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Abstract

When the frequencies of the elastic and pendular oscillations of an elastic pendu-
lum or swinging spring are in the ratio two-to-one, there is a regular exchange of
energy between the two modes of oscillation. We refer to this phenomenon as pulsa-
tion. Between the horizontal excursions, or pulses, the spring undergoes a change of
azimuth which we call the precession angle. The pulsation and stepwise precession
are the characteristic features of the dynamics of the swinging spring.

The modulation equations for the small-amplitude resonant motion of the system
are the well-known three-wave equations. We use Hamiltonian reduction to deter-
mine a complete analytical solution. The amplitudes and phases are expressed in
terms of both Weierstrass and Jacobi elliptic functions. The strength of the pul-
sation may be computed from the invariants of the equations. Several analytical
formulas are found for the precession angle.

We deduce simplified approximate expressions, in terms of elementary functions,
for the pulsation amplitude and precession angle and demonstrate their high accu-
racy by numerical experiments. Thus, for given initial conditions, we can describe
the envelope dynamics without solving the equations. Conversely, given the param-
eters which determine the envelope, we can specify initial conditions which, to a
high level of accuracy, yield this envelope.
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1 Introduction

The present work is concerned with the three-dimensional motion of the elas-
tic pendulum or swinging spring in the case of resonance. It continues the
investigation described in previous studies by Lynch [13] and by Holm and
Lynch [9]. In particular, the exchange of energy between quasi-vertical and
quasi-horizontal oscillations and the stepwise precession of the swing plane
are investigated.

When the ratio of the normal mode frequencies of the spring is 2:1, a reso-
nance occurs, in which energy is transferred periodically between vertical and
horizontal oscillations. The first study of this resonance was that of Vitt and
Gorelik [17]. We refer to the regular exchange phenomenon as pulsation. The
motion has two distinct characteristic times, that of the fast oscillations and
that of the slow pulsation envelope. As the oscillations change from horizon-
tal to vertical and back again, it is observed that each horizontal excursion
or pulse is in a different direction. We call this change in azimuth the preces-
sion angle. The motion thus has three components: oscillation (fast), pulsation
(slow) and precession (slow), closely analogous to the rotation (fast), nutation
(slow) and precession (slow) of a spinning top [3]. 1

We consider two complementary questions, one direct and one inverse:

Question 1. Given initial conditions, can we describe the envelope dy-
namics without solving the equations?

Question 2. Given the parameters which determine the envelope, can we
specify initial conditions which yield this envelope?

We provide a complete answer to Question 1. Analytical expressions are de-
rived for the pulsation amplitude, precession angle and period in terms of the
invariants of the motion. We also develop accurate approximate expressions
for the pulsation amplitude and precession angle. Thus, the envelope dynam-
ics may be deduced from the initial conditions. Question 2 is more recondite,
but we can give a positive answer for the physically interesting case of strong
pulsation. We derive approximate expressions for the angular momentum and
Hamiltonian in terms of the pulsation amplitude and precession angle. Initial
conditions can then be determined which yield the desired envelope to a good
level of approximation.

We briefly outline the contents of the paper below. When the amplitude is
small, the Lagrangian may be approximated to cubic order. When it is aver-

http://www.maths.tcd.ie/∼houghton (Conor Houghton).
1 A Java Applet illustrating the pulsation of the swinging spring may be found at
http://www.maths.tcd.ie/∼plynch/SwingingSpring/SS Home Page.html.
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aged over the fast oscillation time, a set of equations for the envelope ampli-
tudes is obtained. These modulation equations, the three-wave equations, are
presented in §2. They are found to have three independent constants of mo-
tion and are therefore completely integrable. Small-amplitude perturbations
about steady-state solutions are studied in §3, and a crude estimate of the
precession angle is obtained. The general solution of the three-wave equations
for finite-amplitude motions is derived in §4. The amplitudes are expressed in
terms of elliptic functions and the phase angles as elliptic integrals. Analytical
expressions for the stepwise precession of the swing-plane are then derived.

Recently, Dullin et al. [5] constructed a canonical transformation in which
the angle of the swing plane is a coordinate in an action-angle system. They
showed that the precession angle is one of the two rotation numbers of the
invariant tori of the integrable system. They obtained a simple equation for
the precession angle by approximating an elliptic integral. They proved an-
alytically that the resonant swinging spring has monodromy and concluded
that the system provides a clear physical demonstration of this phenomenon.

Several approximate expressions for the precession angle, involving only ele-
mentary functions, are obtained in §5. One of these is equivalent to the for-
mula reported in [5]. The approximate solutions are compared to the values
obtained from the analytical expression, and are found to give remarkably ac-
curate results. The intensity of the pulsation envelope is determined by solving
a cubic equation whose coefficients are defined by the invariants. Thus, the
direct question is fully answered, in the affirmative.

To answer the inverse question, we assume the pulsation amplitude and pre-
cession angle are given and derive expressions for the invariants. From these,
appropriate initial conditions are easily determined. The expression for the
precession angle is easily inverted. To obtain an invertible expression for the
pulsation amplitude, we approximate the cubic by a quadratic, and obtain in
§6 simple approximate expressions for the angular momentum and Hamilto-
nian. These approximations may be used to control the envelope dynamics by
an appropriate choice of initial conditions.

In the concluding section, §7, we present a schematic diagram which shows the
qualitative dependence of the envelope motion on the values of the invariants.
This allows us to determine, at a glance, the general character of the solution
for given values of the constants of motion. Several important special solutions
are indicated on the diagram.
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Fig. 1. The swinging spring. Cartesian coordinates are used, with the origin at the
point of stable equilibrium of the bob. The pivot is at point (0, 0, ℓ).

2 The Dynamical Equations

The physical system under investigation is an elastic pendulum, or swinging
spring, consisting of a heavy mass suspended from a fixed point by a light
spring and moving under gravity, g (Fig. 1). We assume an unstretched length
ℓ0, length ℓ at equilibrium, spring constant k and mass m. The Lagrangian,
approximated to cubic order in the amplitudes, is

L = 1
2
(ẋ2 + ẏ2 + ż2)− 1

2
[ω2

R(x
2 + y2) + ω2

Zz
2] + 1

2
λ(x2 + y2)z , (1)

where x, y and z are Cartesian coordinates centered at the point of equilibrium,

ωR =
√

g/ℓ is the frequency of linear pendular motion, ωZ =
√

k/m is the

frequency of its elastic oscillations and λ = ℓ0ω
2
Z/ℓ

2. The equations of motion
in cartesian, spherical and cylindrical coordinates may be found in [13]. There
are two constants of the motion, the total energy and the angular momentum
about the vertical, and the system is not integrable. Its chaotic motions have
been studied by many authors (see Refs. in [14]).

2.1 The Time-averaged Equations

We confine attention to the resonant case ωZ = 2ωR and apply the averaged
Lagrangian technique. The solution is assumed to be of the form
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x=ℜ{a(t) exp(iωRt)} , (2)

y=ℜ{b(t) exp(iωRt)} , (3)

z=ℜ{c(t) exp(2iωRt)} . (4)

The coefficients a(t), b(t) and c(t) are assumed to vary on a time scale which is
much longer than the time-scale of the oscillations, τ = 1/ωR. The Lagrangian
is averaged over this time, yielding

〈L〉 = 1
2
ωR

[

ℑ{ȧa∗ + ḃb∗ + 2ċc∗}+ ℜ{κ(a2 + b2)c∗}
]

,

where κ = λ/(4ωR). The resulting Euler-Lagrange equations are the modula-
tion equations for the envelope dynamics:

iȧ= κa∗c , (5)

iḃ= κb∗c , (6)

iċ= 1
4
κ(a2 + b2) . (7)

2.2 The three-wave equations

We now transform to new variables

A = 1
2
κ(a+ ib) , B = 1

2
κ(a− ib) , C = κc . (8)

Then the equations for the envelope dynamics take the form

iȦ=B∗C , (9)

iḂ=CA∗ , (10)

iĊ =AB , (11)

These three equations for the slowly-varying complex amplitudes A, B and
C are the three-wave equations. The relevance of these equations in various
physical contexts is discussed in [9]. They govern quadratic wave resonance
in fluids and plasmas. Their application to resonant Rossby wave triads is
considered in [15]. In Appendix A, we show that they are a special case of
the Nahm equations which are used to construct soliton solutions in certain
particle field theories. For further references to the three-wave equations and
a discussion of their properties see [2].

The three-wave equations conserve the following three quantities:
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H = 1
2
(ABC∗ + A∗B∗C) = ℜ{ABC∗} , (12)

N = |A|2 + |B|2 + 2|C|2 , (13)

J = |A|2 − |B|2 . (14)

The equations are completely integrable. The following positive-definite com-
binations of N and J are physically significant:

N+ ≡ 1
2
(N + J) = |A|2 + |C|2 , N− ≡ 1

2
(N − J) = |B|2 + |C|2 .

These combinations are known as the Manley-Rowe relations. Together with
the Hamiltonian H , they provide three independent constants of the motion.
We note that H is invariant under the symmetry transformations

(A,B,C)→ (Aeiχ, Be−iχ, C) , (15)

(A,B,C)→ (Aeiχ, B, Ceiχ) , (16)

(A,B,C)→ (A,Beiχ, Ceiχ) . (17)

These symmetries are associated, via Noether’s theorem, with the three in-
variants {J,N+, N−}. Any two of the transformations generate the third. This
reflects the inter-dependence of J , N+ and N−.

2.3 Reduction of the system

To reduce the system for H 6= 0, we express the amplitudes in polar form:

A= |A| exp(iξ) , (18)

B= |B| exp(iη) , (19)

C = |C| exp(iγ) . (20)

In general, the phases of A, B and C are not periodic. However, ζ = γ−(ξ+η)
is periodic. The Hamiltonian may be written

H = |A||B||C| cos ζ .

The amplitude |C| will be obtained in closed form in terms of elliptic functions.
Once |C| is known, |A| and |B| follow immediately from the Manley-Rowe
relations

|A| =
√

N+ − |C|2 , |B| =
√

N− − |C|2 .

6
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Fig. 2. Polynomial Φ0 as a function of |C|2.

The phases ξ and η may now be determined. Using the three-wave equations
(9)–(11) together with equations (18)–(20), we find

ξ̇ = − H

|A|2 , η̇ = − H

|B|2 , (21)

so that ξ and η can be obtained by quadratures. Finally, ζ is determined
unambiguously by

d|C|2
dt

= −2H tan ζ and H = |A||B||C| cos ζ . (22)

It also follows from (21) and (22) that

ζ̇ = H

(

1

|A|2 +
1

|B|2 − 1

|C|2
)

. (23)

The phase of C follows immediately, γ = ξ+η+ζ , and we can then reconstruct
the complete solution using (18)–(20).

2.4 The equation for |C|2

From the equation (11) for Ċ, and its complex conjugate we get

d|C|2
dt

= 2ℑ{ABC∗} . (24)

Using the definition of the Hamiltonian, it follows that

|A|2|B|2|C|2 = H2 + [ℑ{ABC∗}]2 .

7



Applying this to the square of (24) and using the definitions of the Manley-
Rowe quantities immediately yields an equation for |C|2 alone:

(

d|C|2
dt

)2

= 4
[

(N+ − |C|2)(N− − |C|2)|C|2 −H2
]

. (25)

We define the cubic polynomial Φ0(|C|2) (plotted in Fig. 2) by

Φ0(|C|2) = (N+ − |C|2)(N− − |C|2)|C|2 . (26)

Then the right hand side of (25) may be written 4[Φ0(|C|2)−H2]. For small
H2, this cubic has three positive real roots. If these roots, in descending order
of magnitude, are denoted C2

1 , C
2
2 and C2

3 , it follows that

0 ≤ C2
3 ≤ C2

2 ≤ N− ≤ 1
2
N ≤ N+ ≤ C2

1 ≤ N . (27)

(We have assumed without loss of generality that J ≥ 0). In the case of equal-
ity of roots, the solution may be obtained in terms of elementary functions.
We assume in general that this is not so and solve for |C|2 in terms of ellip-
tic functions. However, before doing this, we investigate perturbation motion
about steady solutions.

3 Small-Amplitude Modulation of Steady States

We consider the case where the variations of the amplitudes about their mean
values are small. This enables us to make additional approximations and derive
simple estimates of the pulsation period and rate of precession. From these
two quantities, the precession angle follows immediately.

3.1 Steady State Motion

We first consider solutions for which the amplitudes |A|, |B| and |C| are con-
stant. The simplest cases are where the phases are also constant; then the
three-wave equations become

B∗C = CA∗ = AB = 0 ,

which give three particular solutions
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(i) A = A0 , B = C = 0 ;

(ii) B = B0 , C = A = 0 ;

(iii) C = C0 , A = B = 0 .

The first two solutions correspond to conical motions: the bob moves in a circle,
clockwise or anti-clockwise, while the spring traces out a cone. These solutions
are stable to small perturbations. The third particular case represents purely
vertical oscillations; this motion is unstable [13].

More generally, from (22), constancy of the amplitudes implies ζ = γ−(ξ+η) =
0 so that H = |A||B||C|, and the three-wave equations become

− |A|ξ̇= |B||C|
−|B|η̇= |C||A| (28)

−|C|γ̇= |A||B| .

Differentiating (25), a simple algebraic manipulation yields

|C|2 = C2
0 ≡ 1

6

(

2N −
√
N2 + 3J2

)

(29)

The other amplitudes are given by

|A|2=A2
0 ≡

1

6

[

(N + 3J) +
√
N2 + 3J2

]

|B|2=B2
0 ≡ 1

6

[

(N − 3J) +
√
N2 + 3J2

]

These solutions are the elliptic-parabolic modes (EP-modes) studied by Lynch
[13]. The precession rate is given by Ω ≡ φ̇ = 1

2
(ξ̇− η̇) [9]. From (28) it follows

that

Ω =
JC2

0

2H
. (30)

For J = 0 we have planar motion with

|C|2 = N

6
, |A|2 = |B|2 = N

3
.

These are the cup-like and cap-like solutions of Vitt and Gorelik [17].
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3.2 Perturbation about Elliptic-Parabolic Motion

We consider small deviations about the steady EP-mode solutions. We write
|C|2 = C2

0 + ǫ where C2
0 is given by (29) and |ǫ| ≪ C2

0 . Then, if (25) is
differentiated and nonlinear terms in ǫ are omitted, we obtain

d2ǫ

dt2
+
(

2
√
N2 + 3J2

)

ǫ = 0 . (31)

The solution is ǫ(t) = ǫ(0) cosωPt, an oscillation about C2
0 with the pulsation

frequency

ωP =
√
2

4
√
N2 + 3J2 . (32)

For the EP-modes, the horizontal projection is an ellipse precessing at a con-
stant rate Ω. The perturbation is a pulsating motion, with sinusoidal time
variation, in which the major and minor axes of the ellipse alternately expand
and contract with period TP = 2π/ωP. The area of the ellipse is proportional
to J and remains constant [9]. It is straightforward to derive expressions in
terms of elementary functions for the remaining amplitudes and the phases,
but they are not required to determine the precession angle.

We note from (32) that
√
2N ≤ ωP ≤ 2

√
2N . From the precession rate and

the pulsation frequency, the precession angle follows immediately:

∆φ = ΩTP .

Using (29), (30) and (32), this gives us

∆φ =
JC2

0

2H

2π

ωP
=

π

3

(

J√
8H

) [

2N −
√
N2 + 3J2

4
√
N2 + 3J2

]

. (33)

For small angular momentum J ≪ N , the term in square brackets is close to√
N and

∆φ ≈ π

3

(

J
√
N√

8H

)

. (34)
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4 Analytical Solution of the Three-wave Equations

4.1 Solution in Weierstrass Elliptic Functions

We now derive an explicit analytical solution for |C|2, valid for finite ampli-
tudes. The solutions for |A|2 and |B|2 follow immediately from the Manley-
Rowe relations. Then (21) are integrated for the phases. The integrals turn out
to be similar to those occurring for the spherical pendulum, so the approach
of Whittaker [18] applies. The required properties of the Weierstrass elliptic
functions are given in Whittaker and Watson [19], Ch. 20 and in Lawden [12],
Ch. 6 (see also Abramowitz and Stegun [1], Gradshteyn and Ryzhik [7] and
Byrd and Friedman [4]).

4.1.1 Solution for the amplitudes

The quadratic term on the right of (25) is removed by a simple transformation
u = |C|2/N − 1/3 and τ =

√
Nt. Then we obtains

(

d u

dτ

)2

=4u3 − g2u− g3

=4(u− e1)(u− e2)(u− e3) . (35)

This is the standard form of the equation for Weierstrass elliptic functions.
The constants g2 and g3, called the invariants, are given by

g2 =

(

1

3
+

J2

N2

)

, g3 =

(

− 1

27
+

J2

3N2
+

4H2

N3

)

.

For small H2, the discriminant ∆ = g32 − 27g23 is positive and the three roots
are real. This is the case of physical interest, and we assume the roots of the
cubic are ordered so that e1 > e2 > e3. Note that e1+ e2+ e3 = 0. The general
solution of (35) is

u = ℘(τ + α)

where α is an arbitrary (complex) constant. The function ℘(z) is defined by

℘(z) =
1

z2
+
∑

m,n

′
{

1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

}

(36)
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Fig. 3. Weierstrass’s ℘-function with half-periods ω1 = 2, ω3 = i on the domain
{z = x+ iy : x ∈ [−2,+6], y ∈ [−1,+1]. Left panel: real part; right panel: imaginary
part. Values for z = x − ω3 are plotted as heavy lines. Calculations are based on
(36). The function has double poles at z = 2mω1 + 2nω2.

where the summation is over all integral m, n except m = n = 0. It has poles
on the real line and is doubly periodic: ℘(z + 2mω1 + 2nω2) = ℘(z) for all
integers m and n. The difficult problem of determining ω1 and ω2 from the
invariants is discussed in §21.73 of [19]. The quantity ω3 is defined by requiring
ω1 + ω2 + ω3 = 0. It may be shown that

℘(ω1) = e1 ℘(ω2) = e2 ℘(ω3) = e3 . (37)

In the present case, ω1 is real and ω3 is pure imaginary (explicit expressions are
given below). On the real line, ℘(z) is real, with values in the range [e1,+∞).
On the line z = ω3+x it takes real values in the interval [e3, e2]. Moreover, as
z varies along the edge of the rectangle from 0 to ω1 to ω1 + ω3(= −ω2) to ω3

to 0, ℘(z) is real and decreases monotonically from +∞ to e1 to e2 to e3 to
−∞. To satisfy the initial conditions, we choose α = ω3 − τ0, where τ0 is real
and may be taken as zero by a suitable choice of time origin. Then ℘(τ + ω3)
is real and oscillates between e3 and e2. The solution for the amplitude is

|C|2 = N
[

1
3
+ ℘(τ + ω3)

]

. (38)

The behaviour of the Weierstrass ℘-function is shown in Figure 3. For general
z it takes complex values. On the line ℑ{z} = ω3 the function is real with
periodic oscillations, as indicated by the heavy lines at the front of the figure.
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4.1.2 Solution for the phase angles

Weierstrass’s zeta function is defined by

dζ

dz
= −℘(z) , lim

z→0
[ζ(z)− z−1] = 0 . (39)

It is quasi-periodic in the sense that

ζ(z + 2ω1) = ζ(z) + 2ζ(ω1) . (40)

We note that ζ(z) is an odd function of z and will use the relation

ω1ζ(ω2)− ω2ζ(ω1) =
1
2
πi . (41)

The sigma function is defined by

d

dz
log σ(z) = ζ(z) , lim

z→0

σ(z)

z
= 1 . (42)

It is also quasi-periodic, such that

σ(z + 2ω1) = − exp[2ζ(ω1)(z + ω1)] σ(z) . (43)

Three other sigma functions may be defined. The relationship between the
sigma functions and the Weierstrass ℘-function is similar to that between the
theta functions and the Jacobi elliptic functions. We will not require these.
We will require the identity

℘′(α)

℘(z)− ℘(α)
= ζ(z − α)− ζ(z + α) + 2ζ(α) (44)

(this follows from a consideration of the poles and zeros of the functions on
each side).

The solution (38) leads to a solution for |A|2:

|A|2 = N + 3J

6
−N℘(τ + ω3) . (45)

Substituting in the first of (21) we have

√
N

dξ

dτ
=

6H

6N℘(τ + ω3)− (N + 3J)

13



Now we introduce auxiliary constants κ± defined by

℘(κ+) =
N + 3J

6N
≡ e+ , ℘(κ−) =

N − 3J

6N
≡ e− .

Using (35), it follows that

[℘′(κ+)]
2 = [℘′(κ−)]

2 = −
(

4H2

N3

)

.

We must determine which sign for the derivatives should be chosen. From (27)
the following sequence of inequalities holds:

− 1
3
≤ e3 ≤ e2 ≤ e− ≤ 1

6
≤ e+ ≤ e1 ≤ 2

3
. (46)

Since e2 < e− < e+ < e1, it follows that κ± lie on the line between ω1 and
ω1+ω3, which determines the sign of the derivatives to be ℘′(κ±) = 2iH/N3/2,
a positive imaginary number. The equation for ξ thus becomes

dξ

dτ
=
(

1

2i

)

℘′(κ+)

℘(τ + ω3)− ℘(κ+)

Using (44) this may be expressed in terms of zeta functions and using (42) it
may be integrated immediately to yield

ξ − ξ0 =
(

1

2i

)

{

log

[

σ(τ + ω3 − κ+)

σ(τ + ω3 + κ+)

]

+ 2ζ(κ+)τ

}

. (47)

A similar expression holds for η − η0 with κ− replacing κ+. Thus we obtain
the expression for the azimuthal angle φ:

φ− φ0 =
(

1

2i

)

{

[ζ(κ+)− ζ(κ−)]τ +
1

2
log

[

σ(τ + ω3 − κ+)

σ(τ + ω3 + κ+)

σ(τ + ω3 + κ−)

σ(τ + ω3 − κ−)

]}

.

This is the solution for the azimuth as a function of time. Using the quasi-
periodic properties (40) and (43), the change in φ when τ varies by 2ω1 may
be computed:

∆φ = −iω1(ζ(κ+)− ζ(κ−)) + iζ(ω1)(κ+ − κ−) (48)

14



This is the desired analytical expression for the pulsation angle. 2

We note two obvious special cases of (48). When J = 0 we have κ+ = κ−,
yielding a zero result for ∆φ. When H = 0, we have κ+ = ω1 and κ− = −ω2,
so

∆φ = −i[ω1ζ(ω2)− ω2ζ(ω1)] =
π

2
, (49)

where we have used (41). These two special cases intersect in the homoclinic
orbit (with J = H = 0) which has an infinite transition time.

4.2 Solution in Jacobi Elliptic Functions

While (48) is the analytical solution, it is not immediately obvious how nu-
merical information may be extracted from it. The quantities on the right side
are all computable in principle, but at the expense of considerable effort. It is
therefore useful to seek an alternative expression, in terms of Jacobi elliptic
functions.

4.2.1 Solution for the amplitudes

Recall that with the transformation u = |C|2/N−1/3 and τ =
√
Nt, (25) was

transformed to (35), which we write again for convenience:

(

d u

dτ

)2

= 4(u− e1)(u− e2)(u− e3) . (50)

For solutions of physical interest, H2 is sufficiently small that the three roots
of the cubic are real. Defining the quantities

k2 =
(

e2 − e3
e1 − e3

)

and ν2 = (e1 − e3) ,

a further transformation,

w =

√

u− e3
e2 − e3

, s = ντ ,

2 The apparent discrepancy with the result of Whittaker for the spherical pendulum
(p. 106 in [18]) arises from our choice of convention that ℑ{ω3/ω1} > 0. Our result
is consistent with the rigid body formula (7.3.24) in Lawden [12], who adopts the
same convention as we do.
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brings equation (50) to the standard form

(

dw

ds

)2

= (1− w2)(1− k2w2) . (51)

The solution is w = sn(s− s0), or

u = e3 + (e2 − e3) sn
2(s− s0)

where s0 is arbitrary. The Jacobi elliptic function sn s has period 4K, where

K = K(k) =

1
∫

0

dw
√

(1− w2)(1− k2w2)
, (52)

so sn2(s − s0) has period 2K. For definiteness, we set s0 = 0, which means
choosing the origin of time where the solution has a minimum:

|C|2 = C2
3 + (C2

2 − C2
3) sn

2(ν
√
Nt) . (53)

Clearly, |C| oscillates between C3 and C2 with physical period

T = 2K/ν
√
N . (54)

The remaining amplitudes, |A| and |B|, follow from the Manley-Rowe rela-
tions:

|A|2 = N+ − |C|2 , |B|2 = N− − |C|2 .

They have the same period as |C| but vary in anti-phase with it and in phase
with each other. We denote the minimum and maximum values of |A| by A3

and A2, and similarly for |B|. Thus

N+ = A2
3 + C2

2 = A2
2 + C2

3 , N− = B2
3 + C2

2 = B2
2 + C2

3 .

The initial values of the amplitudes (for s0 = 0) are

|A(0)| = A2 , |B(0)| = B2 , |C(0)| = C3 .

We note here an important scaling invariance of the three-wave equations. If
the amplitudes are magnified by a constant factor and the time is contracted
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by the same factor, the form of the equations (9)–(11) is unchanged. Thus, the
period of the modulation envelope motion varies inversely with its amplitude.
The overall scale may be measured by

√
N and the inverse dependence of T

on this is seen in (54).

The solutions (38) and (53) must be equivalent. This follows from identities
relating Weierstrass and Jacobi elliptic functions. The complimentary modulus
is defined as k′ =

√
1− k2, and we write K ′ = K(k′). The parameters are

related by

k =

√

e2 − e3
e1 − e3

, k′ =

√

e1 − e2
e1 − e3

, ω1 =
K√

e1 − e3
, ω3 =

iK ′
√
e1 − e3

([7], p. 919). Then we have

℘(z) = e3 +
e1 − e3

sn2(
√
e1 − e3 z)

But the Jacobi function sn(s + iK ′) is given in terms of its value on the real
line by

sn(s+ iK ′) =
1

k sn s

and the equivalence between the two forms of solution follows immediately.

4.2.2 Solution for the phase angles

It remains to determine the phases. Integration of (21) furnishes the angles ξ
and η. We define

γ2
+ =

C2
2 − C2

3

N+ − C2
3

=
e2 − e3
e+ − e3

, λ+ =
H

ν
√
NA2

2

=
H/N3/2

√
e1 − e3(e+ − e3)

,

γ2
− =

C2
2 − C2

3

N− − C2
3

=
e2 − e3
e− − e3

, λ− =
H

ν
√
NB2

2

=
H/N3/2

√
e1 − e3(e− − e3)

.

It follows from (46) that k2 < γ2
+ < γ2

− < 1. We may now write (21) in the
form

dξ

ds
= − λ+

1 − γ2
+ sn2s

,
dη

ds
= − λ−

1− γ2
− sn2s

. (55)
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The right sides are the integrands occuring in Legendre’s elliptic integral of
the third kind ([1], p. 590). They may be put in standard algebraic form by
defining x = sn s. Writing

Π(s, a, k) ≡
s
∫

0

ds

1− a sn2s
=

x
∫

0

dx

(1− ax2)
√

(1− x2)(1− k2x2)
,

the solution for ξ becomes

ξ − ξ0 = −λ+Π(s, γ
2
+, k) . (56)

There is an analogous solution for η. The changes in ξ and η over a half period
s ∈ [0, K] are

1
2
∆ξ = −λ+Π(γ

2
+, k) ,

1
2
∆η = −λ−Π(γ

2
−, k) ,

where the complete elliptic integral is defined as Π(a, k) = Π(K, a, k). The
azimuthal angle of the pendulum is φ = 1

2
(ξ − η). Thus, the change in the

azimuth over a full pulsation period is

∆φ = −
(

λ+Π(γ
2
+, k)− λ−Π(γ

2
−, k)

)

. (57)

In Appendix B, an alternative formula (B.4) is derived from the expression
(57), which is structurally similar to (48) obtained above. Using this formula,
the limiting cases ∆φ = 0 for J = 0 and ∆φ = π/2 for H = 0 are again
derived, in agreement with (49).

5 Approximate Formulas for the Precession Angle

We have derived an exact analytical expression for the precession angle, involv-
ing elliptic integrals. It is of interest to obtain more convenient approximate
formulas, involving only elementary functions. It might be expected that the
easiest way to do this would be to approximate (57) directly. However, it turns
out that it is easier, and more transparent, to return to the differential equa-
tions governing the the system, use them to write down an integral for the
precession angle and approximate this integral.

The precession angle is φ = 1
2
(ξ − η). Combining the two components of (21),

18



we obtain

dφ

dt
=

JH

2|A|2|B|2 . (58)

Eq. (24) may be written

d|C|2
dt

= ±2
√

|A|2|B|2|C|2 −H2 . (59)

Taking the quotient of these two equations, we get

dφ

d|C|2 = ± JH

4|A|2|B|2
√

|A|2|B|2|C|2 −H2
. (60)

The pulsation of the amplitude |C| occurs between C2 and C3, where C2
3 and

C2
2 are the two smallest zeros of the polynomial

Φ = |A|2|B|2|C|2 −H2 = |C|2(|C|2 −N+)(|C|2 −N−)−H2 . (61)

It is also useful to write Φ = Φ0 −H2 where

Φ0 = |A|2|B|2|C|2 = |C|2(|C|2 −N+)(|C|2 −N−)

is as defined by (26) and illustrated in Fig. 2. The two signs in the differential
equation (60) correspond to phase changes during alternate half-cycles of the
pulsation. The integral of (60) over a full cycle may be written formally:

∆φ =
JH

2

C2
2
∫

C2
3

d|C|2
|A|2|B|2

√
Φ
. (62)

It is convenient to change the integration limits; to do this, we consider (62)
as an integral over the complex Z-plane, where Z = |C|2 on the positive real
axis. This gives

∆φ =
JH

4

∫

C1

dZ

(Z −N+)(Z −N−)
√

Φ(Z)
. (63)

The contour C1 encircles C2
3 and C2

2 and the square root in the integrand has
two branch cuts, one from C2

3 to C2
2 and the other from C2

1 to +∞. This is
illustrated in Fig. 4. In addition to the three branch points, the integrand has
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Fig. 4. Contours C1 and C2 in the Z-plane.

two simple poles at Z = N+ and Z = N−. In fact, the residues at these two
poles sum up to zero:

Res(N+) = −Res(N−) =
−iJ

4

1

N+ −N−
= − i

4
. (64)

Furthermore, the integrand goes to zero sufficiently fast as |Z| → ∞ that we
can replace the contour C1 by C2 (Fig. 4). Returning to the original integral
(62), this corresponds to a change of integration range to

∆φ =
JH

2

∞
∫

C2
1

d|C|2
|A|2|B|2

√
Φ
. (65)

This interval is more convenient than the previous one because the integrand
is small everywhere except near the lower limit of integration and because
the point of inflection in Φ can cause difficulties when approximating Φ near
C2

2 . Since the integrand is dominated by its behaviour near C2
1 the obvious

approach would be to find a quadratic which approximates Φ near this point.
As C2

1 is the root of a cubic, it can be written in terms of H , J and N , but
this expression is cumbersome and does not yield a convenient approximation.
It is simpler to consider the behaviour of Φ at N+ = (N + J)/2. This point is
close to C2

1 because H2 must be small compared to N for the periodic motion
to exist. 3

Having decided to approximate at N+ rather than C2
1 , the next step is to

approximate Φ0 = Z(Z −N+)(Z −N−) by a quadratic with a root at N+:

Ψ0 = Z0(Z −N+)(Z − Z1) . (66)

It is possible to perform the resulting approximate integral. However, the
solution is complicated unless Z1 = N− (see Appendix C). Thus, we consider

Ψ0 = Z0(Z −N+)(Z −N−) . (67)

3 It can be shown easily that the maximum allowed value of H2/N3 is H2
00 =

1/54 ≈ 0.0185 and occurs for J = 0.
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The quadratic Ψ0 and cubic Φ0 both vanish at Z = N+ and Z = N−. They
are also equal when Z = Z0. We consider two choices of Z0.

First, we choose Z0 to be the mean of Z = N+ and Z = N−, that is Z0 = N/2.
The integral (65) becomes

∆φ =
JH

2

∞
∫

Z+

dZ

(Z −N+)(Z −N−)
√

Ψ0(Z)−H2
. (68)

where Z+ is the larger root of Ψ0 −H2 = 0. Defining σ = 2Z −N , we get

∆φ =

+∞
∫

σ+

2
√
2JHdσ

(σ2 − J2)
√

σ2 − (J2 + 8H2/N)
, (69)

where σ+ =
√

J2 + 8H2/N . This may be integrated analytically ([6], p. 72) to
give

∆φ = − tan−1
{

(√
8H√
NJ

)

σ√
σ2−(J2+8H2/N)

} ∣

∣

∣

∣

+∞

σ+

=

[

π

2
− tan−1

(√
8H√
NJ

)]

(70)

Noting that tan−1 x = π
2
− tan−1 1

x
, the phase change over a full cycle is

∆φ ≈ tan−1

(
√
NJ√
8H

)

. (71)

This elegant approximate formula for the pulsation angle was reported by
Dullin, Giacobbe and Cushman [5], although they did not give the factor

√
8

explicitly, and we refer to it as the DGC formula. Numerical experiments
indicate that it is of high accuracy throughout the accessible domain.

An alternative choice of quadratic approximation requires Ψ0 and Φ0 to have
equal derivatives at Z = N+. In this case Z0 = N+. We integrate, again taking
the lower limit to be the larger root of Ψ0 −H2 = 0, to get

∆φ ≈ tan−1

(

J
√
N + J√
8H

)

(72)

It will be shown below that this formula is also in resonable agreement with
the analytical solution.

The above approximations are subtle: we replace a cubic by a quadratic, chang-
ing the integrand, but we also change the lower limit. These effects tend to
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compensate, resulting in surprisingly accurate approximations. Moreover, it
is found that the two approximations (71) and (72) have errors which are of
opposite sign and approximately equal. Choosing Z0 = (N + αJ)/2 in (67),
we get the approximation

∆φ ≈ tan−1

(

J
√
N + αJ√
8H

)

(73)

By numerical experiment, we deduce the optimal value α = 0.458. Numerical
results using the various approximations will be presented in the following
section and (73) will be found to yield remarkably accurate results.

6 Numerical Experiments

We first compare the precession angle calculated using the exact analytical
expression (57) with values extracted from a numerical integration of the three-
wave equations (9)–(11). For given N and J , the maximum value of the cubic
Φ0(Z) is at Zmax =

1
6
[2N −

√
N2 + 3J2]. Thus, the maximum value of H is

H0 = H0(N, J) =
√

Φ0(Zmax) .

The three-wave equations were solved for a range of values 0 ≤ J ≤ 1 and H
covering the accessible parameter domain 0 ≤ H ≤ H0. We take N = 1 in
all cases; this is no loss of generality, as it is equivalent to a rescaling of the
amplitudes by N−1/2 and of the time by N1/2. From the numerical solution,
the major and minor axes

Amaj = |A|+ |B| and Amin = |A| − |B|

of the osculating or instantaneous ellipse (see [9]) were calculated as functions
of time, and the precession angle was evaluated as the change in φ between
successive maxima of Amaj. The precession angle was computed as a function
of J and H . The results are presented in Fig. 5. The heavy line is H0(J).
The left-hand panel shows ∆φ calculated using the analytical formula (57).
The precession angle vanishes for J = 0 and is equal to 90◦ for H = 0. The
center panel shows the angle calculated from the numerical solution of the
three-wave equations. It is very similar to the analytical result. The right-
hand panel shows the difference between the precession angle calculated from
the numerical solution and the analytical formula. The values are generally
very small (the contour interval in Fig. 5(C) is 0.1◦). The maximum difference
is 0.6◦ and the discrepancy may be ascribed to numerical noise.
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Fig. 5. Left-hand panel: precession angle ∆φ calculated using the exact analyti-
cal formula (57). Center panel: ∆φ calculated from numerical integration of the
three-wave equations. Note that ∆φ = 0 for J = 0 and ∆φ = 90◦ for H = 0.
Right-hand panel: difference in precession angle between the numerical and the
analytical solution.

6.1 Determination of the Precession Angle

We now show that the envelope of the motion may be determined to high
accuracy by using approximate formulas involving only elementary functions.
We use the analytical values as a reference to evaluate the accuracy of the
approximate formulas. In Fig. 6 the differences between the exact and ap-
proximate expressions for ∆φ are shown. The absolute values of these errors
are plotted. The maximum error in the DGC formula (Fig. 6(A)) is about 2.2◦,
and occurs for J ≈ 1

2
and H at its maximum permissible value. The error in

the alternative formula (72) is of comparable magnitude, with a maximum of
about 2.5◦ (Fig. 6(B)), but is of opposite sign. The optimal value α = 0.458 of
the parameter in the formula (73) was found by experiment. Fig. 6(C) shows
that this formula is significantly more accurate, with a maximum error less
than 0.4◦. This is a remarkable level of precision, considering the simplicity of
the formula. The compensation of errors leads to what might be described as
the unreasonable effectiveness of the approximation.

6.2 Determination of the Pulsation Amplitude

The extent to which energy is exchanged between the elastic and pendular
modes of oscillation may be measured by the relative pulsation amplitude

defined as

P =
2(C2

2 − C2
3)

N
. (74)
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Fig. 6. Differences in precession angle ∆φ between three approximate formulas and
the analytical solution (57). (A) The DGC formula (71); (B) The alternative formula
(72); (C) The optimum formula (73). Absolute values are shown. The signs of the
errors of (71) and (72) are opposite. The contour interval is 0.1◦ in all panels.

This quantity varies from P = 0 for no energy exchange to P = 1 for maximal
exchange. For H = 0, it reduces to P = 1 − J/N . Given the invariants N ,
H and J , we may compute P by solving the cubic equation Φ(Z) = 0 where,
as before, Φ(Z) = Φ0(Z) − H2, with Z = |C|2 and Φ0 defined by (26). For
determination of the envelope, (74) is ideal. However, for the inverse problem,
it must be simplified. Noting that C2

1 + C2
2 + C2

3 = N , we may write the
pulsation amplitude as

P =
2(2C2

2 + C2
1 −N)

N
.

We have already introduced in (67) a quadratic Ψ0 which approximates the
cubic Φ0 in the range [C2

2 , C
2
1 ]. If we use the roots of Ψ0−H2 = 0 as estimates

of C2
1 and C2

2 , an approximate expression for P may be obtained:

P = 1−
√

J2

N2
+

4H2

N2Z0
. (75)

For fixed P this represents an ellipse in (J,H)-space. The great advantage of
(75) is that it can be used to solve the inverse problem. Two special cases
follow immediately: when H = 0 then P = 1 − J/N (which is exact); when
J = 0 then P = 1− 2H/N

√
Z0 (which is not exact).

We plot the exact values of the pulsation amplitude, obtained by solving the
cubic equation Φ(Z) = 0, in Fig. 7(A). Note that P = 0 when H = H0

and P = 1 when H = J = 0. The approximate values calculated using
(75) are shown in Fig. 7(B) and the difference (Papprox − Pexact) in Fig. 7(C).
The approximation is quite accurate when P is large. This is the region of
primary physical interest, corresponding to strongly pulsating motion. For
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Fig. 7. Pulsation amplitude. (A) P based on solving the cubic equation and using
(74). (B) P from approximation (75). (C) Magnitude of difference between exact
and approximate values The heavy curve is H0(J). The contour interval is 0.1◦ in
all panels.

large values of H , the approximation is no longer valid. We have derived
several other approximate expressions for P , which are more accurate, but
also more complicated, than (75).

6.3 Control of the envelope dynamics

The approximate formulas allow us to control the pulsation and precession
by a judicious choice of initial conditions. Recall that the precession angle is
given, to high accuracy, by (73), which we write

tan∆φ =
J
√
Z0

2H
(76)

where Z0 = (N + αJ)/2. This may be used in (75) to eliminate either H or
J , yielding the two equations

P = 1− J

N
csc∆φ and P = 1− 2H

N
√
Z0

sec∆φ .

But these are instantly invertible, to give equations for J and H in terms of
P and ∆φ:

J = N(1− P ) sin∆φ and H =
√
Z0

2
N(1− P ) cos∆φ . (77)

To illustrate the effectiveness of these formulas, six values of the precession
angle were chosen: ∆φ ∈ {10◦, 20◦, 30◦, 45◦, 60◦, 90◦}. We set N = 1 and fixed
the value of the pulsation amplitude to be P = 0.9. We then calculated J and
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Fig. 8. Polar plots of Amaj = |A| + |B| against φ, computed from the numerical
solution of (9)–(11) for six sets of initial conditions. For all cases, N = 1 and
P = 0.9, and J and H are computed from (77). Top panels: ∆φ ∈ {10◦, 20◦, 30◦},
bottom panels: ∆φ ∈ {45◦, 60◦, 90◦}. The integration time in each case corresponds
to a total precession of approximately 180◦, and both Amaj and −Amaj are plotted.

H from (77) and computed the numerical solution of the three-wave equations
(9)–(11). The initial value of |C|2 was taken to be the root C2

2 of Φ(|C|2) = 0
having intermediate algebraic magnitude. Then |A|2 and |B|2 were obtained
from the Manley-Rowe relations. The initial phases were all set to zero. Polar
plots of Amaj against φ are shown in Fig. 8 (the integration time in each case
corresponds to a total precession of about 180◦, and both Amaj and −Amaj are
plotted). These plots represent the outer envelope of the horizontal projection
of the trajectory of the pendulum bob. It is clear that the precession for the
numerical solution is, in each case, close to the value used in (77). We also
calculated the pulsation amplitude of the numerical solution and it was, in all
cases, within 2% of the prescribed value P = 0.9. This confirms the effective-
ness of the inversion formulas as a means of pre-determining the envelope of
the motion.

We note that, in general, the horizontal projection of the trajectory is not a
closed curve, but densely covers a region of phase-space. The motion is not
periodic but quasi-periodic. The horizontal projection is a closed curve only
in the exceptional cases when ∆φ and 2π are commensurate, that is, when
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QUALITATIVE ENVELOPE DYNAMICS
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Fig. 9. Qualitative features of the envelope dynamics of the swinging spring.

their ratio is a rational number. In this case the motion is periodic and the
horizontal footprint is a star-like graph, as illustrated in Fig. 8. The number
of points in the star is the denominator of the rational number ∆φ/2π (e.g.,
∆φ = 80◦ yields a nine-pointed star).

7 Conclusion

We have presented a complete analytical solution of the three-wave equa-
tions, which govern the small-amplitude dynamics of the resonant swinging
spring. The periodic variation of the amplitudes is associated with the char-
acteristic pulsation and precession of the system. Several analytical formulas
for the precession angle have been presented. We have also derived simplified
approximate expressions in terms of elementary functions. The optimal ap-
proximation (73) has been shown by numerical experiments to be remarkably
accurate, with a maximum error of only 0.4◦. The amplitude of the pulsation
envelope is determined from the roots of a cubic equation whose coefficients
are defined by the invariants. Thus, we have provided a complete and positive
answer to Question 1 posed in the Introduction.

The inverse question, Question 2 in §1, has also been answered affirmatively.
The approximate formulas (77) give values of J and H which lead to a solution
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having the prescribed pulsation amplitude and precession angle. They are of
high accuracy for strongly pulsating motion, which is the case of primary
physical interest.

The qualitative features of the envelope dynamics of the swinging spring are
depicted schematically in Fig. 9. The axes are normalized angular momentum
J/N and normalized Hamiltonian H/H00. The physically accessible domain
is shaded. The bounding curve is H = H0(J,N). The pulsation amplitude
vanishes on this curve and the solutions are the elliptic-parabolic modes [13].
Regions of the parameter space are indicated where the pulsation amplitude
and precession angle take large or small values. The corners of the accessible
region represent special solutions. Thus, (J,H) = (0, H00) corresponds to the
cup-like and cap-like solutions of Vitt and Gorelik [17]. For (J,H) = (N, 0), the
motion of the spring traces out a cone. Finally (J,H) = (0, 0) represents the
homoclinic orbit, and includes the case of (unstable) pure vertical oscillations.
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A The Nahm Equations and the Three-wave Equations

The Nahm equations are a set of integrable equations for a three-vector of
skew-Hermetian n× n matrices (T1(s), T2(s), T3(s)):

d

ds
Ti = [Tj , Tk] = TjTk − TkTj (A.1)

where (i j k) is a cyclic permutation of (1 2 3). In the simplest case s ∈ (−1, 1)
and the matrices have simple poles as s → ±1.

The Nahm equations were originally discovered because it is possible to use
solutions to the equations to construct solutions of the Bogomolny equation
[16]. These solutions are called Bogomolny-Prasad-Sommerfield monopoles.
The Bogomolny equation occurs as a super-symmetry or minimum energy
condition in Yang-Mills Higgs theory and is of interest to theoretical particle
physicists.
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There is a Lax formulation of the Nahm equations and an associated Lax
curve of genus (n−1)2. The n = 2 case is elliptic and the solutions are elliptic
functions; in fact, for n = 2 the Nahm equations reduce to the Euler-Poinsot
equations and are easily solved. Surprisingly, it is sometimes also the case that
the Nahm equations for n > 2 can be solved in terms of elliptic functions. This
happens when the solution has a symmetry and the quotient of the Lax curve
by that symmetry gives a genus-one surface. These symmetries of the Nahm
matrices correspond to spatial symmetries of the corresponding monopoles.
The group elements act both by conjugation on the Nahm matrices and by
rotation of the three-vector of matrices [8,11].

One example is n = 3 D2 symmetry [10]. The symmetry reduces the Nahm
matrices to

T1=
i√
2















0 F ∗
1 0

F1 0 F1

0 F ∗
1 0















, T2 =
1√
2















0 F2 0

−F ∗
2 0 F ∗

2

0 −F2 0















,

T3=















−iℜ{F3} 0 −ℑ{F3}
0 0 0

ℑ{F3} 0 iℜ{F3}















,

Substituting these matrices into the Nahm equations gives

dF1

ds
= F ∗

2F
∗
3 (A.2)

and two others by cyclic permutation. These equations are the ‘explosive inter-
action’ three-wave equations identified in [2]. They are related to the equations
studied in the present paper by s = it with F1 = A∗, F2 = B∗ and F3 = C.

B Relationship between Jacobi and Weierstrass forms of the Pre-

cession Angle.

To relate the expression (57) obtained by means of Jacobi’s elliptic functions
to the expression (48) in terms of the Weierstrass form, we introduce auxiliary
constants d+ and d− defined by

sn2d+ = γ2
+/k

2 , sn2d− = γ2
−/k

2 .
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Note that since γ2
± > k2, these constants are complex (d+ and d− lie on the

line between K and K + iK ′). It follows that

sn2d+ =

(

e1 − e3
e+ − e3

)

, cn2d+ = −
(

e1 − e+
e+ − e3

)

, dn2d+ =

(

e+ − e2
e+ − e3

)

,

with similar expressions involving d−. The first of (55) may be written

dξ

ds
= −λ+ − λ+γ

2
+ sn2s

1− γ2
+ sn2s

,

It may be shown without difficulty, using equation (50), that

λ+γ
2
+ = +ik2 sn d+ cn d+ dn d+ .

Then the solution (56) for ξ may be written

ξ − ξ0 = −λ+s− iΠ1(s, d+, k) . (B.1)

where Π1(s, d+, k) is another standard form (Jacobi’s form) for the elliptic
integral of the third kind ([19], §22.74):

Π1(s, d+, k) =

s
∫

0

k2 sn d+ cn d+ dn d+ sn2s

1− k2 sn2d+ sn2s
ds .

The elliptic integral of the second kind is defined (with x = sn z) as

E(z) ≡
z
∫

0

dn2z dz =

x
∫

0

√

1− k2x2

1− x2
dx .

The complete integral is denoted E = E(K). E(z) is not periodic; the periodic
component is represented by Jacobi’s zeta function

Z(z) = E(z)−Ez/K .

This is an odd function with period 2K. It is related to Jacobi’s theta function,
also having period 2K, by

Z(z) =
d

dz
logΘ(z) .
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The elliptic integral of the third kind may now be expressed as follows:

Π1(z, a, k) =
1

2
log

Θ(z − a)

Θ(z + a)
+ zZ(a) (B.2)

For the complete form of the integral, when z = K, the logarithmic term
vanishes:

Π1(a, k) = KZ(a) = K
Θ′(a)

Θ(a)
, (B.3)

Using this in (B.1), we obtain the change over a half-period K:

1
2
∆ξ = −Kλ+ − iKZ(d+) .

Finally, using the analogous expression for ∆η, we get the precession angle

∆φ = −K(λ+ − λ−)− iK(Z(d+)− Z(d−)) (B.4)

This is the change over the period 2K (for s) or 2K/ν
√
N (for t). The struc-

tural similarity between this expression and the result (48) in terms of Weier-
strass functions is immediate.

When J = 0, we have λ+ = λ− and γ+ = γ−, so that d+ = d− and (B.4)
implies ∆φ = 0. For H = 0 we have λ+ = λ− = 0, d+ = K and d− = K+ iK ′.
Then using the relation

Z(u+ iK ′) = Z(u)− iπ

2K
+

cn u dnu

sn u

with u = K, it follows immediately that ∆φ = π/2, in agreement with (49).

C Approximation Integral with Best Fit at Z = N+.

We approximate Φ0 = Z(Z − N+)(Z − N−) by a quadratic with a root at
Z −N+:

Ψ0 = Z0(Z −N+)(Z − Z1) (C.1)
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To obtain the best fit at Z = N+, we choose Z0 and Z1 so that

Ψ0(Z)− Φ0(Z) = O
(

(Z −N+)
3
)

. (C.2)

This implies Z0 = N++J and Z1 = N2
+/(N++J). Using the software package

Maple, it is possible to evaluate the resulting approximate integral

∆φ =
HJ

2

∞
∫

C+

d|C|2
|A|2|B|2

√
Ψ0 −H2

. (C.3)

where C+ is the larger root of Ψ0 −H2 = 0. The result is

∆φ=
1

4

(

2 tan−1 J(N + J)

2
√
2
√
N + 3JH

+ π

)

− H

4
√
J3 −H2

(

2 tanh−1 J(5J +N)

2
√
2
√
J3 −H2

√
N + 3J

+ iπ

)

(C.4)

This gives a rather good approximation: the maximum error is about 1.2◦.
However, it is not a convenient expression because the factor

√
J3 −H2 is

sometimes real and sometimes imaginary. Moreover, the expression cannot
easily be inverted to give H or J in terms of ∆φ. In fact, unless Z1 = N−,
any approximating quadratic (C.1) will give an expression with this problem.
Thus, in §5, we choose Z1 = N−.
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