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On Breaking Time Reversal in a Simple, Smooth, Chaotic System
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Within random matrix theory, the statistics of the eigensolutions depend fundamentally on the
presence (or absence) of time reversal symmetry. Accepting the Bohigas-Giannoni-Schmit con-
jecture, this statement extends to quantum systems with chaotic classical analogs. For practical
reasons, much of the supporting numerical studies of symmetry breaking have been done with bil-
liards or maps, and little with simple, smooth systems. There are two main difficulties in attempting
to break time reversal invariance in a continuous time system with a smooth potential. The first
is avoiding false time reversal breaking. The second is locating a parameter regime in which the
symmetry breaking is strong enough to transition the fluctuation properties fully toward the broken
symmetry case, and yet remain weak enough so as not to regularize the dynamics sufficiently that
the system is no longer chaotic. We give an example of a system of two coupled quartic oscilla-
tors whose energy level statistics closely match those of the Gaussian unitary ensemble, and which
possesses only a minor proportion of regular motion in its phase space.

Since its introduction into nuclear physics by Wigner1,
random matrix theory (RMT) has grown to encompass
a broad variety of applications, and can be viewed as
a significant portion of the foundation of the statistical
mechanics of finite systems. One of the central tenets
of RMT emphasized by Wigner was that the ensembles
carry no information other than that required by the
symmetries of the system. A very important symmetry is
time reversal which determines whether the ensemble is
composed of real symmetric matrices, Gaussian orthogo-
nal ensemble (GOE - good symmetry), or complex hermi-
tian matrices, Gaussian unitary ensemble (GUE - broken
symmetry). This distinction leads to quite different pre-
dictions for the statistical properties of both the energy
levels and the eigenfunctions. In fact, Wigner proposed it
as a test of time reversal invariance in the strong interac-
tion using slow neutron resonance data2. His suggestion
was not fully realized until more than twenty years later3.

Time reversal is well known to be an antiunitary sym-
metry in quantum mechanics, and Robnik and Berry gen-
eralized the criterium for expecting the statistical prop-
erties of the GOE to include any antiunitary symme-
try4. An elementary example of an antiunitary symmetry
would be the product of some reflection symmetry and
time reversal. Some of the early investigations of non-
invariant systems were of Aharanov-Bohm chaotic bil-
liards5, symmetry breaking quantum maps6), and com-
binations of magnetic and scalar forces7.

There is no known mechanical-type system of a particle
moving under the influence of a simple, closed, smooth
potential whose dynamics is rigorously proven to be fully
chaotic, independently of the question of anti-unitary
symmetry; we exclude diffusive dynamics associated with
random potentials. For some period of time, the x2y2

quartic potential was a prime candidate, but eventually
stable trajectories were found8. Nevertheless, there ex-
ists a family of quartic potentials with x2y2 as a lim-
iting case whose fluctuations closely approximate GOE
statistics, and whose classical dynamics contain negli-

gible phase space zones of stable trajectories. There-
fore,to construct a close approximation of a Hamilto-
nian without an anti-unitary symmetry and GUE statis-
tics, we begin by considering the symmetry preseverving
two-degree-of-freedom coupled quartic oscillators whose
Schrödinger equation is given by

Ĥ0Ψ(~r) = −
h̄2∇2

2m
Ψ(~r) + V̂ (~r)Ψ(~r) = EΨ(~r) (1)

The potential can be expressed as

V̂ (~r) = a(λ)

[

x4

b
+ by4 + 2λx2y2

]

(2)

where a(λ) is a convenient constant, b 6= 1 lowers the
symmetry, and λ gives the strength of the coupling;
(b = 1, λ = −1) is equivalent to V (~r) = x2y2 by a π/4 ro-
tation of the (x, y) coordinates. The corresponding clas-
sical Hamiltonian is

H0(~r, ~p) =
~p2

2m
+ V (~r) (3)

This system is symmetric under time reversal and re-
flections with respect to x and y. For strong couplings,
λ ≤ −0.6, the statistics have been shown to agree ex-
tremely well with the GOE predictions9. As a first at-
tempt to break time reversal symmetry, we add the fol-
lowing term to the quantum Hamiltonian (Ĥ = Ĥ0+Ĥ1),

Ĥ1 =
ih̄ǫ

2m

(

r
∂

∂r
r +

∂

∂r
r2
)

(4)

where r is the radial polar variable. Ĥ1 breaks time re-
versal invariance in the Hamiltonian without altering the
original reflection symmetries, and thus does not admit
an antiunitary symmetry from any combination of reflec-
tion and time reversal. This term was chosen to maintain
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a scaling property of the eigensolutions of the quartic os-
cillators due to the homogeneity of the potential9. How-
ever, Ĥ1 gives us an excellent example of false symmetry
breaking. In fact, it turns out that Ĥ1 is given by the
cross terms arising from a vector potential A(~r) = ǫr2r̂
(which can also be expressed as the gradient of a scalar
function); i.e.

Ĥ1 =
ih̄

2m
(∇ ·A(~r) +A(~r) · ∇) (5)

This means that, up to the addition to the potential of
a term ǫ2r4, H1 can be understood as deriving from a
magnetic field B = ∇×A = 0, which obviously will not
change any physical quantity. And indeed, it is possible
to make a gauge transformation and rewrite the wave
function using the Dirac substitution

Ψ(~r) = exp

(

i

h̄

∫ ~r

A(~r′) · d~r′

)

Ψ′(~r) = e
ir

3

3h̄ Ψ′(~r) (6)

in order to cancel Ĥ1 plus the aforementioned ǫ2r4 term.
Furthermore, the transformation is single valued since
B = 0 implies

∮

A(~r′) · d~r′ = 0 . (7)

The expectation, following the considerations of4, is
therefore to find GOE statistics and not those of the
GUE. See the upper panel of Fig. (1), which compares
the number variance of the system (i.e. the variance of
the number of levels found in an energy interval of width
s scaled locally to mean unit level density) with the pre-
dictions of the GOE and GUE. The GOE statistics are
closely matched to a mean level spacing and a bit be-
yond. The parameter ǫ was chosen slightly greater than
unity because this forced the eigenlevels through a couple
of avoided crossings, which would have been sufficient to
push the spectral fluctuations toward GUE if the sym-
metry was not being falsely broken.
From a classical perspective, the Hamiltonian, not in-

corporating the jauge transformation, is

H(~r, ~p) =
p2r − 2ǫr2pr

2m
+

p2
θ

2mr2
+ V (r, θ) (8)

which itself appears to violate time reversal symmetry,
as well as in Hamilton’s equations of motion:

ṙ =
1

m
(pr − ǫr2) ṗr = −

∂V (r, θ)

∂r
+ 2

ǫ

m
rpr

θ̇ =
pθ
mr2

ṗθ = −
∂V (r, θ)

∂θ
(9)

However even without considering a canonical transfor-
mation, just by converting to the Lagrangian description
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FIG. 1: The number variance for the quartic oscillators
(solid lines) compared to the GOE and GUE (dashed lines).
The upper panel shows the statistics for the hidden symme-
try case, i.e. with the Hamiltonian term in Eq. (4)) with
(ǫ = 0.5, λ = −0.65). The lower panel shows the results using
the Hamiltonian term of Eq. (11) and (ǫ = 1.0, λ = −0.80).
Spectra containing a total of 600 levels were used to generate
the statistics. The lowest 50 eigenvalues were dropped.

of the dynamics using the left hand side equations, it
turns out that

L =
1

2
(mṙ2 +mr2θ̇2)− V (r, θ) +

ǫ2

2m
r4 + ǫr2ṙ (10)

The final term, which appears to break the symmetry,
cannot enter the equations of motion. They are invariant
under addition of any total time derivative. It is not
always obvious, a priori, whether a symmetry breaking
term leads to false symmetry breaking or not.
If we multiply the symmetry breaking term by any

function of θ, it can no longer be a total time derivative,
nor can the vector potential be expressed as the gradient
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FIG. 2: The x = 0 Poincaré surface of section for the
Hamiltonian with the term from Eq. (11), and parameters
(λ = −0.8, ǫ = 1) as in the bottom panel of Fig. (1). The
coordinates y and py are in scaled unit.

of a scalar function. Consider

Ĥ ′

1 =
ih̄ǫ

2m
cos2 θ

(

r
∂

∂r
r +

∂

∂r
r2
)

(11)

The vector potential becomes A(~r) = ǫr2 cos2 θr̂, and

therefore B = 2ǫxy/r 6= 0. The integrals
∫ ~r

A(~r′) · d~r′

and
∮

A(~r′) · d~r′ are path dependent. The Dirac substi-
tution is not useful, and false symmetry breaking is not
an issue.

Driving the eigenvalues at numerically attainable en-
ergies through a couple of avoided crossings forces ǫ to
be chosen in the neighborhood of unity. This has a
strong regularizing effect on the nature of the dynam-
ics. See the surface of section in Fig. (2) for the case
(λ = −0.8, ǫ = 1). Only its spectrum gives number vari-
ance statistics close to the GUE results; see the lower
panel of Fig. (1).

To summarize, we have given an example of a simple,
continuous, dynamical system that comes close to gener-
ating GUE statistics. It is surprisingly difficult to find
an essentially, fully chaotic system that does so. The pit-
fall of false time reversal breaking can lead to symmetries
that are quite well hidden, and the addition of a vector
potential to a dynamical system has a strong tendency
to move the system away from fully developed chaos.
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