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Light bullets in quadratic media with normal dispersion at the second harmonic
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Stable two- and three-dimensional spatiotemporal solitons (STSs) in second-harmonic-generating
media are found in the case of normal dispersion at the second harmonic (SH). This result, surprising
from the theoretical viewpoint, opens a way for experimental realization of STSs. An analytical
estimate for the existence of STSs is derived, and full results, including a complete stability diagram,
are obtained in a numerical form. STSs withstand not only the normal SH dispersion, but also
finite walk-off between the harmonics, and readily self-trap from a Gaussian pulse launched at the
fundamental frequency.

PACS numbers: 42.65.-k 42.65.Tg

A multidimensional soliton is a self-supporting solitary
pulse resulting from the balance between nonlinearity of
the medium and diffraction and dispersion of the wave
field. The most physically relevant realization of this is
provided by optical spatiotemporal solitons (STSs), alias
“light bullets”, which are self-confined in the longitudinal
and transverse directions [1].

Spatial optical solitons, which are not localized in the
longitudinal direction, have been studied in depth [2],
and observed in both one- [3] and two- [4] dimensional
(1D and 2D) geometries. Quasi-2D STSs, which are lo-
calized in the longitudinal and one transverse directions,
have been observed too [5]. A challenge for the experi-
mentalist is creating a fully 3D bullet. The issue has a
special physical purport, as, unlike 2D solitons which oc-
cur in various media, optical crystals provide for a single

real possibility to create 3D solitons in classical physics.
Besides their significance as fundamental objects, STSs
may provide THz switching rates in optic-logic systems,
if used as information bits [6].

It is well known that STSs are unstable in Kerr me-
dia [7]. They can be stabilized if the nonlinearity is sat-
urable [8]. Other effects can also stabilize a spatiotempo-
ral pulse, as shown in an experiment demonstrating sta-
ble space-time focusing in a planar waveguide [9]. How-
ever, it was not a soliton, as the stabilization was due to
multi-photon absorption and intra-pulse Raman scatter-
ing, which are dissipative effects.

A promising path for making stable STSs is to em-
ploy second-harmonic generation (SHG). Various types
of solitons in SHG materials have attracted a lot of in-
terest [10]. In particular, it was proven long ago [11], by
means of variational estimates, that SHG must give rise
to stable 2D and 3D solitons realizing a minimum of the
Hamiltonian.

Most theoretical works on STSs in SHGmedia assumed
spatiotemporal isotropy [12], which implies equal GVD
(group-velocity-dispersion) coefficients at the fundamen-
tal frequency (FF) and second harmonic (SH), that does

not take place in reality. A general non-symmetric case
was considered in Ref. [13]. Using the variational ap-
proximation (VA), STSs were predicted, and numeri-
cal simulations verified their stable existence in the 2D
case. Later, numerically exact 2D and 3D soliton solu-
tions were found and their stability was confirmed [14].
Then, another ingredient important for the description
of the real physical situation was introduced, namely, the
group-velocity mismatch (GVM, alias walkoff) between
the harmonics, showing that stable STSs exist in this
case too [15].

It is obvious that solitons in SHG media may only exist
if GVD is anomalous at FF. Even without postulating the
above-mentioned spatiotemporal isotropy, all the previ-
ous works assumed that GVD must be anomalous at SH
too. However, this assumption ignores a fundamental
problem: in available SHG materials, FF suffers strong
absorption if the SH wavelength is long enough for the
dispersion to be anomalous. Note that, in Ref. [13], VA
formally predicted STSs for normal GVD at SH, but sim-
ulations led to conclusion that it could really exist only
with anomalous GVD at SH, while the prediction for the
normal SH dispersion was an artifact of VA based on the
Gaussian ansatz, which incorrectly treats exponentially
decaying tails of the soliton (see a discussion of the role of
the tails below). In the 3D case, VA predicted that STSs
could exist at small normal values of GVD at SH, but
this was never checked. Besides its crucial importance
for the creation of LBs in experiment, the issue is also a
challenge for analysis of multidimensional nonlinear-wave
models.

In this work we demonstrate that, contrary to the com-
mon belief, STSs in the 3D and 2D cases effectively exists
and can be stable in SHG media with normal GVD at
SH. We also conclude that it survives in the presence of
GVM. These results greatly enhance the likelihood that
STSs will be generated experimentally.

The co-propagation of the FF and SH waves in SHG
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media is described by known equations [11, 13],

iuξ +∇2
⊥u+ uττ − u+ u∗v = 0, (1)

2ivξ +∇2
⊥
v + δvττ − iσvτ − γv + (1/2)u2 = 0. (2)

Here, u =
√
2E1e−iz/z0z0ω

2
1χ

(2)/(k1c
2) and v =

E2e−2iz/z0z0ω
2
1χ

(2)/(k1c
2), E1,2 are complex electric-field

envelopes at the frequencies ω1 and 2ω1, k1 ≡ k (ω1)
is the FF carrier wavenumber, ξ = z/z0 and τ =
(t − z/vg)/t0 are the normalized propagation distance
and reduced time, vg and t0 being the group velocity

and time scale at FF, z0 = 2t20/k
′′

1 , where k
′′

1 is the
GVD coefficient at FF, and the transverse radial coor-
dinate is r =

√

2k1 (x2 + y2) /z0. The diffraction oper-
ator, ∇2

⊥
≡ ∂2/∂r2 + [(D − 2)/r]∂/∂r, where D = 3

or 2 is the spatial dimension, acts on the transverse co-
ordinates {x, y} ≡

√

2k1/z0r. In the experiment, units
of time and transverse and propagation distance in the
scaled equations typically correspond to 100 fs, 50µm,
and 1 cm, respectively [5]. Further, σ in Eq. (2) is
GVM, and γ ≡ 4 + 2z0[2k(ω1) − k(2ω1)] is the phase
mismatch between the harmonics. The equations con-
serve the Hamiltonian, momentum, axial angular mo-
mentum, and the Manley-Rowe invariant (energy), which

is Q = 2π
∫∞

0
rdr

∫ +∞

−∞
dτ

(

|u|2 + 4|v|2
)

in the 3D case.
In Eq. (1), the FH dispersion is anomalous, while the

ratio k
′′

2 /k
′′

1 ≡ δ of the SH and FH GVD coefficients is
assumed negative, corresponding to normal GVD at SH.
This case, which corresponds to the experimental reality,
has not yet been studied (except for VA, with σ = 0, in
Ref. [13]).
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FIG. 1: The energy of stationary spatiotemporal solitons vs.
the phase mismatch γ in the case of normal GVD at the sec-
ond harmonic (δ = −0.01). The curves with δ = 1 represent
earlier known solutions and are included for comparison.

First, an estimate for the existence of STSs can be ob-
tained for small |δ|. To this end, Eq. (2) is treated as
a linear equation for SH, driven by the term (1/2)u2.
A SH field component of the CW (continuous-wave)
form, Bcw exp (ik · r− iωτ), which does not vanish as

r, |τ | → ∞ and thus prevents the existence of the soli-
ton, is determined by zeros of the denominator of the
corresponding Green’s function, which are located at

|δ|ω2 − σω − k2 − γ = 0. (3)

On the other hand, an asymptotic form of the solution
to Eq. (1) at r, |τ | → ∞ is u ∼ ρ−(D−1)/2 exp (−ρ), with
ρ ≡

√
τ2 + r2.

FIG. 2: Stability regions for 2D and 3D solitons without
walkoff (σ = 0). The solitons are stable above the respective
borders. The insets show central profiles of the 3D soliton
in the temporal and spatial directions, for δ = −0.02 and
γ = 5. The upper and lower curves pertain to the FF and SH
components u and v, respectively.

An estimate for the maximum amplitude Bcw of the
possible CW component can be derived. To simplify the
presentation, one can adopt a model form of the FF field
complying with the above asymptotics and securing a
globally correct shape of the solution. In the 3D case,
it is u = const·ρ−1 (sinh ρ) sech2ρ, but the final expo-
nential estimate (see below) does not predicate on this
“ansatz”. Straightforward calculations [Fourier trans-
form of u2(r, τ), inverse transform of its product with
the Green’s function of Eq. (2), and isolating a CW con-
tribution from ω determined by Eq. (3)] show that, in
the case σ = 0 (no-walkoff), the CW intensity is expo-
nentially small (for small |δ|) if γ > 0, an upper estimate
for it being

B2
cw < const · γ (γ/|δ|)3/2 exp

(

−π
√

γ/|δ|
)

. (4)

While the pre-exponential part of this estimate
may be ansatz-dependent, the crucially important
exponential part is not, and it applies to the
2D case as well; if σ 6= 0, it is replaced

by exp

{

−π

[

√

(γ/|δ|) + (σ/2δ)
2 − |σ/2δ|

]}

, i.e., the

walkoff makes the estimate weaker.
Thus, although it is not guaranteed that the STS exists

as a rigorous solitary-wave solution, the one with the
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CW tail obeying the exponentially small estimate may be
tantamount to a true soliton in any possible experiment.
The actual region of the existence and stability of STSs
should be found numerically, which is done below.
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FIG. 3: Evolution of the 3D soliton self-trapping from an
initial Gaussian pulse for δ = −0.01, γ = 1, and σ = 0.
The propagation distance corresponds to ≈ 800 dispersion
lengths. The inset shows the evolution of the FF amplitude on
a shorter scale, for the same case and the one with δ = 0.095,
closer to the instability border.

Stationary solutions were found by solving the z-
independent version of Eqs. (1) and (2) with δ < 0.
Although the above analysis suggests that STS may
have a small nonvanishing tail in the SH component, no
tails were found, with the numerical accuracy available
[O(10−4)], in all the pulses which were identified as soli-
tons. It was also verified that the shape of the soliton
does not change with increasing the numerical accuracy
and/or size of the integration domain (for instance, there
was no change with the increase of the number of points
from 643 to 2563). Insets in Fig. 2 show an example of
a 3D soliton, found for δ = −0.02, γ = 5 and σ = 0.
An STS family was generated by varying δ and γ, Fig.
1 showing the soliton’s energy versus γ. A conclusion of
direct relevance to experiment is that, in the most chal-
lenging 3D case, energy required to create a soliton with
normal GVD at SH is smaller than in the previously
studied case δ = 1 by a factor ≃ 2.5.
Further consideration shows that, at large γ, the bulk

of the STS’s energy is in FF (in compliance with the
cascading limit [10]), while at smaller γ the amplitudes of
both components are nearly equal, hence SH has roughly
four times the energy of the fundamental. This shows
that, remarkably, the soliton is able to exist keeping ≃
80% of its energy in the normal -GVD component.
A crucially important issue is stability of the soli-

tons. First of all, it may be judged using the Vakhitov-
Kolokolov criterion, which states that solitons may only
be stable if dQ/dγ > 0 [10]. Figure 1 shows that the soli-
ton families satisfy this criterion, unless γ is too small.

A systematic stability test was performed by direct sim-
ulations of Eqs. (1) and (2). The results are summarized
in Fig. 2.

At small |δ|, the stability border in Fig. 2 is linear,
which complies with the fact that the exponential factor
in the estimate (4) is a function of the ratio γ/|δ| (the ex-
ponential estimate yields a factor ∼ 10−5 at the stability
border in the figure). Furthermore, the 2D and 3D stabil-
ity borders are almost identical at small |δ|, in agreement
with the fact that the exponential estimate is the same for
both dimensions. The solitons are truly robust: not only
they are not destroyed by perturbations, but they also
readily self-trap from initial pulses of quite an arbitrary
shape, which is illustrated by Fig. 3. Note that the tran-
sition from the initial profile to the soliton’s one takes the
propagation distance of few dispersion lengths (zD), and
the STS remains stable over an extremely long distance
≈ 800zD. This shows not only that the STS will be stable
in any experimental setup, but also that possible energy
leakage due to the formation of the above-mentioned CW
tail cannot be spotted in the course of the extremely long
propagation. The same figure shows persistent intrinsic
oscillations in the stable STS, which is attributed to ex-
citation of an intrinsic mode. The excitation is tangible
if the initial pulse is launched at a point which is located
deep within the stability region. If the pulse is taken
close to the stability border, the inset to Fig. 3 shows
that the vibrations quickly fade, the pulse relaxing to a
stationary soliton through transient emission of radiation
(the same is observed in the 2D case).
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FIG. 4: The evolution of the FF amplitude for 3D solitons
with γ = 15, δ = −0.1 and various values of the GVD pa-
rameter σ. The soliton is generated from a Gaussian pulse
launched in the FF component. It exists up to σ = 3.

The realistic model must include GVM. A previous
work [15] addressed “walking” STSs, but in the case δ >
0. Starting with a Gaussian pulse in the FF component,
we tried to generate STSs with a finite GVD parameter
σ. Figure 4 shows the result: at large γ and relatively
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large negative δ, the bullet self-traps and is found to be
fully localized for moderate values of σ. The pulse cannot
self-trap (decaying into radiation) if σ > 2. The stability
diagram displayed in Fig. 2 can be extended, adding σ as
a parameter. For σ <

∼
1, the stability region is nearly the

same as at σ = 0, but with the increase of σ, it quickly
shrinks and no longer exists for σ > 2.
Lastly, stationary 3D solitons with an internal vortic-

ity were found too. However, they are always unsta-
ble against perturbations breaking their axial symmetry,
similar to what was found for the same type of STS in
the case δ > 0 [16].
In conclusion, we have shown in the numerical form

that 2D and 3D stable spatiotemporal solitons exist in
quadratically nonlinear media when the dispersion is
anomalous at FF but normal at SH. An exponential an-
alytical estimate for the existence of the solitons was ob-
tained. The solitons readily self-trap from a Gaussian
pulse launched at FF, showing no trace of decay over ex-
tremely long propagation distance. The solitons have the
energy smaller than their counterparts in the case of the
anomalous dispersion at SH, and they exhibit robustness
to the walkoff between the harmonics. These features
imply that the solitons of this type can be created under
a variety of experimental conditions.
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