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Abstract

The effect of direct processes on the statistical properties of deterministic

scattering processes in a chaotic waveguide is examined. The single channel

Poisson kernel describes well the distribution of S-matrix eigenphases when

evaluated over an energy interval. When direct processes are transformed

away, the scattering processes exhibit universal random matrix behavior. The

effect of chaos on scattering wavefunctions,eigenphases, and time delays is

discussed.
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I. INTRODUCTION

In 1957, Wigner proposed the use of statistical measures to analyze complex nuclear

scattering data [1]. It was soon found that, in some nuclear scattering data, the spacing

between scattering resonances was distributed in a manner similar to the spacing of energy

levels of a Gaussian random Hamiltonian [2]. In the 1960’s, extensive work was done to

develop a systematic theory of the statistical properties of random hermitian matrices [3,4]

and random unitary matrices [5,6]. The general criterion for constructing these random

matrices is that they minimize information. In 1979, the appearance of random matrix-like

behavior in quantum systems was linked to underlying chaos in the classical deterministic

dynamics of these systems [7–10]. Since then a large body of work has developed linking

the statistical properties of bounded and open quantum systems to underlying deterministic

chaos [11,12].

Historically there have been two different approaches to describing the statistics of quan-

tum scattering processes in chaotic systems. One approach [13] begins directly with the

Hamiltonian and uses it to build the scattering matrix. The other approach [14,15], begins

directly with the scattering matrix. In both cases, random matrices are used to describe

scattering processes and the statistical properties of the eigenphases of the scattering matrix

and partial delay times can be obtained and compared to experiment. There has been con-

siderable success in recent years to link the results and predictions of these two approaches

[16].

The connection between the statistical properties of scattering processes and underlying

chaos is not straightforward because scattering events may involve either reactive processes

or direct processes. Reactive scattering processes are those for which an incident particle

becomes engaged with the dynamics in the reaction region, and may be delayed there for

a considerable time. Direct processes are those for which the particle passes through the

reaction region without becoming significantly engaged in the reaction region. One predic-
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tion of the random matrix theory (RMT) of scattering is that, if the scattering process is

truly chaotic, the average value of the S-matrix will be zero. However, if direct processes

are present this will not happen.

In this paper, we will study the deterministic scattering of a quantum particle in a two

dimensional ballistic waveguide which has a classically chaotic cavity formed by a ripple bil-

liard connected to a single lead at one end (see Figure 1). The ripple billiard is particularly

well suited to the use of the reaction matrix theory approach to scattering [17], because a

simple coordinate transformation [18,19] allows us to construct a Hamiltonian matrix and

thus an eigenvalue equation for the basis states inside the cavity. We will compare the results

of deterministic scattering from the chaotic cavity to some recent predictions of random ma-

trix theory as regards the scattering process. The open geometry of the waveguide in Fig.

(1) ensures that direct processes will play an important role in scattering. We show that the

contribution of the direct processes to the scattering can be transformed out and the sta-

tistical properties of the reactive part of the scattering process can be compared to random

matrix predictions. Our discussion focuses on quantum particles and we will use parameters

appropriate for electrons in waveguides made with GaAs, for which a number of experi-

ments have been done [20–22]. However, our results also apply to electro-magnetic waves in

flat microwave cavities, because the eigenmodes in these cavities satisfy a Schrodinger-like

equation [23–25].

We begin in Section (2), by reviewing the reaction matrix theory of deterministic scat-

tering in the ballistic waveguide and we study some properties of the cavity basis states.

In Section (3), we study various statistical properties of the eigenphases of the waveguide

scattering matrix (S-matrix). We show that, when the cavity dynamics is chaotic, the deter-

ministic S-matrix eigenphases exhibit level repulsion and their distribution is well described

by a Poisson kernel. In Section (4), we compare the distribution of partial delay times for

the deterministic scattering process to the predictions of random matrix theory. Finally, in

Section (5) we give concluding remarks.
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II. REACTION MATRIX DESCRIPTION OF SCATTERING

We will explore the behavior of a particle of mass, m, in a ballistic waveguide as it

scatters from the ripple cavity shown in Fig. (1). A particle with energy, E, enters the

cavity from the left along a straight lead which has infinitely hard walls. The particle wave

is reflected back to the left by an infinitely hard wall located at x = L. The dynamics inside

the cavity, 0 < x < L, can range from mixed to fully chaotic as the ripple amplitude is varied.

The Schrodinger equation, which describes propagation of a particle wave, Ψ(x, y, t), in the

waveguide at time, t, is given by

ih̄
∂Ψ(x, y, t)

∂t
= ĤΨ(x, y, t) =

[

− h̄2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+ V (x, y)
]

Ψ(x, y, t), (2.1)

where Ĥ is the total Hamiltonian of the particle in the waveguide and h̄ is Planck’s constant.

The potential, V (x, y), has the following properties: V (x, y) = ∞ for (L≤x < ∞); V (x, 0) =

∞ for (−∞≤x≤L); V (x, y = g(x)) = ∞ for (0 < x < L); and V (x, y = d) = ∞ for

(−∞ < x < 0); where g(x) = d + a sin(5πx/L) gives the contour of the ripple, d is

the average width of the cavity, L is the length, and a is the ripple amplitude. In all

subsequent sections, we take the particle mass to be the effective mass of an electron in

GaAs, m = 0.067me, where me is the free electron mass. An energy eigenstate, |E〉, with

energy, E, satisfies the equation, Ĥ|E〉 = E|E〉, and evolves as Ψ(x, y, t) = 〈x, y|E〉 e−iEt/h̄.

As shown in reference [19] the waveguide energy eigenstates can be expressed in the form

〈x, y|E〉 =
∞
∑

j=1

γjφj(x, y) +
∞
∑

n=1

Γn Φn(x, y). (2.2)

The states, Φn(x, y), are the basis states in the lead (x≤0),

Φn(x, y)≡〈x, y|Φn〉 =
√

2

d
χn(x)sin

(

nπy

d

)

(2.3)

(n = 1, 2, ...,∞). These will consist of both propagating and evanescent modes, as we

will discuss below. The states, φj(x, y)≡〈x, y|φj〉 (j = 1, 2, ...,∞), are the basis states in the

cavity (0≤x≤L). In practice, we truncate the number of cavity basis states to some large but
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finite number, M . The value of M is determined by the accuracy desired for the calculation.

The coefficients, Γn and γj , in Eq. (2.2) are defined Γn = 〈Φn|E〉 and γj = 〈φj|E〉.

A complete set of basis states, φj(x, y), inside the ripple cavity has been obtained

by solving the Schrodinger equation in the cavity, using Neumann boundary conditions

((
dφj

dx
)x=0 = 0) at the entrance (x = 0), and Dirichlet boundary conditions, (φj(x, y) = 0) at

the walls. We obtained the eigenfunctions, φj(x, y) and the associated eigenvalues, λj , using

the transformation technique discussed in Ref. [19], Sect. V.

In Fig. (2.a), we show a Poincare surface of section for a classical particle in a closed

ripple cavity with the same shape as in Fig. 1, and with hard walls. We choose d = 101Å,

L = 511Å, and a = 1.0Å. We have plotted Birkhoff coordinates, px/p = cos(α) versus

x, each time the particle hits the lower wall at point x (α is the angle between the wall

and the momentum). For these billiard dimensions, the classical phase space contains a

mixture of regular orbits, nonlinear resonances, and chaotic motion. If we increase the

ripple amplitude, a, there is a range of values of a for which the classical motion appears to

become totally chaotic. For the scattering system (with one end of the cavity open) periodic

orbits and nonlinear resonance regions can’t be reached classically by a particle that enters

from the left, but quantum mechanically tunneling into these regions is possible as we will

show Section IV (see also [26]). In Figs. (2.b-e), we show Husimi plots of quantum Poincare

surfaces of section [30] of cavity basis states, φj(x, y), with eigenvalues γ983 = 257.1934E1,

γ985 = 257.9339E1, γ989 = 258.6655E1, and γ990 = 258.9072E1, where E1 = h̄2π2

2md2
. The

Husumi plots in Fig. (2.c) and Fig. (2.d) show that these bases states reside on nonlinear

resonances of the underlying classical phase space. In Section IV, we will show that these

bases states give the primary contribution to sharp resonances in the transmission at these

cavity parameters.

Inside the lead, we must distinguish between propagating and evanescent modes. The

longitudinal component of the eigenstates in the leads, for propagating modes, can be written

Γnχn(x) =
an√
kn

e−iknx +
bn√
kn

eiknx, (2.4)
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where the wavevector, kn is given by kn =
√

2mE
h̄2 − (nπ

d
)2. If there are N propagating modes

then n = 1, ..., N . Here we use a unit current normalization. A particle propagating in the

nth channel has energy in the interval, n2E1≤E≤(n + 1)2E1, where E1 =
h̄2π2

2md2
= 0.0738eV.

All remaining modes, n = N + 1, ...,∞, are evanescent and can be represented in terms of

the states,

Γnχn(x) =
cn√
κn

e−κn|x|, (2.5)

where κn =
√

(nπ
d
)2 − 2mE

h̄2 . In Ref. [19], we showed that the evanescent modes for this system

do not make a significant contribution to the scattering properties that we are interested in.

Therefore we will neglect the evanescent modes in subsequent sections.

As shown in Ref. [19], The eigenvalue equation, Ĥ|E〉 = E|E〉, leads to the relation,

γj =
h̄2

2m

1

(E − λj)

N
∑

n=1

φ∗
j,n(0)

(

dχn

dx

)

x=0
Γn. (2.6)

Also, continuity of energy eigenstates at x = 0 gives

Γnχn(0) =
M
∑

j=1

γjφj,n(0) =
N
∑

n′=1

Rn,n′

(

dχn

dx

)

x=0
Γn′. (2.7)

where

Rn,n′ =
h̄2

2m

M
∑

j=1

φ∗
j,n′(0)φj,n(0)

(E − λj)
(2.8)

is the (n, n′)th matrix element of the reaction matrix [17]. The quantity, φj,n(0) is a measure

of the overlap between the jth cavity state, and the nth channel in the lead, evaluated at the

interface,

φj,n(0) =

√

2

d

∫ d

0
dy φj(0, y) sin(

nπy

d
). (2.9)

Let us now form an N×1 column matrix, b̄ (ā) whose matrix elements consist of the

N probability amplitudes {bn} ({an}) of the outgoing (incoming) propagating modes. The

waveguide scattering matrix (S-matrix), S̄, is a N×N matrix which connects the incoming

propagating modes to the outgoing propagating modes, b̄ = S̄·ā.
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For the case when there are N propagating modes in the lead we can obtain an N×N

S-matrix which may be written

S̄ = −(1̄N − iK̄)

(1̄N + iK̄)
, (2.10)

where 1̄N is N×N unit matrix, and the N×N matrix, K̄, has matrix elements, K̄n,n′ =
√
knRn,n′

√
kn′ and can be written

K̄ = w̄†· 1

E1̄M − H̄in

·w̄. (2.11)

In Eq. (2.11), 1̄M is the M×M unit matrix, H̄in is an M×M diagonal matrix formed with

the eigenvalues, λj (j = 1, ...M) in the cavity, and w̄ is an M×N coupling matrix,

w̄ ≡













w1,1 . . . w1,N

...
...

wM,1 . . . wM,N













, (2.12)

where wj,n′ = φj,n′(0)
√
kn′. With some algebra, the S-matrix can also be written in the form

S̄ = −
(

1̄N − 2iw̄†· 1

E1̄M − H̄in + iw̄·w̄†
·w̄

)

. (2.13)

In Ref. [19], we showed that, if evanescent modes are included, an additional term appears

in the denominator in Eq. (2.13).

The reaction matrix approach to waveguide scattering provides a very efficient means

of computing the statistical properties of the scattering process because the Schrodinger

equation only needs to be solved once to obtain the basis states and eigenvalues in the

cavity. Using these values, the S-matrix can then be obtained at all other particle energies,

E. Typically for the ripple cavity in Figure (1), we can obtain the scattering matrix at 105

different values of incident energy in a reasonable amount of time on a Cray machine.

One of the goals of this paper is to compare the statistical properties of the deterministic

scattering process in the ripple cavity to statistical properties of a hypothetical scattering

process in which Ĥin is replaced by a diagonal matrix, Ĥgoe, composed of the M eigenvalues

of an M×M Gaussian Orthogonal Ensemble (GOE) Hamiltonian, Ĥ ′
goe, and the N columns
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of the coupling matrix, w̄, are replaced by N of the M normalized eigenvectors of Ĥ ′
goe to

yield a coupling matrix, ŵgoe [32,4]. In this random matrix theory approach, the strength of

the coupling between the cavity and the lead is given by the phenomenological parameter, g.

The parameter, g, does not appear in the deterministic scattering process. For deterministic

scattering the strength of the coupling is entirely determined by the geometry and the

potentials at the interface. The scattering matrix, obtain from RMT, can then be written

S̄goe = −
(

1̄N − 2igw̄†
goe·

1

E1̄M − H̄goe + igw̄goe·w̄†
goe

·w̄goe

)

. (2.14)

It was shown in Ref. ( [28]), using supersymmetry techniques, that for the case when the

distribution of energy eigenvalues of Ĥgoe is centered at E = 0 and M→∞, the average

S-matrix can be written

〈S̄goe〉 = s1̄N with s =
1− g[iE/2 + πν(E)]

1 + g[iE/2 + πν(E)]
, (2.15)

where ν(E) = π−1
√

1− (E/2)2 is the average density of energy eigenstates. It is useful to

introduce the quantity

µ = µr + iµi =
1− s

1 + s∗
= gνπ + ig

E

2
, (2.16)

where µr = gνπ and µi = gE
2
, respectively, are the real and imaginary parts of µ. The case

when g = 1, corresponds to ideal coupling. In the neighborhood of E≈0, the eigenvalues

of Ĥgoe have a constant density, 1
2π
, and the average S-matrix 〈S̄goe〉 = 0. When g 6=1, the

average S-matrix cannot be zero.

III. EIGENPHASES OF THE SCATTERING MATRIX

We have analyzed some of the statistical properties of the eigenphases of the S-matrix

for the case of deterministic scattering from the ripple cavity for the cases when the internal

dynamics in the cavity is completely chaotic and when it is near-integrable. In this section,

we consider the energy interval 256E1≤E≤289E1 when 16 channels are present in the lead.
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The S-matrix is a 16×16 matrix, and for each value of incident energy it has 16 eigenvalues,

eiδα (α = 1, ..., 16) and 16 eigenfunctions, |δα〉 (S̄|δα〉 = eiδα |δα〉). The S-matrix is unitary so

the eigenfunctions, |δα〉, form a complete orthonormal set. We can use the orthonormality

of the eigenfunctions to follow each eigenphase, δα, continuously as a function of energy [29].

The eigenfunctions, for two S-matrices evaluated at nearby energies, will be approximately

orthogonal if they do not belong to the same eigenphase. Thus we can plot each of the 16

different eigenphases as a function of the incident energy. These are shown in Figure (3)

where the eigenphases, which are defined mod 2π, are “unwrapped” and allowed to evolve

continuously as a function of energy. In Fig. (3.a), we show the case with ripple amplitude,

a = 25Å, where the classical cavity dynamics is chaotic, and in Fig. (3.b) we show the

case a = 1Å where the classical cavity dynamics is mixed (see Fig. (2)). The case of mixed

dynamics shows many more abrupt changes of phase as a function of energy than the chaotic

case. This is due to the fact that the mixed dynamics has many long lived resonances not

found in the chaotic case. This was also seen in Ref. [29,26]. We shall return to this feature

in Section (IV).

Below we first discuss the effect of direct processes on the distribution of eigenphases,

and then we determine the distribution of nearest neighbor spacings of these eigenphases.

A. Distribution of Eigenphases

When a scattering process has a non-zero average S-matrix, 〈S̄〉, it indicates that direct

processes may play a significant role in the scattering process. Direct processes are generally

scattering events which do not interact significantly with the reaction region (cavity) [34].

When direct processes are present, the distribution of S-matrix elements that minimizes

information about the scattering process is the Poisson kernel. For the case of an N channel

process whose dynamics is time reversal invariant, the Poisson kernel has the form,

PN(S̄) =
1

Ω

[Det(1− 〈S〉∗〈S〉](N+1)/2

|Det(1− 〈S〉∗S̄)|(N+1)
, (3.1)
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where Ω is a normalization factor that ensures that the Poisson kernel satisfies the normal-

ization condition,
∫

dS̄PN(S̄) = 1.

The S-matrix can be diagonalized by a unitary matrix, Ū , and, as mentioned earlier, the

eigenvalues of the S-matrix are denoted, eiδα , α = 1, ..., N . In terms of the eigenphases, δα,

the normalization condition for the Poisson kernel, Eq. (3.1), can be written

∫

dS̄PN(S̄) =
∫

...
∫

dδ1...dδN PN(δ1, ..., δN)

=
1

ΩU

∫

...
∫

dδ1...dδN ×
∏

1≤α<α′≤N

|eiδα − eiδ
′

α |

×
(

(1− s∗s)N
∏N

α=1(1− s∗eiδα)(1− se−iδα′ )

)(N+1)/2

= 1, (3.2)

where ΩU is a normalization constant. Note that PN(δ1, ..., δN) is the joint probability

density to find the angles, δα, in the intervals δα→δα + dδα, (α = 1, ..., N).

In Ref. [37], it is shown that if the following change of angles is introduced

tan(
θα
2
) =

1

gπν

(

tan(
δα
2
) + g

E

2

)

, (3.3)

and if one assumes ideal coupling, g = 1, then Eq. (3.2) reduces to

∫

dS̄PN(S̄) =
∫

...
∫

dθ1...dθN PN (θ1, ..., θN )

=
1

ΩU

∫

...
∫

dθ1...dθN
∏

1≤α<α′≤N

|eiθα − eiθα′ |, (3.4)

which is just the distribution for the Circular Orthogonal Ensemble (COE) [5], [6]. Thus,

even for scattering processes which include direct processes, it is possible in principle to

transform away the direct processes and compare the eigenphase distribution with that of

COE (note that similar ideas first appeared in literature in Ref. [15]). It is important to

note that the transformation that removes direct processes is not the same as the unfolding

process that occurs on the energy spectrum of bounded systems to give a constant average

density.

In our subsequent analysis, the case of scattering with only a single channel will be

useful for analyzing data. For single channel scattering (N = 1), the S-matrix reduces to

the complex function, S = eiδ, and the Poisson kernel, reduces to [14]
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P1s(δ) =
1

2π

[(1− s∗s]

|(1− s∗eiδ)|2 , (3.5)

with normalization condition,
∫ π
−πdδP1(δ) = 1. Under the transformation above,

P1(δ)→P1(θ) = 1/2π, which is the COE prediction.

Having obtained numerical values of the eigenvalues, eiδα , as a function of energy, we can

compute an average value for each of the 16 eigenvalues,

sα = 〈eiδα〉 = 1

η

η
∑

k=1

eiδα(Ek), (3.6)

where η is the number of energy values used. The apparently continuous eigenphase curves

actually consist of about 40, 000 discrete energy points. The approximate orthonormality of

S-matrix eigenvectors for neighboring energies has been used to sort the eigenphases. Thus,

the eigenphases and eigenvectors have an energy interval over which they are correlated,

and we have used that fact in our sorting process. On the other hand, this correlation of

the S-matrices at neighboring energies can prevent us from obtaining statistics that can be

compared to RMT predictions. Comparison to RMT requires use of independent data points.

Therefore, in order to study the statistical properties of the eigenphases, we must choose

values of the eigenphases separated in energy a distance greater than the correlation length.

For each eigenphase curve we select points which have an energy spacing, ∆E = 0.495E1. We

choose this spacing based on an analysis of the delay time correlation discussed in Section

IV. (The delay time auto-correlation function is the second derivative of the eigenphase

auto-correlation function.)

We have computed a histogram of the number of eigenphases, N(δ) = ηPN(δ), versus

value of eigenphase, δα, in the 16 channel region, where η is the number of data points.

In order to improve the statistics, we use data from four different ripple amplitudes, a =

25Å, 30Å, 35Å, 45Å, all of which lie in the chaotic regime. All eigenphases lie in the

energy interval, 256 < E/E1 < 289 and have energy spacing, ∆E = 0.495E1. Thus the

histogram includes 67X16X4 = 4288 data points. We have found that the distribution of

eigenphases, along a given eigenphase curve, is well described by the Poisson kernel for the
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single channel case. We proceed as follows. We compute the average eigenvalue, sα = 〈eiδα〉,

for each eigenphase curve. We can form a histogram using the 67 data points from a single

eigenphase curve. We do this for each of the 64 eigenphase curves, using the same number

of bins and bin width for each curve. We then add these 64 histograms together to form

a single histogram, which is shown in Fig. (4.a). The solid line in Fig. (4.a), is the single

channel Poisson kernel, P1(δ), but with 〈s〉 = 1
64

∑64
α=1sα. We can use Eq. (3.3) to transform

away the effects of the direct interactions and find the distribution of the transformed angles,

θα. If we use Eq. (2.16) and obtain µ from the numerically calculated values of sα = 〈eiδα〉,

then the transformed angles, θα, are given by

tan(
θα
2
) =

1

µr

(

tan(
δα
2
) + µi

)

, (3.7)

with µr and µi computed numerically from sα. In Fig. (4.b), we show how the histogram

in Fig. (4.a) changes if we transform each eigenphase, δα, using Eq. (3.7). In this case

distribution is approximately constant and equal to the area, N
2π
. Thus, having transformed

away the contribution from the direct processes, we obtain the COE eigenphase distribution

for this chaotic scattering process, with fairly high confidence level.

For a = 1Å the plots of the eigenphase distributions look very similar to the chaotic case

shown in Fig. (4), and it appears that the eigenphase distribution is not as sensitive an

indicator for underlying chaos as is the nearest neighbor spacing distribution, at least with

this type of analysis.

B. Nearest Neighbor Eigenphase Spacing

In this section we consider the nearest neighbor spacings between eigenphases, δα, of

the scattering matrix for the 16 channel case in the energy interval 256 < E/E1 < 289.

For any given value of the energy, the S-matrix only has 16 eigenphases. However, we can

form a histogram of nearest neighbor eigenphase spacings if we obtain eigenphase spacings

for a sequence of different energies in the range, 256 < E/E1 < 289. In Fig. (5.a) we
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show histograms of 1005 (15X67) nearest neighbor spacings for eigenphases computed at

energy increments, ∆E = 0.495E1 and obtained by averaging over histograms for each ripple

amplitude, a = 25Å, 30Å, 35Å, 45Å. We have fit the histogram to the Brody distribution,

[32]

PB(σ) = A
(

σ

〈σ〉

)β

exp
[

− ξ
(

σ

〈σ〉

)1+β]

with ξ =
[

1

〈σ〉Γ
(

2 + β

1 + β

)]1+β

, (3.8)

〈σ〉 is the average spacing between nearest neighbor eigenphases, and Γ(x) is the Gamma

function. In Fig. (5.a), the solid line is a fit to the Brody distribution for β = 0.635. In

Fig. (5.b) same calculation is performed after direct processes were transformed away. In this

case β = 0.865. Note that the GOE prediction (β = 0.95) for the closed system eigenvalue

spacings is fairly close to our value of β, after the effects of direct processes are transformed

away. In Ref. [30], the nearest neighbor energy eigenvalue spacings for a closed ripple billiard

were fit to the Brody distribution with β = 0.806. In that case, the deviation from GOE

predictions was found to be due to bouncing ball orbits. Our result also contains bouncing

ball contributions. It is useful to note that in our scattering system there is no long range

energy correlation for 16 channel region (we have explicitly removed energy correlations by

taking data points at large energy increments), in contrast to the case reported in reference

[31]

We also obtained a nearest neighbor spacing histogram for the case with mixed phase

space in the 16 channel energy interval. In Fig. (6.a) we show the histogram of nearest

neighbor eigenphase spacings for a = 0.5Å, 1Å, 2Å, 3Å, 4Å, 5Å in the energy interval

256 < E/E1 < 289 before direct process are transformed away. We use an energy spacing

∆E = 0.495E1 and obtain 1005 data points for each amplitude. We then average over the

histograms for the six ripple amplitudes. The solid line is a fit to the Brody distribution for

β = 0.2. In Fig. (6.b), the same histogram is shown after direct processes are transformed

away. The Brody parameter in this case, β = 0.116, which is closer to a Poisson distribution

(the Brody distribution becomes a Poisson distribution for β = 0).

The distribution of nearest neighbor eigenphase spacings has been computed for a energy
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independent scattering matrix in [39] for a very different physical system. They also report

close agreement with COE predictions for the chaotic region, although they do not have to

deal with direct processes. It is clear that direct processes can play an important role in

causing deviations from random matrix theory predictions for scattering processes.

IV. PARTIAL DELAY TIMES

In this section we compare the partial delay time distribution, computed for the de-

terministic scattering process, to values obtained from random matrix theory. The partial

delay times are given by the energy derivative of eigenphases, τα = h̄dδα
dE

[35]. The average

partial delay time density for a scattering process governed by the scattering matrix, S̄goe,

has been computed by [36,37], using supersymmetry techniques, and is given by,

ρ(τ) = (1/N)
∑

α

〈δ(τ − τα)〉goe =
(1/2)N/2

Γ(N/2)

exp(−1/2(τ/〈τ〉))
(τ/〈τ〉)N/2+2

(4.1)

where 〈τ〉 = 1/N .

Before showing the distribution obtained for the partial delay times, it is useful to

discuss energy correlations contained in the partial delay time curves. In Fig. 7, we

show the auto-correlation function for the partial delay times obtained in the 16 chan-

nel energy regime 256 < E/E1 < 289 and averaged over 6 different ripple sizes, a =

22Å, 23Å, 24Å, 25Å, 26Å, 27Å. For each partial delay time curve we obtain a auto-

correlation function, and then we average over all 96 curves. We also show the GOE predic-

tion for the 16 channel case as well as the partial delay time auto-correlation function for

the near integrable regime (a = 1Å). The GOE prediction is obtained after performing the

triple integration given in reference [33]. The energy scale is adjusted to correspond to the

relevant scale for our data. We also note the partial delay time auto-correlation function is

the second derivative of the eigenphase auto-correlation function. Therefore the eigenphase

auto-correlation function decays more slowly than the partial time delay auto-correlation

function.
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In Fig. (8.a), we show a histogram of the scaled partial delay times, τ/〈τ〉. We again

consider the energy regime with 16 channels and vary the energy in the interval, 256E1 <

E < 289E1. To obtain enough values to build good statistics, we use 4 different ripple

sizes, a = 25Å, 30Å, 35Å, 45Å. For these ripple amplitudes, the ripple cavity dynamics is

chaotic. We used 100 energy points per specific ripple size, and therefore an energy increment

of ∆E = 0.33E1. The average, delay time, 〈τ〉, is obtained numerically for each partial delay

time curve. Then the histograms for 64 scaled partial delay times are combined into one

histogram by simply adding values in the corresponding bins. The solid line in Fig. (8.a),

is a plot of the RMT prediction, N(τ) = η′ρ(τ), where η′ is the area under the curve

and 〈τ〉 = 1/N . The agreement is not good because our data contains the effect of direct

scattering processes. In Fig. (8.b) we show the partial delay time density obtained from the

eigenphases, θα, which no longer contain the effect of direct scattering processes. The solid

line is a plot of N(τ) with 〈τ〉 = 1/N [36]. The agreement is very good. Finally in Fig. (8.c)

we plot histogram of 4000 partial delay times obtained from a 16×16 S̄goe by using different

realizations. Again, the agreement between the data and Eq. (4.1) is very good. Thus, after

the removal of the effects of direct scattering processes our deterministic scattering from

the chaotic ripple cavity behaves very much like the RMT prediction. (It is useful to note

that in Ref. [19], we compared the Wigner-Smith delay time distribution with numerically

computed predictions of RMT. The Wigner-Smith delay time is defined, τws =
1
N

∑N
α=1τα.)

In Fig. 9, we show the delay time distributions for the near integrable case, a = 1Å. We

have used energy increments, ∆E = 0.1E1 justified from Fig. 7. The delay time distribution

for the near integrable case deviates significantly from the random matrix result and the

results for chaotic cavity shown in Fig. (8).

Let us now return to the eigenphase curve in Fig. (3.b). We see that the curves for the

near integrable case have a sequence of fairly abrupt large changes of phase. These are due

to resonance structures that cause larger than average delays of the particle in the cavity. In

Fig. (10), we plot the Wigner-Smith delay time (which is an average over all partial delay

times) in the energy interval, 257.4≤E/E1≤259.5. This energy interval contains two of the
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large phase changes in the eigenphase curves in Fig. (3.b). We see that each large phase

change gives rise to a large peak in the delay time. The crosses in Fig. (10) give the energies

of the cavity basis states, λj , in that energy interval. There appears to be one cavity state

which lies at each resonance energy. In Fig. (10), we have also plotted the configuration

space distribution of four of the cavity eigenstates, two at resonance and two off resonance.

In Figs. (2.b)-(2.e), we have shown Husimi plots of the quantum Poincare surface of section

for each of these four states. The two states giving rise to the delay time resonance peaks lie

in the dominant nonlinear resonance structures in the classical phase space. The quantum

particle appears to tunnel into these dynamical resonance structures, and is delayed there

for a considerable length of time.

V. CONCLUSION

We have analyzed the statistical properties of a scattering process in a waveguide with

a cavity which allows a range of dynamics, including integrable, mixed, or chaotic. In

this waveguide, direct processes also play an important role. The “ripple” cavity that we

use has the special feature that it allows us to form a Hamiltonian matrix to describe the

dynamics interior to the cavity. This, in turn, allows us to use the reaction matrix approach

to scattering for our deterministic scattering process. The reaction matrix approach is one

of the most efficient methods for obtaining the large amounts of data necessary to obtain

good statistics. Until now, mesh based models (like the boundary element method, finite

element method, or recursive Green’s function method) were the main numerical methods to

deal with scattering problems. However, these methods use an energy dependent boundary

condition which makes it a formidable task to obtain solutions for very large numbers of

energy points. The reaction matrix approach allows us to circumvent this problem. It is

also useful to note that the reaction matrix approach has been used extensively to study

properties of the complex poles of the S-matrix. This is discussed in some detail in [39–42].

We have obtained a number of results. We find that, in the near integrable regime,
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nonlinear resonances in the classical phase space give rise to large eigenphase excursions and

long delay times for quantum particles that can tunnel into these dynamical structures.

We have focused much of our discussion on the energy regime in which sixteen chan-

nels are open in the lead. We have been able to follow each eigenphase of the S-matrix

continuously as a function of energy. We have examined the statistical properties of the

scattering process by gathering data about each eigenphase at discrete energy intervals in

the sixteen channel regime. This assumes a kind of “stationarity” as a function of energy,

of the underlying scattering process. We have chosen the energy intervals so that our data

points are statistically independent.

We have shown, for the scattering system considered here, that the affect of direct

processes on the eigenphase curves can be transformed away. We find that, for the case

where the cavity dynamics is classically chaotic, a partial time delay density histogram,

formed from all sixteen transformed eigenphase curves, agrees to 96% confidence level with

a Brody distribution with Brody parameter, β = 0.87. Similar deviations from the GOE

prediction of β = 0.95 have been seen in the nearest neighbor energy eigenvalue spacing

distributions of closed ripple billiards [30] and in that case are caused by bouncing ball

orbits. We expect the same mechanism is having an affect here.
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FIGURES

FIG. 1. The geometry of the two dimensional ballistic waveguide used in our calculations; a is

the half-width of the ripple, d is the width of the lead and the average width of the cavity. The

ripple cavity extends from x = 0 to x = L

FIG. 2. Surfaces of section for L = 511Å, d = 101Å, and a = 1Å. (a) A Poincare surface of

section showing px/p = cos(α) versus x, each time the particle hits the bottom wall. (b) Husimi

plot of quantum surface of section (QSS) for cavity eigenstate with λj = 257.1934E1. (c) QSS for

cavity eigenstate with λj = 257.9339E1 . (d) QSS for cavity eigenstate with λj = 258.6655E1 . (e)

QSS for cavity eigenstate with λj = 258.9072E1 .

FIG. 3. Eigenphases, δα versus E/E1 for the energy interval, 256≤E/E1≤272: (a) a = 25Å,

(b) a = 1Å.

FIG. 4. (a) Histogram of number of eigenphases, N(δ), versus δ for the 16 channel energy

interval 256≤E/E1≤289, and for four different ripple sizes, a = 25Å, 30Å, 35Å, 45Å. The solid

line is a plot of the single channel Poisson kernel with 〈S〉 =
∑64

α=1〈eiδα〉 and normalized to the

number of eigenphases. (b) Histogram of transformed eigenphases, θα, for all 64 eigenphase curves.

For all cases, d = 101Å and L = 511Å. A χ2 test result is also shown for both plots with 17 bins

taken into account

FIG. 5. Histogram of number, N(σ), of nearest neighbor scaled eigenphase spacings, σ, for the

chaotic regime with d = 101Å, L = 511Å. The average spacing, 〈σ〉 is obtained for each eigenphase

curve. The histograms contain a total of 15×67 = 1005 data points averaged over four different

ripple sizes, a = 25Å, 30Å, 35Å, 45Å. (We obtain a histogram for each of the four values of

the ripple amplitude. We then add them and divide by four.) (a) Before direct processes are

transformed away. The thin solid line is the Brody distribution with β = 0.635. (b) After direct

processes transformed away. The thin solid line is the Brody distribution with β = 0.865.A χ2 test

result is also shown for both plots with 13 bins in it taken into account
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FIG. 6. Histogram of number, N(σ), of nearest neighbor eigenphase spacings, σ, for the near

integrable regime with d = 101Å, L = 511Å. The histograms contain a total of 1005 data points

averaged over 6 different ripple sizes, a = 0.5Å, 1Å, 2Å, 3Å, 4Å, 5Å. (a) Before direct processes

are transformed away. The thin solid line is the Brody distribution with β = 0.2. (b) After direct

processes are transformed away. The thin solid line is the Brody distribution with β = 0.116. A

χ2 test result is also shown for both plots with 8 bins taken into account

FIG. 7. The auto-correlation function of time delays in the 16 channel energy interval,

256 < E/E1 < 289. The thin line is obtained numerically for the chaotic regime, using six dif-

ferent ripple amplitudes, a = 22Å, 23Å, 24Å, 25Å, 26Å, 27Å, with direct processes transformed

out of the data. An auto-correlation function is obtained for each partial time delay curve and

the average of those 96 auto-correlation functions is shown. The dotted-dashed line is the GOE

result for perfect coupling with 16 modes with the average density of states chosen equal to 1.25.

The thick line represents the numerically obtained auto-correlation function in the region of mixed

phase space for a = 0.5Å, 1Å, 2Å, 3Å, 5Å

FIG. 8. Histogram of number of scaled partial delay times, N(τ), versus τ/〈τ〉, for the 16

channel energy interval, 256≤E/E1≤289, with d = 101Å and L = 511Å. Data for ripple amplitudes

a = 25Å, 30Å, 35Å, 45Å is included in the histograms. Data points are taken at energy intervals,

∆E = 0.33E1. (a) Histogram of scaled partial delay times taken from eigenphase curves for δα.

A scaling factor, 〈τ〉, is obtained for each eigenphase curve. (b) Histogram of scaled partial delay

times taken from eigenphase curves for the transformed eigenphases, θα. (c) Histogram of partial

delay times obtained from the 16×16 S-matrix, S̄goe (includes 4000 data points). A χ2 test result

is also shown for the plots (b) and (c) with 13 bins taken into account.
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FIG. 9. Histogram of partial delay times for the 16 channel energy interval, 256≤E/E1≤289,

with d = 101Å and L = 511Å. Data for ripple amplitudes, a = 0.5Å, 1Å, 2Å, 3Å, 5Å, is used to

construct the histograms. Data points are taken at energy spacings, ∆E = 0.1E1. A total of

400X16 points is used. (a) Histogram of scaled partial delay time curves taken from eigenphase

curves for δα. (b) Histogram of scaled partial delay times taken from curves for transformed

eigenphases, θα.

FIG. 10. Plot of Wigner-Smith delay time in the energy the interval 257.4≤E/E1≤259.5 for

d = 101Å, L = 511Å, a = 1Å. Crosses show values of cavity basis state energies in this interval.

Inserts show the spatial distribution of four cavity basis states, two at resonance and two off

resonance.
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