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Wavefunction statistics in open chaotic billiards
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We study the statistical properties of wavefunctions in a chaotic billiard that is opened up to
the outside world. Upon increasing the openings, the billiard wavefunctions cross over from real
to complex. Each wavefunction is characterized by a phase rigidity, which is itself a fluctuating
quantity. We calculate the probability distribution of the phase rigidity and discuss how phase
rigidity fluctuations cause long-range correlations of intensity and current density. We also find that
phase rigidities for wavefunctions with different incoming wave boundary conditions are statistically
correlated.
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Microwave cavities have been used as a quantitative ex-
perimental testing ground for theories of quantum chaos
[1]. In quasi two-dimensional cavities, the component of
the electric field perpendicular to the surface of the cav-
ity satisfies a scalar Helmholtz equation that is formally
equivalent to the Schrödinger equation. Complex field
patterns, which model the wavefunction of an electron in
a magnetic field, can be obtained making judicious use
of magneto-optical effects [2, 3]. Alternatively, complex
“wavefunctions” can be observed as travelling waves in
open microwave cavities [4, 5]. Measured distributions
of real and complex wavefunctions in microwave cavities
with chaotic ray dynamics, where, traditionally, “com-
plex” means that time-reversal symmetry is fully broken
and the phase of the wavefunction has no long-range cor-
relations, agree with a theoretical description in terms
of a random superposition of plane waves [6], as well as
with random matrix theory [7] and supersymmetric field
theories [8].
Recently, it has become possible to study the full real-

to-complex crossover using microwave techniques [5, 9].
The crossover regime is qualitatively different from the
“pure” cases of real or fully complex wavefunctions. Un-
like in the pure cases, the statistical distribution of wave-
functions in the crossover regime depends on the choice of
the ensemble: whether variations are taken with respect
to the coordinate r, the frequency ω, or both. Whereas
the theoretical work has been roughly equally divided
between the two approaches, experiments usually need
the additional average over frequency to obtain sufficient
statistics [2, 3, 9, 10] (see, however, Ref. 5 for an excep-
tion).
In general, a complex wavefunction may be written as

ψ(r) = eiφ(ψr(r) + iψi(r)), (1)

where ψr and ψi are orthogonal but need not have the
same normalization [11]. The ratio of ψr and ψi is pa-
rameterized in terms of the normalized scalar product of
ψ and its time-reversed,

ρ =

∫

drψ(r)2
∫

dr |ψ(r)|2 = e2iφ
∫

dr |ψr(r)|2 − |ψi(r)|2
∫

dr |ψr(r)|2 + |ψi(r)|2
. (2)

The square modulus |ρ|2 is known as the “phase rigid-
ity” of the wavefunction ψ [12]. Real wavefunctions have
ρ = 1, whereas ρ = 0 if ψ is fully complex, i.e., ψr and
ψi have the same magnitude. If the average is taken
over the coordinate r only, whereas the frequency ω of
the wavefunction is kept fixed, the wavefunction distri-
bution follows by describing ψr and ψi as random su-
perpositions of standing waves [4, 13, 14]. The resulting
wavefunction distribution depends parametrically on the
phase rigidity |ρ|2. Using a microwave billiard with a
movable antenna, Barth and Stöckmann have measured
such a “single-wavefunction distribution” and found good
agreement with the theory, obtaining ρ from an indepen-
dent measurement [5]. It is the fact that ρ is different
for each wavefunction that leads to the different results
for averages over r only and over both r and ω. A cal-
culation of averages with respect to frequency requires a
theory of the probability distribution of ρ. Such a full
wavefunction distribution, which needs theoretical input
beyond the ansatz that each wavefunction ψ is a ran-
dom superposition of plane waves, was first calculated
by Sommers and Iida for the Pandey-Mehta Hamiltonian
from random-matrix theory [15] and by Fal’ko and Efe-
tov [16, 17] for a disordered quantum dot in a uniform
magnetic field.

Fluctuations of the phase rigidity |ρ|2 have been iden-
tified as the root cause for several striking phenomena
in the crossover regime, such as long-range intensity cor-
relations [17] and a non-Gaussian distribution of level
velocities [12]. Further, the existence of correlations be-
tween phase rigidities of different wavefunctions causes
long-range correlations between wavefunctions at differ-
ent frequencies [18]. The experimental verification of
these effects addresses aspects of random wavefunctions
that have not previously been tested. The relative mag-
nitude of the phase rigidity fluctuations is numerically
small, leading to long-range wavefunction correlations of
order of 10 percent or less [17, 18]. This could explain
why intensity distributions measured by Chung et al.

could not distinguish between theories with and without
phase rigidity fluctuations [9].
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In this letter, we consider wavefunctions in a billiard
that is opened up to the outside world and calculate the
probability distribution of phase rigidities for this case.
Although time-reversal symmetry is not broken on the
level of the wave equation itself, it is broken by the fact
that one looks at a scattering state with incoming flux in
one waveguide only [4]. As we show here, random wave-
functions in open cavities also have a fluctuating phase
rigidity, and, hence, exhibit the same variety of phenom-
ena as those in cavities with broken time-reversal symme-
try, while they are much easier to generate in microwave
experiments [5]. An additional advantage of the open-
billiard geometry is the absence of fit parameters: The
only parameter entering the wave-function distribution is
the total number N of propagating modes in the waveg-
uides between the billiard and the outside world, which
can be measured independently.

Following previous works on this subject, we consider
the parameter regime in which the frequency average is
taken over a window ∆ω ≪ c/L ≪ ω, where c is the
velocity of wave propagation and L the size of the bil-
liard, and in which the openings occupy only a small frac-
tion of the billiard’s boundary. It is only in this regime
that wavefunctions have a universal distribution and a
description in terms of a random superposition of plane
waves is appropriate. We limit ourselves to (quasi) two-
dimensional billiards, in which the electric field perpen-
dicular to the billiard plane is identified with the wave-
function ψ and the Poynting vector with the current den-
sity j ∝ Imψ∗∇ψ [19]. A calculation of wavefunctions
inside an open billiard is complementary to a transport
study, for which one is primarily intersted in the relation
between amplitudes of ingoing and outgoing waves in the
waveguides attached to the billiard, not in the wavefunc-
tion inside the cavity. Single-wavefunction statistics in
open billiards in the universal regime was first consid-
ered by Pnini and Shapiro [4] and subsequently by Ishio
et al. [20, 21]. Experimentally, wavefunctions in open
billiards were investigated by Barth and Stöckmann [5].

The key to the calculation of P (ρ) in an open cavity
is a relation between the scalar products of the in-cavity
parts of scattering states ψµ and ψν and the Wigner-
Smith time-delay matrix Q [22],

∫

cavity

drψµ(r)ψ
∗
ν(r) = Qµν , (3)

where the scattering states have been normalized to unit
incoming flux. Here the index µ = 1, . . . , N labels
the waveguide and the transverse mode from which the
field is injected into the cavity. The time-delay matrix
Q = −iS†∂S/∂ω is the derivative of the scattering ma-
trix S. In order to calculate the scalar product ρµµ of
the scattering state ψµ and its time-reversed ψ∗

µ, we per-
form a unitary transformation U that diagonalizes the
Wigner-Smith time-delay matrix Q and rotates the scat-

tering matrix S to the unit matrix [23],

S = UTU, Q = U †diag (τ1, . . . , τN )U. (4)

The positive numbers τi, i = 1, . . . , N , are the “proper
delay times”, the eigenvalues of the Wigner-Smith time-
delay matrix. Note that the incoming modes are trans-
formed according to the unitary transformation U , while
the outgoing modes transform according to U∗, as re-
quired by time-reversal symmetry. In the transformed
basis, all scattering states are standing waves and, hence,
have ρjj = 1. Transforming back to the original basis,
we find

ρµµ =

∑N
j=1 U

2
jµτj

∑N
j=1 |Ujµ|2τj

. (5)

The joint distribution of the scattering matrix S and
the Wigner-Smith time-delay matrix Q of a chaotic bil-
liard is known from random-matrix theory [24]: The dis-
tribution of the proper time delays τi is [23]

P (τ1, . . . , τN ) =

N
∏

j=1

θ(τj)τ
−3N/2−1

j e−Nτav/2τj

×
∏

i<j

|τi − τj |, (6)

where τav is the average delay time and θ(x) = 1 for
x > 0 and 0 otherwise, whereas the unitary matrix U
is uniformly distributed in the group of unitary N × N
matrices. A numerical evaluation of the probability dis-
tribution of the phase rigidity |ρ|2 is shown in Fig. 1 for
several values of N . For the case N = 2 of two single-
mode waveguides, the probability distribution P (ρ) can
be found in closed form,

P (ρ) =
6 + 2(1− |ρ|2)−1/2

3π(1 + (1− |ρ|2)1/2)3 , 0 ≤ |ρ| < 1. (7)

For a billiard coupled to the outside world via N ≫ 1
channels P (ρ) becomes Gaussian,

P (ρ) =
N

4π
e−N |ρ|2/4. (8)

This is the same functional form as the phase-rigidity dis-
tribution for a quantum dot in a large uniform magnetic
field [12, 16, 17].

Following Refs. 4, 13, 20, the joint distributions of in-
tensities and current densities away from the boundary
of the cavity for one wavefunction ψµ can then be cal-
culated from Berry’s ansatz that ψµ can be written as a
random superposition of plane waves [6],

ψµ(r) =
∑

k

aµ(k)e
ik·r. (9)
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FIG. 1: Probability distribution of the phase rigidity |ρ|2

for a wavefunction in an open chaotic billiard, for different
numbers of propagating modes connecting the billiard to the
outside world. From bottom to top at the left end of the
figure, curves correspond to N = 2, 3, 4, 6, 8, 10, 15, and 20.
Inset: schematic drawing of billiard and waveguides.

In Eq. (9), all wavevectors k have the same modulus,
while the amplitudes aµ(k) are random complex num-
bers. For a closed cavity, amplitudes of time-reversed
plane waves are related, aµ(k) = e2iφaµ(−k)∗, where φ
does not depend on k. For an open cavity, no such strict
relation exists, although some degree of correlation be-
tween aµ(k) and aµ(−k) persists in order to ensure the
correct value of the scalar product of ψµ and ψ∗

µ, cf. Eq.
(2) [20],

ρµµ =

∑

k
aµ(k)aν(−k)
∑

k
|aµ(k)|2

. (10)

Taking the amplitudes corresponding to wavevectors
pointing in different directions from identical and inde-
pendent distributions, we see that Eq. (10) implies a re-
lation between the second moments of the amplitude dis-
tribution,

〈aµ(k)aµ(−k)〉 = ρµµ〈|aµ(k)|2〉. (11)

This, together with the normalization condition
∑

k
〈|a(k)|2〉 = 1/A, where A is the area of the billiard,

and the central limit theorem, provides sufficient infor-
mation to determine the full distribution of the wave-
function ψ.
As an example, we consider the joint distribution of

the normalized intensity I(r) = |ψ(r)|2A and the mag-
nitude of the normalized current density J = |j(r′)|,
j = (A/k)Imψ∗∇ψ at the positions r and r′ where
k = ω/c. The single-wavefunction distribution factor-
izes into separate probability distributions for I and J
that each depend parametrically on the phase rigidity
|ρ|2 [13, 20],

Pρ[I(r), J(r
′)] =

8J

(1− |ρ|2)3/2 K0

(

2J
√
2

√

1− |ρ|2

)

(12)

× I0

(

I|ρ|
1− |ρ|2

)

exp

(

− I

1− |ρ|2
)

,

where I0 and K0 are Bessel functions. When both po-
sition and frequency are varied to obtain the ensemble
average, a further average over ρ is required,

P (I(r), J(r′)) =

∫

dρP (ρ)Pρ(I(r), J(r
′)). (13)

After such average, P (I, J) no longer factorizes. The
degree of correlation is measured through the correlator

〈I(r)2J(r′)2〉c = −1

2
var |ρ|2, (14)

where 〈AB〉c = 〈AB〉 − 〈A〉〈B〉 denotes the connected
average. (Since normalization implies that 〈I(r)〉 = 1 for
each wavefunction, correlators involving the first power of
I factorize.) For a billiard with two single-mode waveg-
uides, var |ρ|2 = 8(148 ln2 − 128(ln 2)2 − 41)/9 ≈ 0.078,
cf. Eq. (7). Similarly, we find for the correlator of inten-
sities

〈I(r)2I(r′)2〉c = var |ρ|2, (15)

plus additional terms that describe short-range correla-
tions.
Thus far we have studied the distribution of a single

scattering state in an open billiard. However, for a bil-
liard that is coupled to the outside world via, in total,
N propagating modes, there are N orthogonal scattering
states at each frequency. In the remainder of this letter
we address the question of possible correlations between
these scattering states.
This question can be studied using the framework of

Ref. 18, which generalizes the above considerations to the
problem of correlations between wavefunctions. Again,
the starting point is Berry’s ansatz (9), with a differ-
ent set of amplitudes aµ(k) for each scattering state ψµ,
µ = 1, . . . , N . We continue to take amplitudes aµ(k)
from identical and independent distributions for different
directions of k, whereas we allow for correlations between
amplitudes of time-reversed waves and between ampli-
tudes of different scattering states. Such correlations are
necessary, because the in-cavity parts of different scatter-
ing states and their time-reversed states are not orthogo-
nal, see, e.g., Eq. (3). Hence, the second moments of the
amplitudes aµ(k) should be chosen such that

nµν ≡
∑

k
aµ(k)aν(k)

∗

(
∑

k
|aµ(k)|2)1/2(

∑

k
|aν(k)|2)1/2

,

=

∫

drψµ(r)
∗ψν(r)

(
∫

dr |ψµ(r)|2
∫

dr′ |ψν(r′)|2)1/2
, (16)

ρµν ≡
∑

k
aµ(k)aν (−k)

(
∑

k
|aµ(k)|2)1/2(

∑

k
|aν(k)|2)1/2

=

∫

drψµ(r)ψν(r)

(
∫

dr |ψµ(r)|2
∫

dr′ |ψν(r′)|2)1/2
, (17)
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where, as before, the integrals are taken over the bil-
liard only and we have chosen the normalization such
that nµµ = 1. Equations (16) and (17) then impose the
following relations for second moments of the amplitude
distributions:

〈aµ(k)aν(k)∗〉 = nµν〈|aµ(k)|2〉, (18)

〈aµ(k)aν(−k)〉 = ρµν〈|aµ(k)|2〉. (19)

Repeating the same arguments as those leading to Eq.
(5), we find that nµν and ρµν can be expressed in terms
of eigenvectors and eigenvalues of the time-delay matrix,

nµν =

∑

j U
∗
jµUjντj

(
∑

j |Ujµ|2τj
∑

i |Uiν |2τi)1/2
,

ρµν =

∑

j UjµUjντj

(
∑

j |Ujµ|2τj
∑

i |Uiν |2τi)1/2
. (20)

The full distribution of the complex numbers nµν and
ρµν then follow from the known distributions of the
N × N unitary matrix U and the proper time delays
τj , j = 1, . . . , N . A simple expression is obtained in the
limit N ≫ 1, when nµν and ρµν acquire a Gaussian dis-
tribution, with zero mean and with variance given by

〈nµνnστ 〉 =
1

N
δµτ δνσ if µ 6= ν,

〈ρµνρ∗τσ〉 =
2

N
(δµτ δνσ + δµσδντ ),

〈nµνρστ 〉 = 〈ρµνρτσ〉 = 0. (21)

Short range correlations between different scattering
modes arise from the fact that ρµν and nµν are nonzero
for µ 6= ν. These correlations exist both if statistics is
taken as a function of position only and if the ensem-
ble also involves a frequency average. For example, for
the second moment of the intensity and current density
distributions, we find from Eq. (9)

〈Iµ(r)Iν (r′)〉c = (|nµν |2 + |ρµν |2)J0(k|r− r′|), (22)

〈jµ,α(r)jν,β(r′)〉 =
1

4
δαβ(|nµν |2 + |ρµν |2)J0(k|r− r′|),

with α, β = x, y. For the case N = 2 of a billiard with
two single-mode waveguides one has 〈|ρ12|2〉 = (64 ln 2−
37)/15 ≈ 0.49 and 〈|n12|2〉 = (26 − 32 ln 2)/15 ≈ 0.25.
Long-range correlations arise from the fluctuations of the
“scalar products” nµν and ρµν and exist only if the en-
semble involves a frequency average. The lowest moment
with long-range correlations is

〈Iµ(r)2Iν(r′)2〉c = −2〈Iµ(r)2Jν(r′)2〉c (23)

= 〈|ρµµ|2|ρνν |2〉 − 〈|ρµµ|2〉〈|ρνν |2〉.

For N = 2 one has 〈|ρ11|2|ρ22|2〉 − 〈|ρ11|2〉〈|ρ22|2〉 =
8(5792 ln 2− 4480(ln2)2 − 1861)/315 ≈ 0.032.

In conclusion, we have calculated the wavefunction dis-
tribution for wavefunctions in an open chaotic billiard
for the case that the ensemble average involves both an
average over frequency and position. Fluctuations and
correlations of the phase rigidities lead to long range cor-
relations between intensities and current densities. Our
results are relevant for a fit-parameter free measurement
of the real-to-complex wavefunction crossover.

We thank Karsten Flensberg for important discussions.
This work was supported by NSF under grant no. DMR
0086509, and by the Packard foundation.
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