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Abstrat

We propose the algebro-geometri method of onstrution of solu-

tions of the disrete KP equation over a �nite �eld. We also perform

the orresponding redution to the �nite �eld version of disrete KdV

equation. We write down formulas whih allow to onstrut multisoli-

ton solutions of the equations starting from vauum wave funtions on

arbitrary non-singular urve.

1 Introdution

The goal of this paper is to present a general algebro-geometri method

of onstrution of solutions to the ellular automaton assoiated with the

disrete Kadomtsev�Petviashvilii (KP) equation [4℄

τ(n1+1, n2, n3) τ(n1, n2+1, n3+1)−τ(n1, n2+1, n3) τ(n1+1, n2, n3+1)+

+ τ(n1, n2, n3 + 1) τ(n1 + 1, n2 + 1, n3) = 0,

and with its redution to the disrete Korteweg�de Vries (KdV) equation [3℄

τ(n1 + 1, n3) τ(n1, n3)− τ(n1, n3 − 1) τ(n1 + 1, n3 + 1)+

+ τ(n1, n3 + 1) τ(n1 + 1, n3 − 1) = 0.
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It turns out that main algebro-geometri ideas of onstrution of solutions of

the equations an be transferred from the level of Riemann surfaes to the

level of algebrai urves over �nite �elds. Our motivation to extend validity

of the disrete equations to �nite �eld domain was presented in the reent

paper [2℄, where we also send for relevant literature.

The layout of the paper is as follows. In Setion 2 we present the general

algebro-geometri sheme for onstrution of solutions of the disrete KP

equation. In Setion 3 we desribe the algebro-geometri redution sheme

from KP to the disrete KdV equation. Setion 4 is devoted to onstrution of

multisoliton solutions (on nontrivial bakground) starting from the vauum

wave funtions on algebrai urves over �nite �elds. As a simple appliation

of the general method we onstrut multisolitoni solutions starting from the

algebrai urve of genus zero (the projetive line).

2 Solutions of the disrete KP equation from

algebrai urves over �nite �elds

This Setion is motivated by algebro-geometri (over the omplex �eld) ap-

proah to the disrete KP (or Hirota) equation (see for example [5℄ and [6℄)

and by [2℄, where an equivalent version of the disrete KP equation (the dis-

rete analogue of the Toda �eld system) was studied in detail in the ontext

of �nite �eld valued solutions.

Consider an algebrai projetive urve C, absolutely irreduible, nonsin-

gular, of genus g, de�ned over the �nite �eld K = Fq with q elements, where

q is a power of a prime integer p (see, for example [8℄). By CK we denote the

set of K-rational points of the urve. By K denote the algebrai losure of

K, i.e., K =
⋃∞

ℓ=1 Fqℓ , and by C
K
denote the orresponding (in�nite) set of

K-rational points of the urve. The ation of the Galois group G(K/K) (of
automorphisms of K whih are identity on K, see [7℄) extends naturally to

ation on C
K
.

Let us hoose:

1. three points ai ∈ CK, i = 1, 2, 3,
2. N points cα ∈ C

K
, α = 1, . . . , N , whih satisfy the following K-rationality

ondition

∀σ ∈ G(K/K), σ(cα) = cα′ ,

3. N pairs of points dβ, eβ ∈ C
K
, β = 1, . . . , N , whih satisfy the following
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K-rationality ondition

∀σ ∈ G(K/K) : σ({dβ, eβ}) = {dβ′, eβ′},

4. g points fγ ∈ C
K
, γ = 1, . . . , g, whih satisfy the following K-rationality

ondition

∀σ ∈ G(K/K), σ(fγ) = fγ′ ,

5. the normalization point a0 ∈ CK.
As a rule we onsider here only the generi ase and assume that all the

points used in the onstrution are generi and distint. In partiular, the

divisor D =
∑g

γ=1 fγ is non-speial. We remark that it is enough the hek

the K-rationality onditions in any extension �eld L ⊃ K of rationality of all

the points used in the onstrution.

De�nition 1. Fix K-rational loal parameters ti at ai, i = 0, 1, 2, 3. For any
integers n1, n2, n3 ∈ Z de�ne the wave funtion ψ(n1, n2, n3) as a rational

funtion with the following properties

1. it has pole of the order at most n1 + n2 + n3 at a0,
2. the �rst nontrivial oe�ient of its expansion in t0 at a0 is normalized to

one,

3. it has zeros of order at least ni at ai for i = 1, 2, 3,
4. it has at most simple poles at points cα, α = 1, . . . , N ,

5. it has at most simple poles at points fγ, γ = 1, . . . , g,
6. it satis�es N onstraints

ψ(n1, n2, n3)(dβ) = ψ(n1, n2, n3)(eβ), β = 1, . . . , N.

The funtion ψ(n1, n2, n3) is K-rational, whih follows from K-rationality

onditions of sets of points in their de�nition. As usual, zero (pole) of a

negative order means pole (zero) of the orresponding positive order. Cor-

respondingly one should exhange the expressions "at most" and "at least"

in front of the orders of poles and zeros. By the standard appliation of the

Riemann�Roh theorem (and the generiity assumption) we onlude that

the wave funtion ψ(n1, n2, n3) exists and is unique.

In the generi ase, whih we assume in the sequel, when the order of the

pole of ψ at a0 is (n1+n2+n3) denote by ζ
(0)
k (n1, n2, n3) and ζ

(i)
k (n1, n2, n3),

i = 1, 2, 3, K-rational oe�ients of expansion of ψ at a0 and at ai, respe-
tively, i.e.,

ψ =
1

t
(n1+n2+n3)
0

(

1 +
∞
∑

k=1

ζ
(0)
k tk0

)

, ψ = tni

i

∞
∑

k=0

ζ
(i)
k tki .
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Denote by Ti the operator of translation in the variable ni, i = 1, 2, 3, for
example T1ψ(n1, n2, n3) = ψ(n1+1, n2, n3). Uniqueness of the wave funtion
implies the following statement.

Proposition 1. The funtion ψ satis�es equations

Tiψ − Tjψ +
Tjζ

(i)
0

ζ
(i)
0

ψ = 0, i 6= j. (1)

Notie that equation (1) gives

Tjζ
(i)
0

ζ
(i)
0

= −
Tiζ

(j)
0

ζ
(j)
0

, i 6= j. (2)

De�ne ρi = (−1)
∑

j<i njζ
(i)
0 , then equation (2) implies existene of a K-valued

potential (the τ -funtion) de�ned (up to a multipliative onstant) by for-

mulas

Tiτ

τ
= ρi, i = 1, 2, 3. (3)

Finally, equations (1) give rise to ondition

T2ρ1
ρ1

−
T3ρ1
ρ1

+
T3ρ2
ρ2

= 0,

whih written in terms of the τ -funtion gives the disrete KP equation [4℄

(T1τ) (T2T3τ)− (T2τ) (T3T1τ) + (T3τ) (T1T2τ) = 0. (4)

Corollary 2. Notie that multipliation of ρi, i = 1, 2, 3, by a funtion of

the single argument ni, do not a�ets nor existene of the τ funtion nor

equation (4) satis�ed by the funtion.

3 Redution to the disrete KdV equation

The disrete KdV equation [3, 6℄

(T1τ) τ − (T−1
3 τ) (T3T1τ) + (T3τ) (T1T

−1
3 τ) = 0, (5)

is obtained from the disrete KP equation by imposing onstraint

T2T3τ = γτ, (6)
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where γ is a non-zero onstant. Transition of the redution (6) to the level of

the wave funtion ψ will give the algebro-geometri proedure of onstrution

of solutions of the disrete KdV equation.

Lemma 3. Assume that on the algebrai urve C there exists a meromorphi

funtion h with the following properties

1. it has two simple zeroes at points a2 and a3 and no other zeroes,

2. it has double pole at a0,
3. it satis�es N onstraints h(dβ) = h(eβ), β = 1, . . . , N ,

4. the �rst nontrivial oe�ient of its expansion in the parameter t0 at a0 is
normalized to one.

Then the wave funtion ψ satis�es the following ondition

T2T3ψ = hψ. (7)

Remark. Existene of suh a funtion h implies that the algebrai urve C is

hyperellipti.

Proposition 4. Let h be the funtion as in Lemma 4. Assume additionally

that

h(a1) = 1. (8)

Denote by δ2 and δ3 the �rst oe�ients of loal expansion of h in parameters

t2 and t3 at a2 and a3, orrespondingly

h = t2(δ2 + . . . ), h = t3(δ3 + . . . ).

Then the funtion

τ̃ = τ δ
−n2(n2−1)/2
2 (−δ3)

−n3(n3−1)/2
(9)

satis�es the disrete KdV equation (5).

Proof. Expanding equation (7) at a1 and using of the additional assumption

(8) we obtain that

T2T3ρ1 = ρ1.

Expansions of equation (7) at a2 and a3 give

T2T3ρ2 = δ2ρ2, T2T3ρ3 = −δ3ρ3.
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Therefore the funtions

ρ̃1 = ρ1, ρ̃2 = δ−n2

2 ρ2, ρ̃3 = (−δ3)
−n3ρ3,

satisfy ondition

T2T3ρ̃i = ρ̃i, i = 1, 2, 3. (10)

By Corollary 2 the funtions ρ̃i, i = 1, 2, 3, de�ne new potential τ̃ , on-
neted with τ by (9), whih satis�es the disrete KP equation (4). Moreover,

onditions (10) imply that τ̃ is subjeted to onstraint (6).

Remark. Notie that in the above proedure one obtains a family, labelled

by the parameter n2, of solutions of the disrete KdV equation.

4 Constrution of solutions of the disrete KP

and KdV equations using vauum funtions

In this Setion we write down results whih allow to onstrut the N -soliton

τ -funtion starting from vauum (N = 0) wave funtions on algebrai urve

over a �nite �eld. The methods to obtain these results are the same as in

the orresponding setion of [2℄.

In the ase N = 0 let us add supersript 0 to all funtions de�ned above.

De�ne auxiliary vauum wave funtions φ0
α, α = 1, . . . , N , as follows.

De�nition 2. Fix loal parameters tα at cα, α = 1, . . . , N . For any α de�ne

the funtion φ0
α by the following set of onditions:

1. it has pole of the order at most n1 + n2 + n3 − 1 at a0,
2. it has zeros of order at least ni at ai, for i = 1, 2, 3,
3. it has at most simple pole at the point cα,
4. the �rst nontrivial oe�ient of its expansion in tα at cα is normalized to

one,

5. it has at most simple poles at points fγ, γ = 1, . . . , g.

Using the Riemann-Roh theorem it an be shown that the funtion φ0
α

exists and is unique.

Proposition 5. Denote by ψ0(d, e), the olumn with N entries of the form

[

ψ0(d, e)
]

β
= ψ0(dβ)− ψ0(eβ), β = 1, . . . , N,
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denote by φ0
A
the row with N entries

[

φ0
A

]

α
= φ0

α, α = 1, . . . , N,

and denote by φ0
A,m(d, e) the N × N matrix whose element in row β and

olumn α is

[

φ0
A
(d, e)

]

αβ
= φ0

α(dβ)− φ0
α(eβ), α, β = 1, . . . , N.

Then the wave funtion ψ of the disrete KP equation reads

ψ = ψ0 − φ0
A
[φ0

A
(d, e)]−1ψ0(d, e).

In the generi ase denote by H0
0,α the �rst nontrivial oe�ient of ex-

pansion of the funtion φ0
α at a0 in the uniformization parameter t0,

φ0
α =

1

t
(n1+n2+n3−1)
0

(

H0
0,α + . . .

)

.

Corollary 6. The orresponding expressions for ρi read

ρi = ρ0i
(

1 + (TiH
0
0,A)[φ

0
A
(d, e)]−1ψ0(d, e)

)

, i = 1, 2, 3,

where H0
0,A is the row with N entries H0

0,α.

Proposition 7. The τ -funtion an be onstruted by the following formula

τ = τ 0 detφ0
A
(d, e). (11)

Corollary 8. Starting with K-valued funtion τ 0 and the loal parameters tα
at cα hosen in a onsistent way with the ation of the Galois group G(K/K)
on C

K
we obtain K-valued funtion τ .

Corollary 9. Notie that equation (9) implies that the same formula (11)

holds also for the τ̃ -funtion in the redution from the disrete KP equation

to the disrete KdV equation.

We present here expliit formulas for the vauum funtions in the simplest

ase g = 0. In onstruting the vauum funtions we will use the standard

parameter t on the projetive line P(K) and we put a0 = ∞. Expliit form

of the vauum wave funtion reads

ψ0 = (t− a1)
n1(t− a2)

n2(t− a3)
n3
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whih gives formulas for the funtions ρ1, ρ2 and ρ3

ρ01 = (a1 − a2)
n2(a1 − a3)

n3,

ρ02 = (−1)n1(a2 − a1)
n1(a2 − a3)

n3,

ρ03 = (−1)n1+n2(a3 − a1)
n1(a3 − a2)

n2.

Expliit form of the vauum τ -funtion reads

τ 0 = (a1 − a2)
n1n2(a1 − a3)

n1n3(a2 − a3)
n2n3.

The auxiliary vauum wave funtions φ0
α, α = 1, . . . , N have the form

φ0
α =

1

t− cα
·

(t− a1)
n1(t− a2)

n2(t− a3)
n3

(cα − a1)n1(cα − a2)n2(cα − a3)n3

. (12)

In the ase of the redution from KP to KdV the funtion h reads

h(t) = (t− a2)(t− a3),

while the points ai, i = 1, 2, 3, are subjeted to the ondition

h(a1) = (a1 − a2)(a1 − a3) = 1.

Then, in notation of Setion 3,

δ2 = a2 − a3 = −δ3,

and, aording to Proposition 4, the vauum solution of the disrete KdV

equation reads

τ̃ 0 = (a1 − a3)
n1(n3−n2)(a2 − a3)

n2−(n3−n2)(n3−n2−1)/2. (13)

Finally, by Corollary 9, formulas (11)�(13) allow to �nd pure N-soliton so-

lutions of the disrete KdV equation over �nite �elds.

Let us present an example of �nite �eld valued solution of the disrete

KdV equation in bilinear form. We take K = F5, and all the points used

in the onstrution will be in F52 , whih we onsider as extension of F5

by the polynomial w(x) = x2 + x + 1. The orresponding Galois group

reads G(F52/F5) = {id, σ}, where σ is the Frobenius automorphism [7℄. The

parameters of the solution are hosen as follows:

a1 = (00), a2 = (02), a3 = (03),
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Figure 1: The vauum and 2-soliton solutions of the disrete KdV equation

in F5; n1 range from 0 to 26 (direted to the right), n3 range from 0 to 26
(direted up).

c1 = (10), c2 = σ(c1) = (44),
d1 = (21), e1 = σ(d1) = (34),
d2 = (13), e2 = σ(d2) = (42).
The funtion τ̃ is normalized to one for n1 = n2 = n3 = 0. This solution

of the disrete KdV equation, for n2 = 0, is presented in omparison with

the vauum solution in Figure 1. The elements of F5 are represented by:

� (00), � (01), � (02), � (03), � (04). The periods in variables n1,

n3 are 4, 24, orrespondingly (both must be divisors of 24 = |F∗
52 |, see [2℄).

Finally, we would like to remark that examples of multisoliton solutions

on urves of non-zero genus are more involved and their onstrution needs

some tehniques on Jaobians of algebrai urves [1℄.
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