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Abstract

One of the main benchmarks in direct numerical simulations of three-dimensional turbulence is

the Kolmogorov 1941 prediction for third-order structure functions with homogeneous and isotropic

statistics in the infinite-Reynolds number limit. Previous DNS techniques to obtain isotropic

statistics have relied on time-averaging structure functions in a few directions over many eddy

turnover times, using forcing schemes carefully constructed to generate isotropic data. Motivated

by recent theoretical work which removes isotropy requirements by spherically averaging structure

functions over all directions, we will present results which supplement long-time averaging by angle-

averaging over up to 73 directions from a single flow snapshot. The directions are among those

natural to a square computational grid, and are weighted to approximate the spherical average.

The averaging process is cheap, and for the Kolmogorov 1941 4/5ths law, reasonable results can be

obtained from a single snapshot of data. This procedure may be used to investigate the isotropic

statistics of any quantity of interest.

PACS numbers: 47.27.Gs,47.27.Jv
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I. INTRODUCTION

Both experimental and numerical studies of turbulence have attempted to observe the

1941 predictions of A.N. Kolmogorov [1] for the statistics of isotropic, homogeneous, fully

developed turbulence in the limit of infinite Reynolds number in an incompressible fluid. A

main result of the theory is the so-called “4/5-law”

〈(δuL(r,x))
3〉 = −4

5
εr (1)

δuL(r,x) = [u(x + r)− u(x)] · r̂

r̂ = r/r

where 〈·〉 denotes ensemble averaging. The lefthand side of Eq. 1 is the well-known third-

order longitudinal structure function. The length scale r must lie in the inertial range

η << r << L, sufficiently far from the large scales L and the dissipation scales given by

the Kolmogorov length η. The mean energy dissipation rate of the flow is given by ε. The

4/5ths law is one of the few exact, non-trivial results known in the theory of statistical

hydrodynamics. It may be reformulated in terms of other components of the structure

function by using the incompressibility constraint [2]

〈δuL(δuT )
2〉 = 1

6

∂

∂r
(r〈(δuL)

3〉) (2)

where δuT is a velocity increment along a vector transverse to the separation vector r. In

Eq. 2 and henceforward, the vector argument r is implicit. This combined with the Eq.1

gives “4/15ths law” and the “4/3rds law”

〈δuL(δuT )
2〉 = − 4

15
εr (3)

〈δuL|δu|2〉 = −4

3
εr (4)

where |δu| denotes the total magnitude of the velocity difference across r. We will refer to

the three laws given by Eqs. (1), (3) and (4), and the related theory collectively as K413.

The K413 results have served as invaluable benchmarks for the empirical study of high-

Reynolds number turbulence in both experiments and numerical simulations. Considered

as exact results, they have allowed investigators to assess the degree to which homoge-

neous, isotropic, and high Reynolds number conditions have been attained. Furthermore,

the derivation of the K413 relations requires a fundamental, unproven assumption, namely,
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that turbulent energy dissipation has a strictly positive limit as viscosity tends to zero.

Hence, the validity of the K413 relations constitute an important test of this basic assump-

tion. Experiments in high-Reynolds number turbulence performed over the past half-century

do, by and large, support the linear scaling in r of the third-order structure functions. The

convergence to the 4/5ths coefficient is quite slow as Reynolds number increases for large

scale anisotropic experiments [3, 6], although there is empirical consensus that indeed this

is asymptotically the correct coefficient. Recent numerical simulations [7] of isotropically

forced Navier-Stokes also emphasize the slow approach to the 4/5ths law as the Reynolds

numbers are pushed as high as computational power would allow. A key feature of both

experimental and numerical endeavors, is the large volumes of data required – very long time-

averages, extending over many integral length-scales or eddy-turnover times are needed to

obtain adequate statistics and to observe the trend toward K413.

A modified version of the 4/5ths law, which does not assume isotropy of the flow, now

exists. Nie and Tanveer [8] proved that the 4/3rds and consequently, the 4/5ths laws can

be recovered in homogeneous, but not necessarily isotropic flows,

〈(δuL)
3〉 = lim

T→∞

1

T

∫ T

0
dt

∫

dΩ

4π

∫

dx

L3
[δuL(r;x, t)]

3

= −4

5
εr. (5)

The angle integration dΩ integrates in r over the sphere of radius r. For each point x the

vector increment r is allowed to vary over all angles and the resulting longitudinal moments

are integrated. The integration over x is over the entire flow domain. The integration over

time t extends over long-times, and the long time average is consistent with the ensemble

average of the original K41 theory since ergodicity allows identification of ensemble-averages

with time-averages [11]. In Eq. 5, the integration over Ω extracts the isotropic component

of a generally anisotropic flow. This is fully consistent with recent experimental [13, 14]

and numerical [17, 18] efforts to quantify anisotropic contributions by projecting the struc-

ture function onto a particular irreducible representation, labeled by j = 0, 1, . . ., of the

SO(3) symmetry group. The angle-averaged Eq. 5 correspond to projecting onto the j = 0

(isotropic) sector by integration over the sphere. The authors of [8] do not perform numeri-

cally the average over the sphere. However, they do point out that the direction of r matters

strongly. In their anisotropic DNS simulation at moderate Reynolds number, the result of

taking r along a coordinate direction gave very poor agreement with the laws, whereas taking
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r along a body-diagonal as defined by the square-grid gave much better agreement.

A local version of the 4/3rds law was recently derived by J. Duchon and R. Robert [9].

Subsequently, G.L. Eyink [10] derived the corresponding version of the 4/5ths and 4/15ths

laws. The statement is the following: Given any local region B of size R of the flow, for

r << R, and in the limits ν → 0, next r → 0, and finally δ → 0,

〈(δuL)
3〉(Ω,B) = lim

δ→0

1

δ

∫ t+δ

t
dτ

∫

dΩ

4π

∫

B

dx

R3
[δuL(r;x, τ)]

3

= −4

5
εBr. (6)

for almost every (Lebesgue) point t in time, where εB is the instantaneous mean energy

dissipation rate over the local region B. This version of the K413 results does not require

isotropy or homogeneity of the flow. Long-time or ensemble averages are also not required

as in the original K41 theory [11]. The Duchon-Robert [9] and Eyink [10] versions of K413

are truly local in space and time.

We are motivated in the present work by the existence of isotropic statistics embedded

in anisotropic data as suggested by previous work. It is clear that both experiments and

simulations face intrinsic difficulties in achieving the high-Reynolds numbers and isotropic

limit required by K41 theory. Both anisotropy and finite Reynolds numbers conspire to

shorten the inertial range. Experiments have achieved Reynolds numbers several orders of

magnitude higher than simulations. The indication is that at such high Reynolds numbers,

the large scale anisotropies decay faster than the isotropic scales, allowing the latter to

dominate at small scales [12]. However, while the linear scaling in r of the third-order

structure function is fairly robust, the coefficient exhibits only a slow trend toward 4/5 as

indicated by the numerical work of [7]. It is clear that for anisotropic forcing, some choices

of directions for the vector increment r are more “isotropic” than others [8].

The concept of averaging over the sphere in order to extract the isotropic component

of turbulence data has existed for some time [15, 16]. Present high-Reynolds number ex-

periments provide limited data – often only a few spatial points of data acquisition, with

vector increment directions limited by the location of the probes and the implementation of

a suitable space-time surrogation (Taylor’s hypothesis). Such configurations are not suitable

to spherical averaging. Numerical data has, in principle, complete space-time information

of the flow. However, the interpolation of square grid data over spherical shells has been

deemed too expensive [8], or, when some such interpolation scheme is implemented, has not
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been used at sufficiently high Reynolds numbers as will allow for observations of the K41

type [17]. The new angle-averaged and “local” laws of [8, 9, 10] provide us with the theoret-

ical impetus to investigate and extract the isotropic component of the flow in high-Reynolds

number anisotropic turbulence. We use a novel means of taking the average over angles

which avoids the expense and effort of interpolating the square-grid data over spherical

shells.

In section II we discuss the numerical method and describe the stochastic and determin-

istic numerical forcing schemes used in the past and reimplemented by us. In section III

we present an easily implemented scheme to average over a finite number of angles. Using

the second and third-order isotropy relations, we demonstrate that this scheme is a good

approximation to the true spherical average. We then present results for the angle-averaged

third-order structure functions computed both from a snapshot of the flow at a single in-

stant in time, and from time-averaging the data from several snapshots. A summary and

concluding discussion of the results is given in section IV.

II. NUMERICAL SIMULATIONS

The numerical simulation of the forced Navier-Stokes equation for an incompressible flow

are given by

∂tu+ ω × u+∇φ = ν∇2u+ f (7)

∇ · u = 0 (8)

where the vorticity ω = ∇×u and φ is determined so as to maintain ∇·u = 0. The domain

is a periodic box of side L = 2π with N = 512 grid points to a side. A standard Fourier

pseudo-spectral method is used for the spatial discretization and the equations are integrated

in time using a fourth-order Runge-Kutta scheme. Aliasing errors from the nonlinear term

are effectively controlled by removing all coefficients with wave-number magnitude greater

than kmax =
√
2
3
N . The code is optimized for distributed memory parallel computers and

uses MPI for inter-process communication. The runs were made using 256 processors of a

Compaq ES45 cluster.

We make use of two different types of low wave number forcing. The first is modeled after

the deterministic forcing schemes described in [3, 4, 5], where the energy in a few low wave
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Data set N ν ε kmaxη Rλ ns nr

Stochastic 512 6× 10−4 .5 1.1 263 6 6

Deterministic 512 4× 10−3 156 1.1 249 1 6

TABLE I: The parameter values for the two data sets. N = Number of grid points per coordinate

direction; ν = viscosity; ε = Mean energy dissipation rate η = Kolmogorov scale; Rλ = Taylor

microscale Reynolds number; ns = number of eddy turnover times to spin up; nr = number of

eddy turnover times computed after spin up.

numbers is relaxed back to a target spectrum. We refer to the output using this forcing as

the deterministic dataset. The second forcing is the stochastic forcing used in [7], where the

Fourier coefficients of f are chosen randomly, and we refer to the data produces with this

forcing as the stochastic dataset. Both forcings have advantages and disadvantages. The

deterministic forcing equilibrates quickly and has less variance in time so that less data is

needed for converged time averages. But there is an unavoidable anisotropy throughout the

simulation if the forcing is restricted to the lowest wave numbers. The stochastic forcing has

a larger variance in time so that data from more snapshots is needed to obtain converged

time averages, but statistics from those snapshots are observed to be more isotropic. We

perform both kinds of forcing in order to demonstrate the equivalence of the results when

angle-averaging is applied to the data.

Parameters of interest for both simulations are given in Table I. For the stochastic

forcing, we have chosen parameters similar to those used for the 5123 simulations in [7]. The

parameters for the deterministic case were chosen so that Rλ would be similar in both cases.

A. Deterministic forcing

We first define the energy in each spherical wave number k in the usual way:

E(k) =
∑

k−.5≤|k|<k+.5

1

2
|ũk|2 (9)

where ũk is the kth Fourier coefficient of u. We then choose a target spectrum function

given by F (k), which we set to F (1) = F (2) = .5 and F (k) = 0 for k > 2. We generate a
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velocity field ṽk with energy F (k) by setting

ṽk =

√

√

√

√

F (k)

E(k)
ũk

The Fourier coefficients of the forcing function are then given by

f̃k =











τ (ṽk − ũk) , F (k) > E(k)

0, F (k) ≤ E(k)

The relaxation parameter is chosen as τ−1 = 2|∇u|, a simplified version of the formula given

in [4].

This forcing simply relaxes the amplitudes of the Fourier coefficients in the first two wave

numbers so that the energy matches the target spectrum F (k) in those wave numbers. It

has no effect on the phase of the coefficients. The phases are observed to change very slowly,

giving rise to persistent anisotropy in the large scales.

B. Stochastic forcing

Our second type of forcing is modeled after the stochastic scheme of [7] in which the

wave-numbers |k| ≤ 2.5 are stochastically forced. This ensures that the phase of each forced

mode changes sufficiently rapidly so that the large scales will be statistically isotropic. At

the beginning of each time-step, we choose a divergence-free forcing function,

f = ∇×△−1g (10)

where the Fourier coefficients of g, denoted by g̃k, are chosen randomly with uniformly

distributed phase and Gaussian distributed amplitude. The variance in the Gaussian distri-

bution is chosen so that

∑

.5≤|k|<1.5

|g̃k|2 =
∑

1.5≤|k|<2.5

|g̃k|2 = 18 (11)

III. ANGLE-AVERAGING TECHNIQUE

We would like to extract the isotropic component of a flow by a suitable average of the two-

point structure functions over the solid angle Ω as defined by Eqs. (5–6). We approximate
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the spherically averaged third-order longitudinal structure function by the following average

over a finite number Nd of directions:

〈(δuL(r))
3〉 = 1

Nd

1

N3

Nd
∑

j=1

N3

∑

i=1

wj

[

δuL(rj;xi)
]3
. (12)

where xi denotes grid-points, rj denotes the increment vector in the jth direction, r = |rj|
is fixed, and the wj are quadrature weights. Here we are using the longitudinal structure

function as an example. The procedure applies equally well to any two-point structure

function.

The simulation is computed on a fixed uniform rectangular mesh. Thus we are faced with

the difficulty of evaluating u at points (xi + rj), most of which will not be grid points. The

most straightforward approach would be to perform 3-dimensional interpolations at each of

the points (xi + rj). This requires N3Nd 3-D interpolations of the velocity-vector field for

each separation distance r, which is prohibitively expensive [8].

We have developed a less expensive technique for angle-averaging which does not require

any 3-D interpolations. We first choose the vectors rj from among those natural to a square

computational grid. We restrict ourselves to the set of all unique directions which can be

expressed with integer components with length less than or equal to
√
11. Let j = 1 · · ·Nd

be the index for this set. Each rj is the minimum grid-point separation distance in the jth

direction. This set is generated by the vectors (1,0,0), (1,1,0), (1,1,1), (2,1,0), (2,1,1), (2,2,1),

(3,1,0) and (3,1,1) by taking all index and sign permutations of the three coordinates, and

removing any vector which is a positive or negative multiple of any other vector in the set.

This procedure generates a total of Nd = 73 unique directions. The unit vectors associated

with each direction are plotted as points on the sphere in Fig. 1. One can see that these

points are well distributed over the sphere. Both the unit vectors r̂j and −r̂j are plotted,

but below we do not consider the −r̂j directions since they give the same contribution as r̂j

when averaged over the periodic computational domain.

For each of the Nd directions, we form a set of ℓ = 1 · · ·Nr separation vectors, xi + ℓrj.

Since rj is the minimum separation distance of grid-points in the jth direction and ℓ is an

integer, all the xi+ℓrj lie on our computational grid. This is illustrated (in two-dimensions)

for four directions in Fig. 2, where the black dots represent the points xi + ℓrj and xi is

shown at the origin. We can now efficiently compute structure functions in Nd different
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directions, at Nr separation distances for each direction, without any 3-d interpolations:

〈(δuL(ℓrj))
3〉 = 1

N3

N3

∑

i=1

[

δuL(ℓrj;xi)
]3
. (13)

For each direction, we get a 1-dimensional curve as a function of ℓrj, as shown in Fig. 3.

In the figure, points represent structure function values at the separation distances ℓ|rj|,
and each line is a cubic-spline fit to the data at ℓ = 1 · · ·Nr along each of the Nd directions.

One can see that only a few directions are computed at each of the separation distances, so

we cannot directly take an angle-average from this data. But one can also see that the curves

are quite smooth and the cubic-spline is an excellent interpolant. Thus we use cubic-spline

interpolation to calculate the structure function in each of the Nd directions, at separation

vector rr̂j of any desired length r.

Once the data for each direction has been interpolated to a common separation distance

r, we can approximate the angle-average at r by quadrature over the Nd directions:

〈(δuL(r))
3〉 = 1

Nd

Nd
∑

j=1

wj〈(δuL(rr̂j))
3〉 (14)

In order to determine the quadrature weights wj , we use the software package Stripack [19]

to compute the Voronoi tiling generated by the points r̂j on the unit sphere centered at x.

The weight wj is the solid angle subtended by the Voronoi cell containing the point r̂j.

The angle-averaging procedure described can be implemented efficiently on parallel com-

puters, requiring only the same type of parallel data transpose operator already used by

a parallel pseudo-spectral code. The total cost of this angle-averaging procedure for one

snapshot (73 directions and 100 different separation distances) is about the same as 150

timesteps of the Navier-Stokes code. Thus for a single eddy turnover time, where thou-

sands of timesteps are required, the angle-averaging statistics can be computed during the

computation with minimal impact on the total CPU time requirement.

A. Extracting the isotropic component

We first present results demonstrating how well the angle-average procedure performs at

extracting the isotropic component from our DNS data. We again follow [7] and examine

the relations between the second and third order velocity structure functions:

〈(δuT )
2〉 = (1 +

r

2

d

dr
)〈(δuL)

2〉 (15)
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〈δuL(δuT )
2〉 = 1

6

d

dr
r〈(δuL)

3〉 (16)

These equations require only isotropy and incompressibility. Thus in DNS data, where

incompressibility is obtained to numerical round off error, deviations in the above relations

are a measure of the anisotropy in the data. In [7], the left and right sides of these equations

are plotted after averaging in time. Excellent agreement is obtained in the inertial range,

with some departure at larger scales.

In Fig. 4, we show the second order isotropy relation for our stochastic dataset, and in

Fig. 5 we show the third order relation for the deterministic dataset. This data is computed

by angle-averaging over a single snapshot of the flow. The agreement is excellent, both in

the inertial range and at the largest scales. For comparison, the figures also show the same

relations from the same snapshot but using only a single coordinate direction instead of

angle-averaging. In that case, there are significant differences for scales well into the inertial

range. Thus the angle-averaging technique appears to be extremely effective in extracting

the isotropic component of anisotropic data, even at large scales where anisotropy remains

after time averaging over many snapshots. Similar results were obtained for the second order

isotropy relation from the deterministic dataset and for the third order isotropy relation from

the stochastic dataset.

B. Angle-averaging a single snapshot

We now present results from using angle-averaging to compute the third-order longitu-

dinal structure function in the 4/5ths law. Figures 6 and 7 show the result of the angle-

averaging procedure described above for single snapshots of the stochastic and deterministic

datasets respectively. The snapshots are taken after the flow has had time to equilibrate.

The value of the mean energy dissipation rate ε was calculated from the snapshot. This is

to be contrasted with previous works in which ε is a long-time or ensemble average. We

have therefore computed a version of the 4/5ths relation which is local in time. The dots

represent the data from all 73 directions at all values of r that were computed. The final

weighted angle-average of Eq. (14) is given by the thick curves in both Figs. 6 and 7. One

can see that the results from different directions are quite different, while the angle-averaged

results are quite reasonable and similar to each other as well as similar to the results ob-
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tained from long time averaging of the coordinate directions presented in [7] and shown for

our data in section IIID. Thus we conclude that angle-averaging the data from a single

snapshot yields a very reasonable result. Similar results (not plotted) are obtained for the

4/3’rds and 4/15’ths laws.

C. Temporal variance

To illustrate the variance in time of the third-order longitudinal structure function, with

and without angle-averaging, we plot the peak value as a function of time for each dataset in

Figures 8 and 9. The solid line is the angle-averaged value, and the dashed line is the value

from a single coordinate direction. The angle-averaged value has a significantly reduced

variance as compared to the single direction value, but one can see that there still is some

variance from snapshot to snapshot. Thus in order to obtained fully converged statistics,

some additional averaging is needed. In the next section we present results combining angle

and time averaging.

Based on the local version of the K413 laws proved in [9, 10], we expect that increasing

the spatial resolution would allow us to obtain converged statistics from a single snapshot

when used with angle-averaging. However, we could not expect such convergence without

angle-averaging. This is because even in an isotropic flow, individual snapshots are not

necessary isotropic - only the ensemble of all snapshots is guaranteed to be isotropic.

We note that the stochastic dataset (Fig. 9) shows a larger variation from snapshot

to snapshot when compared to the deterministic dataset (Fig. 8). This is true for both

the angle-averaged and single direction quantities shown in the figures, suggesting that the

stochastic dataset produces data with a slightly larger variance in time, as expected.

D. Time averaged results

We now look at the 4/5ths law using both angle-averaging (which extracts the isotropic

component of the statistics) and time-averaging (to remove the variance observed from

snapshot to snapshot). The time-average is taken from 60 snapshots taken over 6 eddy

turnover times. The results are shown in Fig. 10. The two datasets produce nearly identical

results at all scales, even though the large scale forcing is quite different. The peak value of
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the stochastic and deterministic datasets are .755 and .752, respectively.

Thus we conclude that flows with similar geometry and Reynolds number have the same

underlying isotropic component at all scales, at least up to third order statistics.

IV. CONCLUSIONS

We have proposed a new, computationally efficient and easily implemented means of

extracting isotropic statistics from an arbitrarily forced flow. As a first test of the method,

we averaged the third-order structure functions over sufficiently many angles and discovered

that the K413 relations are obtained, with tolerable variance, from a single snapshot of

homogeneous flow with either stochastic or deterministic forcing. This is a stronger result

than was predicted by the original Kolmogorov ensemble approach or even the Nie-Tanveer

version of [8]. It appears that the results are, in fact, approaching the local versions of K413

proposed in [9, 10].

Using our procedure to extract the isotropic component, we are able to separate the

effect of anisotropy from the effect of finite-Reynolds number on the statistics of the flow.

This is an important point to make in the debate on how the two effects contaminate the

inertial range. Once the anisotropy is eliminated, a more fruitful study of finite-Reynolds

number effects can be made. It is clear from Fig. 10 that the Reynolds numbers are

still not sufficient to give the wide inertial ranges that have been seen in high-Reynolds

number experiments. However, it is also clear that angle-averaging has given a significant

improvement in the results. With angle-averaging, less data is needed to obtain converged

statistics, and deterministic forcings can be used without regard to the increased anisotropy

they introduce.

The procedure we have described above can be used to investigate the isotropic component

of higher-order structure functions or any other statistic as well. For example, the angle-

averaged nth-order longitudinal structure functions may be measured in this way in order to

determine scaling exponents which are truly independent of anisotropy. This method may

also be used to isolate the anisotropic contributions themselves, as has been done in [17, 18],

by subtracting from the full structure function its angle-averaged value. Individual moments

in a spherical harmonics expansion of structure functions can be computed by introducing

the basis function of interest to the integrand in equation 14. In this way, the dominant

12



scaling in anisotropic sectors can be determined, which is important to determine the rate

of return to isotropy at small-scales. We plan to investigate such questions in future work.
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FIG. 1: Unit sphere showing some of the Nd = 73 directions over which the average is taken.
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(1,0)

(3,1)

(1,1)

(2,1)

FIG. 2: Two dimensional example of how data is collected for the angle-averaging procedure. Four

directions are shown, (1,0), (2,1), (3,1) and (1,1). Velocity data is known at all the grid points.

The black dots represent values of r where structure functions for a particular direction can be

computed with no interpolations. Each structure function can then be interpolated to specific

values of r, shown by the white dots.
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FIG. 3: The third-order structure function normalized by εr, computed from a single snapshot

from the deterministic dataset. The dots indicate the values of the structure function computed

at various ℓrj . Each thin curve is the cubic-spline interpolation through all computed values of

the structure function in a particular direction. Only a few of the 73 different directions are shown

here for visual clarity. The horizontal line indicates the 4/5ths mark.
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FIG. 4: Second order isotropy relation for the stochastic dataset. Solid lines: left and right side

of equation 15, normalized by r2/3 and angle-averaged. Dotted lines: same quantities, only for a

single coordinate direction.
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FIG. 5: Third order isotropy relation for the deterministic dataset. Solid lines: left and right side

of equation 16, normalized by r and angle-averaged. Dotted lines: same quantities only for a single

coordinate direction.
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FIG. 6: The third-order longitudinal structure function normalized by εr, computed from a single

snapshot of the stochastic dataset. The dots indicate the values of the structure function computed

at various ℓrj . The thick curve is the angle-average. The horizontal line indicates the 4/5ths mark.
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FIG. 7: The third-order longitudinal structure function normalized by εr, computed from a single

snapshot of the deterministic dataset. The various symbols and lines mean the same as in Fig. 6.
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FIG. 8: The angle-averaged (solid line) and single-direction (dotted line) values of the peak of

the non-dimensionalized third-order longitudinal structure function for deterministic dataset, as a

function of time.
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FIG. 9: The angle-averaged (solid line) and single-direction (dotted line) values of the peak of

the non-dimensionalized third-order longitudinal structure function for stochastic dataset, as a

function of time.
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FIG. 10: Time and angle-averaged third-order structure function normalized by εr, for the deter-

ministic dataset (solid line) and the stochastic dataset (dotted lines). The two curves are almost

indistinguishable.
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