1) +
rtr
r + 1

g′(tr+1)
1

p
+ · · ·

+ dn(t, u1, . . . , un−2, v1, . . . , vn−r−1)
1

pn
+ . . . .

(52)

Thus, from (51)-(52) and by taking into account (44), we deduce that L is
of the form

L =
(
qm(t,u)p

m + · · ·+ q1(t,u)p+ q0(t,u)
) 1

m

, (53)

where u := (u1, . . . , um−1).
Two different cases arise

1. r = m− 1,m.

This is the simplest situation since from (51)-(53) it follows at once that

Sr =
( r∑

s=1

r − s+ 1

r + 1
tsLs + γLm+n + j(Mr)L

r+1
)
≥0
,

is a function depending of (p, t) and u = (u1, . . . , um−1). Therefore, the
(m− 1) hodograph equations

∂Sr

∂p
(pi, t) = 0, (54)

where pi = pi(t,u) are the zeros of ∂Lm/∂p ,are enough for determining u.

2. r ≥ m+ 1.

The function Sr = (Sr)≥0 depends on (p, t) and ũ = (u1, . . . , ur−1), so
that in addition to the (m − 1) hodograph equations (54) a set of (r − m)
new equations involving t and ũ are required. These additional equations
are supplied by vanishing the coefficients of the negative powers 1/pn (n =
1, . . . r −m) in

(Lm)≤−1 = 0.
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3.3 Examples

In the following examples we exhibit solutions u of the dKP equation (4)
depending on an arbitrary function j = j(ρ). They are orbits of Gelfand–
Dikii solutions u0 under the action of the symmetry generated by (45). Notice
that according to (45)-(46) we can obtain u0 by setting j = ρ in the expression
of u.

Examples

1. For
r = m = 2, f(P

1

2 ) := γP
7

2 ,

the generating function (47) becomes

J2(P, ρ) = γP
7

2 + j(ρ)P
3

2 , ρ :=
x

3p2
, (55)

and L
2 takes the form

L
2 =(L2)≥0 =

p2

(j′(t))2/3
− 4

9

yj′′(t)

(j′(t))5/3
p+

2u1

(j′(t))2/3

(56)

−2

9

xj′′(t)

(j′(t))5/3
− 4

27

y2j′′′(t)

(j′(t))5/3
+

20

81

y2(j′′(t))2

(j′(t))8/3
.

Hence ∂L2/∂p has a unique zero given by

p1 =
2

9
y
j′′(t)

j′(t)
.

Moreover the expression of

S2 =
(1
3
yL2 +

2

3
xL + γL7 + j(M2)L

3
)

≥0
.

as a function of p can be computed by using (57) and the expansion

j(M2) = j(t) +
2

3
yj′(t)

1

p
+
(x
3
j′(t) +

2

9
y2j′′(t)

) 1

p2

+
(
− 2

3
yj′(t)u1 +

4

81
y3j′′′(t) +

2

9
xyj′′(t)

) 1

p3
+O

( 1

p4

)
.
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In this way the hodograph equation (∂S2/∂p)|p=p1 = 0 turns out to be an
equation for u = u1, which yields the following solution of the dKP equation

u =
F

105γ
− 6j(t)j′(t)4/3

F

+
9j′(t)j′′(t)x+ 6j′(t)j′′′(t)y2 − 8j′′(t)2y2

81(j′(t))2
, (57)

where

F : = γ2/3
(
− 7350j′(t)4/3j′′(t)y2 − 33075j′(t)7/3x+ 105

√
35G

)1/3
,

G : =
1

γ

(
648j(t)3j′(t)4 + 140γj′(t)8/3j′′(t)2y4 + 1260γj′(t)11/3j′′(t)xy2

+ 2835γj′(t)14/3x2
)
.

2. By setting
r = m = 3, f(P 1/3) := γP 7/3,

in (47) one finds that the first two coefficients of the expansion (1) of L are
given by

u = u1 = − 1

1024 j21

(
90 j22t

2 − 72 j1j3t
2 − 128 j1j2y + Z2

)
, (58)

u2 =
−21 γj81j2t Z

4 + F Z2 + 8388608 j
59

4

1 y + 2359296 j
55

4

1 j2t
2

114688 γj111 Z
. (59)

where

ji : =
∂ij

∂ρi
(t4), i ≥ 0,

F :=− 16384 j0j
47

4

1 + 7168 γj101 j2x− 13440 γj91j
2
2ty + 5670 γj81j

3
2t

3

+2016 γj101 j4t
3 − 7560 γj91j2j3t

3 + 10752 γj101 j3ty,
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and Z = Z(x, y, t, t4) is a root of the equation

49 j301 γ2Z10 +
(
5637144576 γj

151

4

1 x+ 2113929216 γj
147

4

1 j2 ty

− 1610612736 j20j
75

2

1 + 396361728 γj
147

4

1 j3t
3

− 297271296 γ j
143

4

1 j22t
3
)
Z4 + 422212465065984 j

87

2

1 y2

+ 33397665693696 j
83

2

1 j22t
4 + 237494511599616 j

85

2

1 j2t
2y = 0.
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