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Abstract

The procedure of Dirac reduction of Poisson operators on submanifolds is discussed

within a particularly useful special realization of the general Marsden-Ratiu reduc-

tion procedure. The Dirac classification of constraints on ’first-class’ constraints and

’second-class’ constraints is reexamined.
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1 Introduction

Dirac bracket as well as Dirac’s classification of constraints is nowadays a well recognized and
very useful tool in the construction of Poisson dynamics on admissible submanifolds from a
given Poisson dynamics on a given manifold. In this paper we consider the Dirac reduction
procedure in a more general setting than is usually met in literature. In Section 2 we
implement the Dirac reduction procedure into a particularly useful special realization of the
general Marsden-Ratiu reduction scheme, based on the concept of transversal distributions.
In Section 3 we reconsider the Dirac concept of first class constraints as it seems to be too
restrictive.

Firstly we recall few basic notions from Poisson geometry. Given a manifold M, a
Poisson operator π on M is a mapping π : T ∗M → TM that is fibre-preserving (i.e.
π|T∗

xM : T ∗
xM → TxM for any x ∈ M) and such that the induced bracket on the space

C∞(M) of all smooth real-valued functions on M

{., .}π : C∞(M) × C∞(M) → C∞(M) , {F,G}π
def
= 〈dF, π dG〉 , (1)
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where 〈., .〉 is the dual map between TM and T ∗M, is skew-symmetric and satisfies Ja-
cobi identity (the bracket (1) always satisfies the Leibniz rule {F,GH}π = G {F,H}π +
H {F,G}π). The symbol d denotes the operator of exterior differentiation. The operator
π can always be interpreted as a bivector, π ∈ Λ2(M) and in a given coordinate system
(x1, . . . , xm) on M we have

π =

m∑

i<j

πij ∂

∂xi
∧

∂

∂xj
.

A function C : M → R is called a Casimir function of the Poisson operator π if for an
arbitrary function F : M → R we have {F,C}π = 0 or, equivalently, if πdC = 0.

2 Marsden-Ratiu reduction for transversal distributions

The Marsden-Ratiu reduction theorem [1] describes the procedure of reducing a Poisson
operator π on arbitrary submanifold S of our manifold M. This general procedure exists
only if some conditions are satisfied. These conditions involve a distribution E (in the
original notation of Marsden and Ratiu) that is a subbundle of TM. By a simple assumption,
namely that this distribution is transversal, one can, however, satisfy all these conditions
automatically. Below we reformulate the Marsden-Ratiu theorem in this more limited but
useful setting.

Consider an m-dimensional manifold M equipped with a Poisson operator π and an
s-dimensional submanifold S of M. Fix a distribution Z of constant dimension k = m− s,
that is a smooth collection of m-dimensional subspaces Zx ⊂ TxM at every point x in M,
which is transversal to S in the sense that no vector field Z ∈ Z is at any point tangent to
the submanifold S. Hence we have

TxM = TxS ⊕ Zx

for every x ∈ S and, similarly,
T ∗
xM = T ∗

xS ⊕ Z∗
x ,

where T ∗
xS is the annihilator of Zx and Z∗

x is the annihilator of TxS. That means that if
α is a one form in T ∗

xS then α(Z) = 0 for all vectors Z ∈ Zx and if β is a one-form in Z∗
x

then β vanishes on all vectors in TSx.

Definition 1 A function F : M → R is invariant with respect to Z if LZF = Z(F ) = 0
for any Z ∈ Z. Similarly, a function F : M → R is invariant with respect to Z on S
(Z|S-invariant in short) if LZF |S = Z(F )|S = 0 for any Z ∈ Z

Here and in what follows the symbol LZ means the Lie derivative along the vector field
Z.

Definition 2 An operator π is called invariant with respect to the distribution Z if the
functions that are Z- invariant form a Poisson subalgebra, that is, if F , G : M → R are
two Z- invariant functions then {F,G}π is again a Z- invariant function. Similarly, an
operator π is called invariant with respect to the distribution Z on S if the functions that
are Z|S - invariant form a Poisson subalgebra, that is, if F , G : M → R are two Z|S -
invariant functions then {F,G}π is again a Z|S - invariant function.
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We denote these Poisson subalgebras by A and AS respectively. Let us observe, that if
π is Z|Sν

-invariant for any manifold Sν in a foliation of M then it is also Z- invariant.

Theorem 3 (Marsden and Ratiu [1]): Let S be a submanifold of M equipped with a Poisson
operator π and let Z be a distribution in M that is transversal to S. If the operator π is
invariant with respect to the distribution Z on S, then the Poisson operator π is reducible
on S in the sense that on S there exists a (uniquely defined) Poisson operator πR such that
for any f, g : S → R we have

{f, g}πR
= {F,G}π |S (2)

for any Z|S - invariant prolongations F and G of f and g respectively.

The above construction, however, is difficult to perform in practice since it is often hard
to find explicit expressions for the prolongations F and G. We now show how this difficulty
can be omitted.

Firstly, suppose that our submanifold S is given by k functionally independent equations
ϕi(x) = 0, i = 1, . . . , k (constraints) and that our transversal distribution Z is spanned by
k vector fields Zi chosen such that the following orthogonality relation holds

〈dϕi, Zj〉 = Zj(ϕi) = δij , (3)

(this is no restriction since for any distribution Z transversal to S we can choose its basis
so that (3) is satisfied). We observe that in this case we have [Zi, Zj ]ϕk = 0 for all k, where
[X,Y ] = LXY = X(Y ) − Y (X) is the Lie bracket (commutator) of the vector fields X,Y ,
so that [Zi, Zj ] is always tangent to S. Then, in case that the distribution Z is involutive
(integrable), this means that [Zi, Zj] = 0 for all i, j. Moreover, we define the vector fields
Xi as

Xi = πdϕi, i = 1, . . . , k. (4)

There exists an important class of Z-invariant Poisson operators

Lemma 4 [2] If

LZi
π =

k∑

j=1

W
(i)
j ∧ Zj i = 1, . . . , k (5)

for some vector fields W
(i)
j , then the Poisson operator π is invariant with respect to Z

We sketch the proof here for the clarity of the text.
Proof. Assume, that LZi

F = LZi
G = 0 for all i. We have to show that LZi

{F,G}π = 0
for all i, but, due to (5)

LZi
{F,G}π = LZi

〈dF, πdG〉 =

k∑

j=1

〈
dF, (W

(i)
j ∧ Zj)dG

〉

since LZi
(dF ) = d(LZi

F ) = 0 (and similarly for G). On the other hand

〈
dF, (W

(i)
j ∧ Zj)dG

〉
= Zj(G)W

(i)
j (F ) − Zj(F )W

(i)
j (G) = 0
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since Zj(F ) = LZj
F = 0 (and similarly for G).

The condition (5) is sufficient but not necessary. For example, if

LZi
π =

k∑

j=1

Wj ∧ [Zi, Zj] i = 1, . . . , k

for some vector fields Wi, then the operator π is also Z-invariant (one shows it by compu-
tations similar to those in the above proof). In the case when π satisfies (5) we apply the
Lie derivative LZj

to both sides of the equation (4). Due to (5) we obtain

[Zj , Xi] = LZj
Xi = (LZj

π)dϕi =

(
∑

l

W
(j)
l ∧ Zl

)
dϕi =

(6)

=
∑

l

(
Zl(ϕi)W

(j)
l −W

(j)
l (ϕi)Zl

)
= W

(j)
i −

∑

l

W
(j)
l (ϕi)Zl

We observe that, if F and G are two Z|S-invariant functions and Vj are arbitrary

vector fields, then
〈
dF,

∑
jVj ∧ Zj dG

〉∣∣∣
S

= 0 since 〈dF, Vj ∧ Zj dG〉 = Zj(G)Vj(F ) −

Zj(F )Vj(G) = 0 on S. Thus the Poisson operator π and its deformation of the form

πD = π −
∑

jVj ∧ Zj (7)

in spite of the fact that they act differently on AS both generate the same bracket on S so
that both can be used to define our restricted operator πR on S through (2). Of course,
the deformed operator πD does not have to be Poisson, but nevertheless its restriction to
S through (2) must be Poisson since it naturally coincides with similar restriction of π to
S. If we now consider a whole foliation of M defined by the functions ϕi with leaves Sν (so
that S0 = S) then it turns out that we can choose our (undetermined so far) vector fields
Vj in (7) so that

πD(αx) ∈ TxSν for any αx ∈ T ∗
xM and any x ∈ M, (8)

which has a far reaching consequence.

Lemma 5 The deformation πD given by (7) that also satisfies (8) is Poisson.

Proof. The condition that πD(αx) is tangent to Sν for any αx ∈ T ∗
xM is equivalent

to the requirement that 〈dϕi, πD(αx)〉 = 0 for all i. Due to the antisymmetry of πD this
requirement can be rewritten as 〈αx, πD(ϕi)〉 = 0 for all i. Since αx is arbitrary, the
condition attains the form πD(dϕi) = 0 for i = 1, . . . , k. We now complete the set of
functions ϕi with some functions xj to a coordinate system (x, ϕ) on M. Then the matrix
of the operator πD has the last k rows and last k columns equal to zero while the m − k
dimensional upper left block coincides on every leaf Sν with the correponding πR which is
Poisson by the Marsden-Ratiu construction.
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Lemma 6 The condition (8) can be written as

Vi −

k∑

j=1

Vj(ϕi)Zj = Xi. (9)

Proof. We know that the condition (8) can be written as πD(dϕi) = 0 for i = 1, . . . , k.
An easy calculation yields now that

0 = πD(dϕi) = π(dϕi) −

k∑

j=1

(Zj(ϕi)Vj − Vj(ϕi)Zj) =

= Xi − Vi +
k∑

j=1

Vj(ϕi)Zj

due to the normalization condition (3).
We now restrict ourselves to only two limit cases, when all Xi are tangent to S and when

Xi span Z.

2.1 The case when Xi are tangent to S

We firstly assume that all the vectors Xi are tangent to S. We have then naturally Xi(ϕj) =
0. This in turn means that {ϕi, ϕj}π = 〈dϕi, πdϕj〉 = 〈dϕi, Xj〉 = 0 so that all the vector
fields Xi commute. In this case the simplest solution of (9) has the form Vi = Xi and the
corresponding deformation (7) attains the form

πD = π −

k∑

i=1

Xi ∧ Zi. (10)

This deformation has been recently widely used for projecting Poisson pencils on symplectic
leaves of one of their operators [3]-[5].

Lemma 7 [3] The vector fields W
(k)
j in (5) can, in the case that all Xi are tangent to S,

be chosen as tangent to S.

Proof. Consider the projections W̃
(i)
j of the vector fields W

(i)
j onto S:

W̃
(i)
j = W

(i)
j −

k∑

r=1

W
(i)
j (ϕr)Zr.

If W
(i)
j are in Z, then W̃

(i)
j = 0. The vector field W̃

(i)
j is indeed tangent to S since

W̃
(i)
j (ϕl) = W

(i)
j (ϕl) −

k∑

r=1

W
(i)
j (ϕr)δlr = 0.
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Now
k∑

j=1

W̃
(i)
j ∧ Zj =

k∑

j=1

W
(i)
j ∧ Zj −

k∑

j,r=1

W
(i)
j (ϕr)Zr ∧ Zj

the last term being equal to zero since LZk
{ϕi, ϕj}π = 0 implies W

(i)
j (ϕr) = W

(i)
r (ϕj).

Thus
∑k

j=1W
(i)
j ∧ Zj =

∑k

j=1 W̃
(i)
j ∧ Zj.

Due to this gauge freedom, if we choose W
(i)
j as tangent to S (which means that

W
(i)
j (ϕr) = 0) then the formula (6) yields that W

(i)
j = [Zi, Xj ] . Thus, due to the fact

that we assumed (5),

LZi
π =

k∑

j=1

[Zi, Xj ] ∧ Zj . (11)

Remark 8 In the case that the functions ϕi are Casimir functions of π we have Xi =
πdϕi = 0 so that the formula (11) yields LZi

π = 0 for all i, i.e. the vector fields Zi

are symmetries of π. In this case our reduction procedure (2) coincides with the standard
projection onto a level set of Casimir functions (symplectic leaf in case there are no other
Casimirs apart from ϕi)[6].

From what we have said above it becomes clear that the above reduction scheme can
be interpreted as a two-step procedure: firstly we deform the original Poisson tensor π to a
Poisson tensor πD and then we obtain πR as standard projection of πD onto the level set S
of its Casimirs ϕi (thus we need not calculate the prolongations F and G in order to define
{f, g}πR

).
Now we check what can be said about our vector fields Zi.
According to Remark 8 LZi

πD = 0. On the other hand, due to (10),

0 = LZi
πD =

k∑

j=1

[Zi, Xj] ∧ Zj −
k∑

j=1

LZi
Xj ∧ Zj −

k∑

j=1

Xj ∧ LZi
Zj

so that
∑k

j=1Xj ∧ [Zi, Zj] = 0. Of course one of the possible realizations of this condition is
the case that the distribution Z be integrable since then [Zi, Zj] = 0. There are, however,

other possibilities here. For example, if [Zi, Zj] =
∑k

s=1 c
s
ijXs with csij = cisj ,

∑k

j=1Xj ∧
[Zi, Zj] = 0 as well.

2.2 The case when Xi span Z

This time we assume that Xi =
∑

kϕkiZk for some real valued functions ϕij , which due to
(3) yields

ϕij =
∑

kϕkjZk(ϕi) = Xj(ϕi) = {ϕi, ϕj}π . (12)

The functions ϕij define a k-dimensional skew-symmetric matrix ϕ = (ϕij) , i, j = 1, . . . k.
The only condition imposed on ϕ is related to the demand that Xi span Z, i.e. detϕ 6= 0.
We thus do not have to assume (5) this time since now the distribution Z is spanned by

6



the Hamiltonian vector fields Xi and thus π is automatically invariant with respect to Z as
LXi

π = 0 for all i. It can be easily shown that

[Xj , Xi] = X{ϕi,ϕj}π
= π d{ϕi, ϕj}π = π dϕij .

Now we look for solutions of (9) in the simple form Vi = αXi. Inserting this into (9)
and using the fact that ϕij = −ϕji we obtain

0 = αXi − α

k∑

j=1

Xj(ϕi)Zj −Xi = αXi + α

k∑

j=1

ϕjiZj −Xi = (2α− 1)Xi

so that a = 1/2 and Vi = 1
2Xi. In this case the deformation (7) attains the form:

πD = π −
1

2

k∑

i=1

Xi ∧ Zi (13)

and is, as mentioned above, Poisson. It is easy to check that our operator πD defines the
following bracket on M

{F,G}πD
= {F,G}π −

k∑

i,j=1

{F, ϕi}π(ϕ−1)ij{ϕj, G}π, (14)

where F,G : M → R are now two arbitrary functions on M, which is just the well known
Dirac deformation [7] of the bracket {., .}π associated with π.

Remark 9 If C : M → R is a Casimir function of π, then it is also a Casimir function of
πD since in this case (14) yields

{F,C}πD
= {F,C}π −

m∑

i,j=1

{F, ϕi}π(ϕ−1)ij{ϕj , C}π = 0 − 0 = 0. (15)

We also know that the constraints ϕi are Casimirs of the deformed operator πD. Thus we
can state that Dirac deformation preserves all the old Casimir functions and introduces new
Casimirs ϕi.

It is now possible to restrict our Poisson operator πD (or our Poisson bracket {., .}πD
) to

a Poisson operator πR (bracket {., .}πR
) on the submanifold S, i.e. the level set ϕ1 = ... =

ϕm = 0 of Casimirs of πD, in a standard way.

3 Existence of Dirac reduction

We now present some realizations of the above Dirac case and discuss the classical concept
of the Dirac classification of constraints. We will show that the classification of constraints
as being either of first-class or of second-class, proposed by Dirac, should be reexamined
when one looks at the problem from a more general point of view.
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We recall that a constraint ϕk is of first class if its Poisson bracket with all the remaining
constants ϕi vanishes on S, that is if

{ϕk, ϕi}π|S = 0, i = 1, ...,m. (16)

Otherwise ϕk is of second-class. In the case that at least one of the constraints is of the
first class, the matrix ϕij in (12) is singular on S so that the formula (14) cannot be used
in order to define πR. However, it may still be possible to define πR via the above general
scheme. This indicates that the concept of first class constraint is too narrow. Below we
demonstrate the examples of Dirac reduction in case when constraints are of first class.

We start with a simple example. Consider a 2n-dimensional manifold M parametrized
by coordinates (q1,...,qn, p1,...,pn) and equipped with a Poisson operator of the form

π =

[
0 Qn

−Qn 0

]
,

where Q is a diagonal matrix of the form Qn = diag(q1,...,qn). Consider a submanifold S
given by a pair of constraints ϕ1(q, p) ≡ qn = 0 and ϕ2(q, p) ≡ pn = 0. Then the matrix ϕ
has the form

ϕ =

[
0 qn

−qn 0

]

so that it is clearly singular on S (det(S) = 0 on S) and

ϕ−1 =
1

qn

[
0 1
−1 0

]

so that the Dirac formula (14) cannot be applied. However, the vector fields Z1 = q−1
n X2

and Z2 = −q−1
n X1 that span our distribution Z are not singular on S since X1 = −qn∂/∂pn

and X2 = qn∂/∂qn so that the deformation (13) becomes

πD = π −
1

qn
X1 ∧X2 = π − qn

∂

∂qn
∧

∂

∂pn
=

n−1∑

i=1

qi
∂

∂qi
∧

∂

∂pi

and is clearly reducible on S. The operator πR obtained on S parametrized by coordinates
(q1,...,qn−1, p1,...,pn−1) is

πR =

[
0 Qn−1

−Qn−1 0

]

This simple example clearly illustrates that Dirac’s classification is too strong. As a second
example we consider a particle moving in a Riemannian manifold Q of dimension three with
a contravariant metric tensor

G =




0 0 1
0 1 0
1 0 0




given in some coordinates (q1, q2, q3). Suppose that this particle is subordinated to a holo-
nomic constraint on Q given by

ϕ1(q) ≡ q1q2 + q3 = 0. (17)
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This defines a submanifold of Q. The velocity v =
∑3

i=1 v
i∂/∂qi of this particle must then

remain tangent to this submanifold so that

0 = 〈dϕk, v〉 =

3∑

i=1

∂ϕk

∂qi
vi.

and thus in our coordinates vi =
∑

j G
ijpj the motion of the particle in the phase space

M = T ∗Q is constrained not only by (17) but also by the relation

ϕ2(q, p) ≡

3∑

i,j=1

Gij ∂ϕ1(q)

∂qi
pj ≡ p1 + p2q

1 + p3q
2 = 0 (18)

that is nothing else than the lift of (17) to M. The constraints (17)-(18) define a four-
dimensional submanifold S of M. We now introduce the following Poisson structure on
M:

π =




0 0 0 q1 −1 0
0 0 0 q2 0 −1
0 0 0 2q3 q2 q1

−q1 −q2 −2q3 0 p2 p3
1 0 −q2 −p2 0 0
0 1 −q1 −p3 0 0



.

Again the matrix ϕ is singular, since ϕ12 = 2(q1q2 + q3) = 2ϕ1 which obviously vanishes
on S. One can, however, perform the deformation (13). A quite lengthy but straightforward
computation shows that in this case

πD =




0 0 0 q1 −1 0
0 0 0 q2 0 −1
0 0 0 −2q1q2 q2 q1

−q1 −q2 2q1q2 0 p2 p3
1 0 −q2 −p2 0 0
0 1 −q1 −p3 0 0




and this operator can be projected onto S. To do this, one can first pass to the Casimir
variables

(q1, q2, ϕ1(q), ϕ2(q, p), p2, p3)

since, due to the fact that it is easiest to eliminate q3 and p1 from the system of equations
ϕ1 = ϕ1(q) = 0, ϕ2 = ϕ2(q, p) = 0, we parametrize our submanifold by the coordinates
(q1, q2, p2, p3). In these variables the operator πR attains the canonical form

πR =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 .

Our two examples show that the condition (16) is only a necessary condition for nonex-
istence of πR on S, but is not a sufficient one. Hence the definition of first class constraints

9



has to be made weaker. Even in the case when we deal with a real first class constraint we
can obtain πR on S coming from the Dirac reduction of π. We demonstrate this below.

Firstly we assume that we have a pair of constraints ϕ1, ϕ2 that define our submanifold
S = {ϕ1 = 0, ϕ2 = 0} and such that they are of second class, i.e. that ϕ12|S = {ϕ1, ϕ2} |S 6=
0. It is clear that our submanifold S can be parametrized in infinitely many different ways
by constraints ϕ̃1 = 0, ϕ̃2 = 0, where

ϕ̃1 = ψ1ϕ1 + ψ2ϕ2, ϕ̃2 = ψ3ϕ1 + ψ4ϕ2 (19)

and where ψi are some functions on M such that ψi|S 6= 0 and such that

D ≡

∣∣∣∣
D(ϕ̃1, ϕ̃2)

D(ϕ1, ϕ2)

∣∣∣∣ = ψ1ψ4 − ψ2ψ3 6= 0. (20)

One can prove the following

Lemma 10 The deformations (13) given by the pair ϕ1, ϕ2 of constraints and by the pair
ϕ̃1, ϕ̃2 of constraints define the same reduced Poisson operator πR on S.

Proof. For the moment we denote the deformation (13) defined through ϕ1, ϕ2 by πD
and the corresponding deformation defined through ϕ̃1, ϕ̃2 by π̃D. Applying (13) we easily
get that for any two functions A,B : M → R

{A,B}πD
= {A,B}π +

{A,ϕ2}π {B,ϕ1}π − {A,ϕ1}π {B,ϕ2}π
{ϕ1, ϕ2}π

,

where we have assumed that {ϕ1, ϕ2}π does not vanish on S. Similarly

{A,B}π̃D
= {A,B}π +

{A, ϕ̃2}π {B, ϕ̃1}π − {A, ϕ̃1}π {B, ϕ̃2}π
{ϕ̃1, ϕ̃2}π

, (21)

where {ϕ̃1, ϕ̃2}π does not vanish on S due to (20). Using the relations (19) between the
deformed constraints ϕ̃i and the original constraints ϕi, the Leibniz property of Poisson
brackets and the fact that the functions ϕi vanish on S we obtain

{ϕ̃1, ϕ̃2}π |S = D {ϕ1, ϕ2}π|S

and

({A, ϕ̃2}π {B, ϕ̃1}π − {A, ϕ̃1}π {B, ϕ̃2}π)|S
= D ({A,ϕ2}π {B,ϕ1}π − {A,ϕ1}π {B,ϕ2}π)|S

so that the nonzero terms D in the numerator and denominator of (21) cancel and we obtain
{A,B}πD

∣∣
S

= {A,B}π̃D

∣∣
S

which implies that the projections of πD and π̃D onto S coincide.

In this nonsingular case the distribution Z along which we project a Poisson tensor π
usually changes after reparametrization, but Z|S remains the same as can be easily demon-
strated. Thus in case of the second class constraints one has a ”canonical” way of projecting
π onto S.
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We now suppose that the constraints ϕi are of first class, that is {ϕ1, ϕ2}π|S = 0 and
that the singularity in πD is not removable. We may still attempt to define the projection πR
by reparametrizing S as in (19) above. It turns out that among an infinite set of admissible
reparametrizations there are some exceptional which, although they fulfil the condition
(16), nevertheless eliminate the singularity in πD. In this case, however, by choosing a new
parametrization ϕ̃1, ϕ̃2 of S we change the distribution Z even on S so that we cannot
expect that the projection πR will be independent of the choice of the parametrization. We
lose a natural, ”canonical” choice of projection, but we still can perform the projection,
although in infinitely many nonequivalent ways. We illustrate this below in a sequence of
examples.

Consider a six-dimensional manifold M parametrized with coordinates (q1,q2, q3, p1, p2, p3)
with the following Poisson operator:

π =




0 0 0 1 q1 0
0 0 0 q1 2q2 + 1 q3
0 0 0 0 q3 0
−1 −q1 0 0 −p1 0
−q1 −2q2 − 1 −q3 p1 0 p3

0 −q3 0 0 −p3 0



.

Consider now a four-dimensional submanifold S in M given by the relations

ϕ1(q, p) = q3 = 0, ϕ2(q, p) = p3 = 0. (22)

It is clear that {ϕ1, ϕ2}π vanishes on the whole manifold M (and thus on S) so that these
constraints do not define any Dirac deformation at all. We now deform (22) as

ϕ̃1 = ϕ1 + ϕ2, ϕ̃2 = (−p2 − q1p1)ϕ1 + ϕ2 (23)

Calculation shows {ϕ̃1, ϕ̃2}π = (p3−q3)q3 so that {ϕ̃1, ϕ̃2}π|S = 0. One can show that after
introducing the Casimir variables (q1, q2, ϕ̃1, p1, p2, ϕ̃2) the deformed operator πD attains
the form

πD =




0 2 q1q3
q3−p3

0 1 −q1 0

−2 q1q3
q3−p3

0 0 q1 + 2 p1q3
q3−p3

−q21 + θ 0

0 0 0 0 0 0
−1 −q1 − 2 p1q3

q3−p3

0 0 −p1 0

q1 −q21 − θ 0 p1 0 0
0 0 0 0 0 0



,

where now q3 = q3(q, p, ϕ̃) and p3 = p3(q, p, ϕ̃) and θ = (q3 + p2q3 + q1q3p1)/(q3 − p3), and
as such is clearly singular on S and thus unreducible. This situation seems to be the most
common, i.e. a spontaneous choice of parametrization almost always leads to a singularity.
However, if we perform a slightly different deformation of (22):

ϕ̃1 = ϕ1, ϕ̃2 = (−p2 − q1p1)ϕ1 + ϕ2 (24)
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so that {ϕ̃1, ϕ̃2}π = −q23 is again zero on S, then the operator πD becomes nonsingular and
its projection on S has the following form

πR =




0 0 1 −q1
0 0 q1 1 − q21
−1 −q1 0 p1
q1 q21 − 1 −p1 0




in the variables (q1, q2, p1, p2). Yet another deformation (even this time of the form (19)):

ϕ̃1 = q2ϕ1 , ϕ̃2 = (p2 + ϕ2)ϕ1 (25)

yields a quite complicated expression on {ϕ̃1, ϕ̃2}π:

{ϕ̃1, ϕ̃2}π = (3q2 + 1)q23 + q33 ,

so that it again vanishes on S, but πD is again nonsingular and in the same variables
(q1, q2, p1, p2) its projection becomes

πR =




0 0 1 −
q2
1

3q2+1 0

0 0 q1q2
3q2+1 0

q2
1

3q2+1 − 1 − q1q2
3q2+1 0 − q1p2

3q2+1

0 0 q1p2

3q2+1 0




which concludes our series of examples.

4 Conclusions

In this article we have focused on two issues involving Dirac reductions of Poisson operators
on submanifolds. In the first part of the article we have shown how the Dirac reduction
procedure fits in a natural way, i.e. as a result of two natural assumptions about the defor-
mation πD of π, in the general Marsden-Ratiu reduction scheme. In the second part of our
considerations we have demonstrated that the Dirac reduction procedure is often possible
even in cases when the constraints that define our submanifold are of first class (in Dirac
terminology), possibly after some suitably chosen reparametrization of the submanifold S.
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