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A simple model of a polymer is considered: a chain of (different) point masses,
connected by harmonic springs, embedded in two dimensional space. In order to
determine conditions for existence and stability of breather excitations, the method
of numerical continuation of a breather solution from the anticontinuous limit is
employed. Approaching the limit of equal masses, stable breather solutions are
found only within an extremely narrow band of frequencies.

1. Introduction

The search for discrete breather solutions in simple models of polymers with

a secondary structure might be regarded as a step towards an understanding

of the role that local excitations might play for the functionality of proteins.

A minimal model should include the following two features:

(1) a one-dimensional system (chain) is embedded in d-dimensional

space (d > 1),

(2) inter-particle interactions involve at least d neighbours in order to

obtain a secondary structure.

2. The model

We use a slightly modified version of a model proposed by Zolotaryuk et

al.:1 a chain of N classical particles (point masses) mi, i = 1, ..., N , which

interact by means of linear forces between nearest and next-nearest neigh-

bours. The Hamiltonian function of the system is

H : R4N → R
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(q1, ...,qN,p1, ...,pN) 7→

N∑

i=1

pi
2

2mi

+

+

N−1∑

i=1

U(|qi − qi+1|) +

+

N−2∑

i=1

V (|qi − qi+2|).

The particles are allowed to move in the Euklidian plane, i.e., qi,pi ∈

R

2. For closest similarity to real polymers, free boundary conditions are

employed. In contrast to the original model of Zolotaryuk et al., we allow

different values for the masses mi. This facilitates the construction of an

’anticontinuous limit’ as explained (and required) in Sec. 3.1.

For simplicity, harmonic interaction potentials U(x) = V (x) = 1

2
x2

are chosen between nearest as well as next-nearest neighbouring particles.

Despite the linearity (in the inter-particle distance) of the forces, the ge-

ometry of the chain gives rise to effective nonlinearities in the equations of

motion, and therefore existence of breather solutions is not ruled out from

the outset.

The system displays a secondary structure, for example a zig-zag chain

(or 2-helix) as illustrated below. (Note, however, that the ’equilibrium

configuration’ of the system is not unique!)
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Figure 1. Zig-zag chain.

3. Existence of breathers and stability conditions

We are interested in the following question: In which way do the parameters

of the system (like oscillation frequencies or particle masses) have to be

tuned in order to find breather solutions?
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3.1. Numerical calculation from the anticontinuous limit

A numerical method due to Maŕın and Aubry2 is used in order to determine

the existence region of breather solutions: A (known) breather solution of

the system for certain parameter values is continued to other (not too differ-

ent) parameter values by means of Newton’s method. Such a continuation

is possible, in principle also analytically, for breather oscillation frequencies

which are non-resonant with the spectrum of the linearized equations of

motion of the system. This allows us to obtain breather solutions for, e.g.,

arbitrary mass ratios and frequencies, provided that

(1) such solutions exist, and

(2) a breather solution is known from which continuation up to the

desired parameter values is feasible.

As a starting point for such a continuation, a certain limiting value (the

so-called anticontinuous limit) of a parameter is taken, for which existence

of breather solutions is known. Here, a diatomic chain is considered, where

two particles of mass M ≥ 1 are followed by one particle of mass m = 1:

MMmMMmMMmMMm...

Existence of localized oscillations (breathers) is obvious in the limit of zero

mass ratio, m

M
→ 0, for example: all particles are at rest but a single one of

mass m, which is coupled only to particles of mass M → ∞. This solution

can be used as a starting point for continuation.

3.2. An “existence and stability diagram”

The number of parameters present in the system is still quite large. As an

example, existence and stability regions of discrete breathers are investi-

gated for a particular choice of parameters:

• A chain of 23 particles.

• The set of initial conditions in the anticontinuous limit is restricted:

all but the centre particle are at rest. The centre particle moves

on the reflection symmetry line of the zig-zag chain. (Consider

a vertical oscillation of particle 6 in Figure 1, while all the other

particles are at rest.)

• For an oscillating particle in the anticontinuous limit, the frequency

is a non-monotonic function of the energy (see Fig. 2). We restrict

the initial conditions to energies corresponding to the decreasing

(left hand) part of f(energy).
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Figure 2. Frequency vs. energy of a single particle of mass m = 1 in the anticontinuous

limit.

In order to visualize such a breather solution, the orbits of the particles of a

breather solution are plotted in Fig. 3 for mass ratio m

M
= 2

7
and frequency

f = 0.212.

Exemplarily for the above choices of particle number and initial condi-

tions, Figure 4 shows the regions in the parameter space of frequencies and

mass ratios, for which symmetric breather solutions can be found.

3.3. Stability of breathers

In the anticontinuous limit, all breather solutions are stable. For non-zero

mass ratios m

M
, there are regions of stable and unstable breathers. Note
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Figure 3. Orbits of the particles of a symmetric breather solution located at the central

position for mass ratio m

M
= 2

7
and frequency f = 0.212.
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Figure 4. Existence and stability regions of symmetric breather solutions in the param-
eter space of breather frequencies f and mass ratios m

M
. The bottom line corresponds to

the anticontinuous limit. The thin gray lines are the eigenfrequencies of the linearized
equations of motion. Under the conditions specified above, breather solutions are found
for parameter values lying between the solid black lines.
The solid black line on the right hand side coincides with an eigenfrequency of the lin-
earized equations of motion. Approaching this boundary, the breather amplitude goes
to zero. On the left hand side, the region of breather existence is more difficult to deter-
mine, mainly because of the following reason: the concept of localization is somewhat
ill-defined in finite systems. Numerically, breather solutions can be continued across the
bold dashed line coinciding, again, with an eigenfrequency of the linearized equations of
motion. The localization of the solutions found in this region, however, is so weak, that
a distinction between extended and localized modes does not seem feasible.
In between these two boundaries breather solutions exist, although, for larger mass ratios
m

M
, stable breathers appear only within an extremely narrow frequency range.
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that both, stable and unstable breathers, are obtained by continuation from

the same solution in the anticontinuous limit, and continuation across the

stability boundary does not cause any numerical difficulties. The regions

of (linearly) stable and unstable breathers are indicated in Figure 4.

In contrast to the original work [2], the numerical continuation was

performed with respect to two parameters, namely the mass ratio and the

frequency. From Figure 4 it becomes clear, why this process is essential: for

masses M . 10, stable breather solutions cannot be found by continuing a

solution from the anticontinuous limit while keeping the frequency fixed.

3.4. Other parameter values

Varying some parameters of the model under investigation, quantitative

changes occur, while no qualitative modifications of the phase diagram

have been observed:

• Due to the localized character of the oscillation, increasing the num-

ber of particles does not lead to significant changes (maybe apart

from the case of mass ratio m

M
close to unity, where localization is

less distinct).

• Enlarging the coupling constant of the nearest neighbour interac-

tion (while keeping the next-nearest neighbour coupling constant to

unity), the lower bound on the accessible frequencies can be shifted

towards zero.

• Breather existence and stability can be strongly influenced by the

shape of the interaction potentials U and V in the Hamiltonian. In

particular the softening (as in our case) or hardening property of

the potentials often gives rise to entirely different behaviour of the

respective systems.
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