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Abstract 

We consider a class of games that are generalizations of the minority game, in that the 

demand and supply of the resource are specified independently.  This allows us to study 

systems in which agents compete for a resource under different demand loads.  Among 

other features, we find, using numerical simulations the existence of a robust phase 

change with a coexistence region as the demand load is varied, separating regions with 

nearly balanced supply and demand from regions of scarce or abundant resources.  The 

coexistence region exists when the amount of information used by the agents to make 

their choices is greater than a critical value which is related to the point at which there is 

a phase transition in the standard minority game.  
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Competition for resources is ubiquitous in social and biological systems.  Animals 

foraging for food, companies competing for market share, clients competing for 

bandwidth on the Internet and politicians competing for votes are just a few examples.1  

In at least some such systems, agents making choices that differ from most of their 

competitors can lead to increased benefit for the agent. One important attempt to abstract 

and model the dynamics of being different is the minority game,2 which has a remarkable 

phase structure as a function of the amount of information that agents use to make their 

choices.   

 

While it clearly captures some important dynamics in competition for limited resources, 

the minority game, as it is usually specified, is limited to a specific ratio of supply and 

demand for the resource.  By construction, at most (N-1)/2 of the N agents playing the 

minority game can be rewarded in a given time step of the game.  In many real systems, 

the supply/demand may be quite different than in the minority game, and so it is of 

considerable interest to study games in which this ratio can have different values from 

that of the standard minority game.  In this paper we present a class of such models, of 

which the minority game is a special case, and study, using primarily numerical 

simulations, the way in which system behavior differs for different loads (demand vs. 

supply).  In particular, we show that there is a phase change as the relative demand on the 

resource changes, and that the phase diagram includes a coexistence region in which the 

collection of games with the same control parameters bifurcates into two distinct groups 

with very different behaviors. 

 

Consider, a game in which N agents compete for a resource from one of two suppliers.  

We will consider the games with more than two suppliers elsewhere.3  The work in 

reference 3 also contains details and more extensive descriptions and explanations of a 

number of other features of our models.  At each time step of the game, each supplier has 

available C/2 units of the resource, and each agent chooses one of the two suppliers as a 

source for one unit of the resource.  In the games we consider here, (with two suppliers) 

C is even so that C/2 is an integer.  The agents will make their choices of which supplier 

to choose at a given time step, using a mechanism similar to that used in the minority 
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game.  In particular, each agent is endowed with s (in the games considered here, s=2) 

strategies.  Each strategy is a look up table in which data from a set of publicly available 

information is used as input to determine an agent’s decision.  Each of the Ns lookup 

tables are randomly generated.  The set of publicly available information is the historical 

time series of which of the suppliers had more requests for resource than that supply 

could satisfy, as a function of time.  The games begin with a random history of length m.  

Let nj(t) be the number of agents requesting resource from supplier j at time t.  Supplier j 

is underloaded at time t if nj(t)≤C/2, and is overloaded otherwise.  We indicate 

underloading of a supplier by +, and overloading by -.  Then, the state of the system at 

any given time is defined by a two-tuple (a,b), where a indicates the state (over- or under-

loaded) of supplier 0 and b indicates the state of supplier 1.  Although there are, in 

principle, four possible states, the number of accessible states depends on the relative 

values of N and C.  If CN ≤ , then states (+,+), (+,-) and (-,+) are possible.  If N > C + 1, 

states (-,-), (+,-) and (-,+) are possible.  For the special case N=C+1, this game reduces to 

the minority game and only states (+,-) and (-,+) are accessible.  Thus, if the agents use 

information in their strategies from the last m time steps of the game, the dimension of 

the strategy space will be 3m, except if N=C+1, in which case the dimension of the 

strategy space will be 2m.   

 

An agent must choose which of its two strategies to play at a given time.  Following the 

scheme of the standard minority game, an agent will choose to play that strategy which 

would, up to that point in the game, have been responsible for the greatest gain for the 

agent, had that strategy been played for all past times of the game.  Thus, the relative 

ranking of an agent’s strategies will depend on the payoff to the agents.  In this letter, we 

will consider games with two different payoff schemes.  The first, called binary 

satisfaction, awards one point to each agent using an underloaded supplier, while agents 

using an overloaded supplier get nothing.  These same awards are made to strategies to 

determine their relative rankings.  The second payoff scheme, called partial satisfaction, 

awards one point to each agent using an underloaded supplier, while each agent using an 

overloaded supplier is awarded a fraction of a point equal to C/(2n), where n (>C/2) is the 

total number of agents using that supplier at that time step.  The same scheme is used to 
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award agents’ strategies.  Specifically, the strategy of an agent that is actually played is 

awarded the same points as the agent.  To evaluate a strategy not played, one awards one 

point to that strategy if it would have chosen an underloaded supplier at some time step, 

and, awards C/(2n) points if it would have chosen an overloaded supplier, where n is the 

number of agents actually using the overloaded supplier at that time step.  Note that these 

awards are made assuming the same distribution of agents among the suppliers as 

actually occurred.  No correction is made for the fact that had the unplayed strategy been 

played, the distribution of agents might have differed by one.  Thus, this strategy ranking 

scheme is similar to that of the naïve agents used in the first studies of the minority game.  

Most of the results reported in this paper are for games played with binary satisfaction.  

However, the most important aspect of our results are robust when the payoff scheme is 

that of partial satisfaction, as we shall explain below. 

 

Let σ be the standard deviation of n1(t) averaged over time for one game.  In the standard 

minority game, σ2 is monotonically related to the average size of the minority group: the 

larger the typical minority group, the smaller will be σ2,  Large minority groups are 

associated, in the standard game, with greater wealth, so that σ2 can be taken as an 

inverse measure of the total wealth generated in the standard minority game.  In the 

games in which N≠C+1, σ2 is still an important indicator of the dynamics, but the 

relationship between σ2 and wealth generation is a little more involved, as will become 

clear below.  See also reference 3.  The general behavior of this set of games is illustrated 

in Figure 1 in which we present a plot of the average value of σ2/N as a function of N and 

C, averaged over 13 different runs for each value of N and C for binary satisfaction.4  The 

same plot for games played with partial satisfaction is qualitatively similar.  All games in 

this plot were played with agents all of whom had strategies that used information from 

the last 4 time steps of the game—i.e, m=4.  Plots for different values of m, while 

differing in important ways have the same general structure.  At the extremities, (large N, 

small C and large C small N) are two regions in which σ2/N is fairly smooth as a function 

of N and C.  As we move in toward the diagonal, (N=C+1), we pass into areas in which 

the dependence of σ2/N on C and N is rougher.  Moving further toward the diagonal from 

either direction, σ2/N decreases and, at least for m>2, has a smoother dependence on C 
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and N.  Finally, very close to the diagonal σ2/N increases, reaching its maximum value 

near C=N.   

 

This figure has many very interesting features. .4  In this letter we want to focus primarily 

on the most general overall structure, and, in particular, on the obvious difference 

between the region near the diagonal, in which σ2/N has a local maximum, and the 

regions further from the diagonal.  

 

To understand qualitatively what is going on, it is useful to look at a typical sample of the 

time series of, say, n1(t) for a game in the region of the central peak, and for a game from 

a region further from the diagonal.  Typical examples are shown in Fig. 2. To facilitate 

comparison both these games have N>C.  In these figures, the dashed lines indicate the 

range of values inside of which the system is in the state (-,-), while outside the dashed 

lines the system is in the state (-,+) or (+,-).  Note that in Fig.2a the system is almost 

always in either the state (-,+) or (+,-) (about 90% of the time), while for Fig. 2b, the 

system is almost always (in this example, in fact, always)in the state (-,-).  This is 

significant, since in both cases, all three states (-,-), (-,+) and (+,-) are in principle 

accessible to the system.  In the special case of the minority game, with N=C+1, the 

system must be in either (-,+) or (+,-) at each time step, by construction.  However, it is 

clear from Fig. 2a, that games played with other configurations of N and C not too far 

from the minority game configuration are dynamically driven to behavior which appears 

to be similar to that of the minority game.   On the other hand, if N is too large for a given 

C, the system is in a much different phase, one dominated by (-,-) states in which agents 

typically are not rewarded.  We call the region in which the system is dominated by (-,+) 

or (+,-) states, the region of limited resources, while the region in which the system is 

dominated by the state (-,-) is the region of scarce resources.  The region away from the 

central peak, but with N<C, is dominated by the state (+,+), and we refer to that as the 

region of abundant resources. 

 

That games with N>>C (N<<C) should be dominated by (-,-) ((+,+)) states is not 

surprising.  It is also not unreasonable to suppose that configurations near the minority 
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game should be dominated by (-,+) or (+,-) states (although quantitatively the minority 

game does differ dramatically from its neighbors, as we shall describe below).  But what 

is noteworthy and surprising is the way in which system behavior changes as we move 

from the region of limited resources to either scarce or abundant resources.   

 

To see this, refer to Fig. 3.  In this figure, we plot σ2/N for each of 32 runs for a range of 

values of N (N>C) with C=200 and m=8.  We see very clearly a region in N in which 

different games segregate into one of two bands.  An examination of the time series of 

n1(t) for these runs indicates that those in the upper band are qualitatively similar to Fig. 

2a, being dominated by the states (-,+) and (+,-), while those in the lower band are 

qualitatively similar to Fig. 2b, dominated by the state (-,-).  The upper band is a smooth 

continuation of the central peak region seen, for example, in Fig. 1, while the lower band 

smoothly continues to the area of scarce resources, also seen in Fig. 1.  Thus, in this 

example, the transition between limited and scarce resources proceeds through a 

coexistence region (denoted in this graph by a double-arrow starting at A and ending at 

B) in which the collection of games, all with the same control parameters (m, N and C), 

but with different assignments of initial strategies dynamically bifurcates into two distinct 

groups.  The first group exhibits dynamics similar to that seen in the standard minority 

game, while the second group exhibits dynamics that are quite different.  The behavior of 

the system in the scarce (or abundant) resource phase also has some interesting features.4 

 

The bifurcated coexistence behavior as shown in Fig. 3 exists for values of m greater than 

a certain minimum, mc
*.  If m is too small, the clear bifurcated coexistence disappears 

and is replaced by a broad, smooth, but noisy crossover between the limited resource 

region (in which the system dynamics are like those of the minority game) and the scarce 

(or, if N<C, abundant) resource region.  The value of m, mc
*, below which there is no 

coexistence region is very significant.  To understand its significance, look at Fig. 4, in 

which we plot σ2/N as a function of m for both the minority game, and for neighboring 

games with N=C and N=C+2.  We see here similar curves, but with the phase transition 

offset.  The simple reason is that for N≠C+1, the dimension of the strategy space for the 

games is 3m rather than 2m as it is for the minority game.  It turns out that the bifurcated 
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coexistence region exists only for m>mc
*, the point of the phase transition for non-

minority game configurations.  To avoid the singular distinction between the case N=C+1 

and N≠C+1, it is convenient to consider the behavior of games as a function of δ≡D/N, 

where D is the dimension of the strategy space, i.e. D=2m for the usual minority game, 

and D=3m for the case N≠C+1.  Considered as a function of δ, the dips for the cases 

N=C+1 and N≠C+1 coincide at a value δc~1/35.  Thus, the bifurcated coexistence 

requires a per capita amount of information equal to that that occurs at the phase 

transition in usual minority game. 

 

Parenthetically, we comment,6 that if the strategy space is sampled non-uniformly, there 

are considerable complications that arise both in the standard minority game and in the 

more general resource allocation games that we discuss here.  In such a case, it is 

tempting to consider the behavior of these games as a function of dynamically generated 

variables, rather than as a function of external control variables, such as N, C and m.  

Among the dynamically generated variables that most strongly suggest themselves is ζ≡ 

eS/N, where S is the entropy associated with the string of m-tuples that constitute the 

publicly available information. In the limit that all allowed m-tuples appear with equal 

probability, this quantity reduces to δ.  Using ζ as a variable rather than δ is illuminating, 

but carries with it it’s own complications, particularly vis-à-vis the problem of scaling in 

these games. 

 

Finally, we note that for large m the bifurcated coexistence region persists, even though 

within each game the agents’ strategy choices are largely random. (I.e. most agent’s 

strategies are closely ranked and there are a relatively large number of choices between 

strategies that are determined by coin flips.)    For large m in the coexistence region, σ2/N 

either has the value ¼, associated with minority game-like behavior (dominated by 

system states (+,-) and (-,+)), or 1/8, reflecting the dynamics typical of the scarce 

resource region (dominated by system states (-,-)).  Intermediate values do not exist.4 

 

These results are summarized in Fig. 5, in which we present a qualitative phase diagram 

for this system.  The vertical axis represents “load” on the system.  In the case of 
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experiments with fixed C, this can be thought of as a monotonic function of N.  The 

horizontal axis carries a measure of the normalized (per capita) information used by the 

agents to make their decisions.  In this figure we use δ.  This figure should be understood 

to be only qualitative.  Determining the precise positions of the phase boundaries goes 

well beyond the scope of this work. However, this qualitative picture is based on 

extensive numerical simulations. For example, the coexistence region indicated by the 

double arrow in Fig. 3 is associated with the region marked by the double arrow in Fig 5. 

Thus, this figure captures the following important features observed in our extensive 

experimental results 4: 1. The region of limited resources, dominated by minority game-

like dynamics is qualitatively distinct from the regions of scarce or abundant resources3 

and 2. For values of δ>δc, there is a coexistence region as we move from limited to scarce 

or abundant resources. In this region, the collection of games bifurcates, so that each 

game takes on features either of a system in the limited or in the scarce (or abundant) 

resource region.  Games with intermediate behavior do not exist.  Finally, we have 

observed that the position of the bifurcated coexistence region varies in an interesting 

way with the size of the system.  In particular, for δ≈δc, and for a given C, the value of N 

at which one observes bifurcated coexistence, Nb, satisfies Nb-C ∝ Cp, where 1/2≤p≤3/4.3 

 

It is also important to point out that the bifurcated coexistence region is robust to some 

significant changes in the game.  In particular there continues to be a bifurcated 

coexistence region when games are played with partial satisfaction rather than binary 

satisfaction.  This is very important, since it suggests that, like the phase transition in the 

minority game, the coexistence region may be a universal feature, mediating a transition 

between two phases in a large class of games.   

 

In this paper we have examined an important class of resource allocation games that are 

generalizations of the minority game.  As the demand load on the system varies away 

from the minority game configuration (N=C+1) the system continues to exhibit minority-

game like behavior until the demand is sufficiently high (or low).  At that point the 

system exhibits a transition from a region of competition for limited resources (minority 

game-like behavior) to one of competition for scarce (or abundant) resources.  If δ≥δc the 
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transition between these qualitatively different states is mediated through a surprising 

bifurcated coexistence region.  We have also studied resource allocation systems with 

more than two suppliers.  The general phase structure we have found here applies in those 

cases also, but is somewhat more complicated.3 

 

Based on our work, several important questions suggest themselves.  First, it is clear that 

in the coexistence region the initial distribution of strategies to the agents strongly affects 

which branch a given game will occupy.  However, the initial distribution of strategies to 

the agents is not always determinative of which branch a given game will occupy in the 

coexistence region..4  Second, it is unclear what the fate of the bifurcation phenomenon is 

upon the introduction of evolution for the strategies.  Third, our analysis has made no 

direct allusion to agent wealth.  There is an interesting interpretation of agent wealth in 

the coexistence region, and that also will be discussed elsewhere.3  Finally, our work 

illustrates the continuing, even growing importance of the application of concepts from 

the physical sciences to problems of collections of adaptive agents in the social and 

biological sciences. 
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1 Throughout this paper, we use "compete" and "competition" informally.  Our agents do not explicitly seek 
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may be an important distinction.  For a more detailed discussion, see H.V.D. Parunak, S. Brueckner, M. 

Fleischer, and J. Odell, in preparation. 
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5 Note that simply replotting Fig. 4 as a function of δ will still result in offset minima.  The reason is that 

these curves are evaluated only for integer values of m, but the critical values of m are generally non-

integer, so one must consider more continuous curves to clearly see the coincidence of the dips. 
6 R. Savit, Y. Li, S. Brueckner, H. V. D. Parunak and J. Sauter, in preparation.  The question of nonuniform 

sampling of the strategy space has also been briefly touched on in D. Challet and M. Marsili, preprint, 

cond-mat/0004196 v1 (revised Oct. 2001). 



 

Figure Captions 

 

Fig. 1 σ2/N as a function of N (3≤N≤50) and C (2≤C≤70) for m=4.  

Fig. 2.  Segments of the time series of n1(t) for a games played in two different regions.  

Values of n1(t) that place the system in the states (+,-), (-,-) or (-,+) are indicated by the 

dashed lines.  a.) N=203, C=200, m=6, the limited resource region, b.) N=209, C=200, 

m=6, the scarce resource region. 

Fig. 3.  σ2/N for different runs as a function of N. (201≤N≤214) for C=200 and m=8.  32 

runs are presented for each value of N.  This figure illustrates the bifurcated coexistence 

region indicated by the double arrow running from A to B. 

Fig. 4.  σ2/N as a function of m for N=C+1 (the minority game configuration) and N=C 

and N=C+2, neighboring the minority game configuration. 

Fig. 5.  A qualitative phase diagram for the class of game discussed here.  The vertical 

axis is load on the system, and the horizontal axis is a measure of normalized information 

used by the agents to make their choices, specifically δ ≡ D/N. The bifurcated 

coexistence region shown by the double arrow in Fig. 3 is associated with the region 

marked by a double arrow in this figure. 
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