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Abstract

We study the supersymmetric extensions of the Harry Dym hierarchy of equations. We obtain
the susy-B extension, the doubly susy-B extension as well as the N=1 and the N=2 supersymmetric
extensions for this system. The N=2 supersymmetric extension is particularly interesting, since
it leads to new classical integrable systems in the bosonic limit. We prove the integrability of
these systems through the bi-Hamiltonian formulation of integrable models and through the Lax
description. We also discuss the supersymmetric extension of the Hunter-Zheng equation which
belongs to the Harry Dym hierarchy of equations.
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1 Introduction:

Supersymmetric extensions of a number of well know bosonic integrable models have been studied
extensively in the past. The supersymmetric Korteweg-de Vries (sKdV) equation [1], the super-
symmetric nonlinear Schrödinger (sNLS) equation [2] and the supersymmetric Two-Boson (sTB)
equation [3] represent just a few in this category. A simple supersymmetric covariantization of
bosonic integrable models, conventionally known as the B supersymmetrization (susy-B), has also
attracted a lot of interest because of the appearance of such models in string theories. We have,
for instance, the B extensions of the KdV (sKdV-B) equation [4], the supersymmetric TB (sTB-B)
equation [5] and so on. Supersymmetric extensions of integrable models using a number N of Grass-
mann variables greater than one [6] and supersymmetric construction of dispersionless integrable
models [7] have also been studied extensively in the past few years. The extended supersymmetric
models are particularly interesting because, in the bosonic limit, they yield new classical integrable
systems.

A classic bosonic integrable equation, the so called Harry Dym (HD) equation [8], has attracted
much interest recently. The proprieties of this equation are discussed in detail in Ref. [9], and we
simply emphasize that this equation shares the properties typical of solitonic equations, namely, it
can be solved by the inverse scattering transform, it has a bi-Hamiltonian structure and infinitely
many symmetries. In fact, the HD equation is one of the most exotic solitonic equations and the
hierarchy to which it belongs, has a very rich structure [10]. In this hierarchy we also have nonlocal
integrable equations such as the Hunter-Zheng (HZ) equation [11], which arises in the study of
massive nematic liquid crystals as well as in the study of shallow water waves. The HD equation,
on the other hand, is relevant in the study of the Saffman-Taylor problem which describes the
motion of a two-dimensional interface between a viscous and a non-viscous fluid [12].

An earlier attempt to supersymmetrize the HD equation is discussed in [13]. However, this study
of N=1 supersymmetrization introduces a bosonic as well as an independent fermionic superfield,
yielding a pair of coupled equations, and, consequently, is not in the conventional spirit of minimal
supersymmetrization. In this paper we intend to study the question of supersymmetrization of the
HD hierarchy systematically. The paper is organized as follows. In section 2, we review some of the
essential results for the HD equation and its hierarchy. The simpler susy-B extension (sHD-B) and
the doubly B extension (sHD-BB) of the HD hierarchy as well their bi-Hamiltonian formulation and
Lax pairs are described in section 3. In section 4, we derive the N=1 supersymmetric extensions of
the HD (sHD) equation. We find that, in this case, there exist two nontrivialN=1 extensions. In the
case of one of them, we have a bi-Hamiltonian description (we have not found a Lax representation
yet) while in the second case, we have a Lax description (we have not found a Hamiltonian structure
yet that satisfies the Jacobi identity). We also describe the supersymmetric extension for the HZ
equation. In section 5, we describe the N=2 supersymmetrization of the HD hierarchy which yields
four possibilities and we discuss their properties. We end with a brief conclusion in section 6.
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2 The Harry Dym Hierarchy:

The Harry Dym equation

wt = (w−1/2)xxx , (1)

appears in many disguised forms, namely,

vt =
1

4
v3vxxx ,

ut =
1

4
u3/2uxxx −

3

8
u1/2uxuxx +

3

16
u−1/2u3x , (2)

rt = (r−1/2
xx )x ,

where v = −21/3w−1/2, u = v2 and rxx = w, respectively. In this paper, as in [10], we will confine
ourselves, as much as is possible, to the form of the HD equation as given in (1).

The HD equation is a member of the bi-Hamiltonian hierarchy of equations given by

w
(n+1)
t = D1

δHn+1

δw
= D2

δHn

δw
, (3)

for n = −2, where the bi-Hamiltonian structures are

D1 = ∂3 ,

D2 = w∂ + ∂w , (4)

and the Hamiltonians for the HD equation are

H−1 =

∫

dx
(

2w1/2
)

,

H−2 =

∫

dx

(

1

8
w−5/2w2

x

)

. (5)

We note here that the second structure in (4) corresponds to the centerless Virasoro algebra while

D = D2 + cD1 (6)

represents the Virasoro algebra with a central charge c. We note also that the recursion operator
following from (4), R = D2D

−1
1 , can be explicitly inverted to yield

R−1 =
1

2
∂3w−1/2∂−1w−1/2 . (7)

Also, the conserved charges

H0 = −

∫

dxw ,
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H
(1)
0 =

∫

dx
(

∂−1w
)

, (8)

H
(2)
0 =

∫

dx
(

∂−2w
)

,

are Casimirs (or distinguished functionals) of the Hamiltonian operator D1 (namely, they are anni-
hilated by the Hamiltonian structure D1). As a consequence of this, it is possible to obtain, in an
explicit form, equations from (3) for integers n both positive and negative, i.e., n ∈ Z. As shown
in [10], for n > 0, we have three classes of nonlocal equations. However, in this paper we will only
study the hierarchy associated with the local Casimir H0 in (8). In this way, for n = 1, we obtain
from (3), with the conserved charges

H1 =

∫

dx
1

2
(∂−1w)2 ,

H2 =

∫

dx
1

2
(∂−2w)(∂−1w)2 , (9)

the Hunter-Zheng (HZ) equation

wt = −(∂−2w)wx − 2(∂−1w)w , (10)

which is also an important equation that belongs to the Harry Dym hierarchy.

The integrability of the HD equation (1) also follows from its nonstandard Lax representation

L =
1

w
∂2 ,

∂L

∂t
= −2[B,L] , (11)

where

B =
(

L3/2
)

≥2
= w−3/2∂3 −

3

4
w−5/2wx∂

2 . (12)

Conserved charges, for n = 1, 2, 3, . . ., are obtained from

H−(n+1) = TrL
2n−1

2 . (13)

A Lax representation for the HZ equation (10) is also known and is given by (11) with

B =
1

4
(∂−2w)∂ +

1

4
∂−1(∂−2w)∂2 . (14)

However, in this case, the operator B is not directly related to L, and, consequently, the Lax
equation is not of much direct use (in the construction of conserved charges etc).
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3 The Susy-B Harry Dym (sHD-B, sHD-BB) Equations:

The most natural generalization of an equation to a supersymmetric one is achieved simply by
working in a superspace. We note, from the HD equation (1), that by a simple dimensional
analysis, we can assign the following canonical dimensions to various quantities

[x] = −1 , [t] = 3 , and [w] = 4 . (15)

The N=1 supersymmetric equations are best described in the superspace parameterized by the
coordinates z = (x, θ), where θ represents the Grassmann coordinate (θ2 = 0). In this space, we
can define

D =
∂

∂θ
+ θ

∂

∂x
, (16)

representing the supercovariant derivative. From (16) it follows that

D2 = ∂ , (17)

which determines the dimension of θ to be

[θ] = −
1

2
. (18)

Let us introduce the fermionic superfield

W = ψ + θw , (19)

which has the canonical dimension

[W ] = [ψ] =
7

2
. (20)

A simple supersymmetrization of a bosonic system, conventionally known as the B supersym-
metric (susy-B) extension [4], is obtained by simply replacing the bosonic variable w, in the original
equation, by

(DW ) = w + θψ′ , (21)

where W represents a fermionic superfield. This leads to a manifestly supersymmetric equation
and following this for the case of the equation (1), we obtain the susy-B HD (sHD-B) equation

Wt = ∂2D
(

(DW )−1/2
)

, (22)

where W is the fermionic superfield (19).
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This system is bi-Hamiltonian with the even Hamiltonian operators

D1 = ∂2 ,

D2 = D(DW )D−1 +D−1(DW )D , (23)

and the odd Hamiltonians (which follow from (5) under the substitution w → (DW ))

H−1 =

∫

dz 2(DW )1/2 ,

H−2 =

∫

dz
1

8
(DW )−5/2(DWx)

2 . (24)

The Casimirs of D1 can be easily identified with the ones following from (8).

The sHD-B equation (22) has two possible nonstandard Lax representations. Let

L = (DW )−1D4 + cWx(DW )−2D3. (25)

Then, it can be easily checked that the nonstandard Lax equation

∂L

∂t
=

[

(L3/2)≥3, L
]

, (26)

leads to the sHD-B equation (22) for c = 0,−1. Here the projection ()≥3 is defined with respect to
the powers of the supercovariant derivative D.

For any given integrable bosonic equation, we can also define a doubly susy-B extension as
follows. Just as we defined a superspace in the case of N = 1 supersymmetry, let us define a
superspace parameterized by z = (x, θ1, θ2), where θ1, θ2 define two Grasmann coordinates (anti-
comuting and nilpotent, namely, θ1θ2 = −θ2θ1, θ

2
1 = θ22 = 0). In this case, we can define two

supercovariant derivatives

D1 =
∂

∂θ1
+ θ1

∂

∂x
,

D2 =
∂

∂θ2
+ θ2

∂

∂x
, (27)

which satisfy

D2
1 = D2

2 = ∂ , D1D2 +D2D1 = 0. (28)

Such a superspace naturally defines a system with N = 2 supersymmetry. Let us consider a bosonic
superfield, W , in this space which will have the expansion (we denote it by the same symbol as in
the case of N = 1)

W = w0 + θ1χ+ θ2ψ + θ2θ1w1 . (29)

Then, we can simply replace the bosonic variable in the original equation by (D1D2W ) which leads

6



to the doubly susy-B extension of a given equation. For the HD equation (1), this leads to

Wt = ∂D1D2

(

(D1D2W )−1/2
)

, (30)

which defines the sHD-BB equation. This procedure can, of course, be generalized to any N

extended supersymmetry and we do not pursue this any further. We simply point out that eq. (30)
is bi-Hamiltonian, as we would expect. For example, it is Hamiltonian with

H =

∫

dz (D1D2Wx)
2(D1D2W )−5/2 , (31)

and

D = −∂W∂−2D1D2 −D1D2∂
−2W∂ +D1∂

−1WD2 −D2W∂−1D1

+D1D2∂
−1W −WD1D2∂

−1 +D1W∂−1D2 −D2∂
−1WD1 . (32)

The second Hamiltonian structure can also be easily obtained.

4 The Supersymmetric N=1 Harry Dym (sHD) and Hunter-Zheng
(sHZ) Equations:

As we have seen, the susy-B extension of a system is a very simple supersymmetrization. However,
to obtain nontrivial supersymmetrizations, we can follow one of the following two approaches. In
this section, we will discuss N=1 supersymmetrization of the system and correspondingly, it is
appropriate to work in the superspace defined in (16)–(19).

With the superfield (19) as our basic variable, the first approach is to write the most general
local equation in superspace which is consistent with all canonical dimensions and which reduces
to (1) in the bosonic limit. This involves a free parameter and the equation takes the form

Wt =
1

8

[

−8(5a− 2)Wxxx(DW )−3/2 + 2(65a − 6)Wx(DWxx)(DW )−5/2

+30(5a + 2)Wxx(DWx)(DW )−5/2
− 15(21a + 2)Wx(DWx)

2(DW )−7/2

+W
{

8(5a − 6)(DWxxx)(DW )−5/2 + 10(a − 6)WxxxWx(DW )−7/2

+35(6 − a)WxxWx(DWx)(DW )−9/2 + 40(6 − 7a)(DWxx)(DWx)(DW )−7/2

+105(3a − 2)(DWx)
3(DW )−9/2

}]

, (33)

where a is the arbitrary parameter. In the case of the HD equation, it is possible to supersymmetrize
the two Hamiltonian structures in (3), which is easily seen from the fact that the second Hamiltonian
structure is the centerless Virasoro algebra. Thus, the supersymmetrized Hamiltonian structures
follow to be

D1 = D∂2 ,
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D2 =
1

2
[W∂ + 2∂W + (DW )D] . (34)

Requiring eq. (33) to be bi-Hamiltonian with respect to (34), namely, requiring

Wt = D1
δH−1

δW
= D2

δH−2

δW
, (35)

determines the parameter to be a = 6. The Hamiltonians in (35), in this case have the forms
(dz = dx dθ with

∫

dθ = 0 and
∫

dθ θ = 1)

H−1 =

∫

dz 2W (DW )−1/2 ,

H−2 =

∫

dz
1

8

[

Wx(DWx)(DW )−5/2
− 15WWxWxx(DW )−7/2

]

, (36)

and the N=1 sHD equation assumes the simple form

Wt = D∂2
(

2(DW )−1/2
− 3WWx(DW )−5/2

)

. (37)

It is worth noting here that this equation differs from the sHD-B equation (22) in the presence
of the second term inside the parenthesis on the right hand side, which vanishes in the bosonic
limit. (We would like to point out parenthetically that we do not generate the sHD-B equation in
this approach because of our requirement that the equation be bi-Hamiltonian with respect to the
structures in (34).)

It is easy to check that the Hamiltonian H−1 is a Casimir of D2 and the conserved charge

H0 = −

∫

dz W (38)

is a Casimir of D1. Furthermore, the Hamiltonian structure D2 can be written in the form

D2 =
1

2
(DW )1/2D(1 +X)(DW )1/2 , (39)

where

X ≡
3

2

(

D
W

(DW )
D−1 +D−1 W

(DW )
D

)

D , (40)

and therefore can be formally inverted. Thus, in this case also the associated recursion operator
has a formal inverse.

It can be easily checked that the following charges

H1 =

∫

dz
1

4
(D−1W )(D−2W ) ,
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H2 =

∫

dz
1

2
(D−1W )(D−2W )(D−3W ) , (41)

are conserved and reduce to (9) in the bosonic limit. From

Wt = D1
δH2

δW
= D2

δH1

δW
, (42)

we obtain the N=1 supersymmetric HZ (sHZ) equation

Wt = −
3

2
W (D−1W )−Wx(D

−3W )−
1

2
(DW )(D−2W ) . (43)

Both the sHD and the sHZ equations are bi-Hamiltonian systems and the infinite set of commut-
ing conserved charges can be constructed recursively. As a result, they decribe supersymmetric
integrable systems.

The second approach to finding a nontrivial N=1 supersymmetrization of the HD equation is
to start with the Lax operator in (11) and generalize it to superspace. Let us start with the most
general Lax operator involving non-negative powers of D,

L = a20D
4 + α1D

3 + a1D
2 + α2D + a2 , (44)

with the identification

a0 = (DW )−1/2 , (45)

where Roman coefficients are bosonic and Greek ones are fermionic. It is easy to verify that, in
this case, there are only three projections, ()≥0,1,3 (with respect to powers of D), that can lead to a
consistent Lax equation. Using this ansatz, we have not yet been able to obtain the sHD equation
(22) using fractional powers of the Lax operator (44). The Lax pair for this system, therefore,
remains an open question.

On the other hand, when

α1 = cWx(DW )−2, a1 = a2 = 0 = α2, (46)

where c is an arbitrary parameter, the nonstandard Lax equation

∂L

∂t
= [(L3/2)≥3, L] , (47)

yields consistent equations only for c = 0,−1,−1
2 . As we have pointed out in the last section,

for the values of the parameter, c = 0,−1, we have the sHD-B equation. The third choice of the
parameter, therefore, leads to a new nontrivial N=1 supersymmetrization of the HD equation.
Namely, with

L = (DW )−1D4
−

1

2
Wx(DW )−2D3 , (48)
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the Lax equation

∂L

∂t
=

[

(L3/2)≥3, L
]

, (49)

leads to a second N = 1 supersymmetrization of the HD equation of the form

Wt =
1

16

[

8D5((DW )−1/2)− 3D(WxxWx(DW )−5/2)

+
3

4
(DWx)

2Wx(DW )−7/2
−

3

4
D−1

(

(DWx)
3(DW )−7/2

)

]

. (50)

This is manifestly a nonlocal susy generalization in the variable W which, however, is a completely
local equation in the variable (DW ).

Since this system of equations has a Lax description, it is integrable and the conserved charges
can be calculated in a standard manner and the first few charges take the forms

H1 =

∫

dz Wx(DWx)(DW )−5/2 , (51)

H2 =

∫

dz Wx

[

16(DWxxx)(DW )−7/2
− 84(DWxx)(DWx)(DW )−9/2 + 77(DWx)

3(DW )−11/2
]

,

and so on. However, we have not yet succeeded in finding a Hamiltonian structure which satisfies
Jacobi identity (it is clear that the Hamiltonian structure is nonlocal, since the Hamiltonian is
local).

5 The N=2 Supersymmetric Harry Dym Hierarchy:

The most natural way to discuss the N = 2 supersymmetric extension of the HD equation is in
the N = 2 superspace introduced earlier in (27)–(29). Looking at the bosonic superfield W in
(29), we note that it has two bosonic components as well as two fermionic components. In the
bosonic limit, when we set the fermions to zero, the N = 2 equation would reduce to two bosonic
equations. Since we have only the single HD equation (1) to start with, the construction of such a
system is best carried out in the Lax formalism. This also brings out the interest in such extended
supersymmetric systems, namely, they lead to new bosonic integrable systems in the bosonic limit.

As in (44), let us consider the most general N = 2 Lax operator which contains differential oper-
ators in this superspace of the following form (taking a more general Lax involving only differential
operators does not lead to equations which reduce to the HD equation),

L = W−1∂2 + (D1W
−1)(κ1D1 + κ2D2)∂ + (D2W

−1)(κ3D1 + κ4D2)∂

+
(

κ5(D1D2W )W−2 + κ6(D1W )(D2W )W−3
)

D1D2 , (52)

where κi, i = 1, 2, · · · , 6 are arbitrary constant parameters. The N = 2 supersymmetry corresponds
to an internal O(2) invariance that rotates θ1 → θ2, θ2 → −θ1 and correspondingly D1 → D2,D2 →
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−D1 (thereby rotating the fermion components of the superfield into each other). This invariance,
imposed on the Lax operator, identifies

κ4 = κ1, κ3 = −κ2 . (53)

Using the computer algebra program REDUCE [14] and the special package SUSY2 [15], we
are able to study systematically the hierarchy of equations following from the Lax equation

∂L

∂t
=

[

(L3/2)≥2, L
]

. (54)

Here, the projection (which is the highest consistent projection as is also the case with the bosonic
HD equation in (12)) is understood as follows. Let us recall that a general pseudodifferential
operator in N = 2 superspace has the form

P =

n=∞
∑

n=−∞

(Pn
0 + Pn

1 D1 + Pn
2 D2 + Pn

3 D1D2) ∂
n . (55)

For such a pseudodifferential operator, the projection in (54) is defined as

P≥2 = P 0
3D1D2 +

(

P 1
1D1 + P 1

2D2 + P 1
3D1D2

)

∂

+
∑

n≥2

(Pn
0 + Pn

1 D1 + Pn
2 D2 + Pn

3 D1D2) ∂
n . (56)

The consistency of the equation (54) leads to four possible solutions for the values of the
arbitrary parameters

1. κ1 = κ2 = κ5 = κ6 = 0 ,

2. κ2 = 0, κ1 = κ5 = −
κ6

2 = 1 ,

3. κ2 = κ5 = κ6 = 0, κ1 =
1
2 ,

4. κ2 = 0, κ1 = κ5 =
1
2 , κ6 =

3
4 .

We will now discuss the various cases separately in some detail.

The first and the second cases can be discussed together since they lead to the same dynamical
equation. Namely, in this case, the two Lax operators take the forms

L(1) = W−1∂2 ,

L(2) = W−1∂2 + (D1W
−1)D1∂ + (D2W

−1)D2∂ − (D1D2W
−1)D1D2

= −D1D2W
−1D1D2 . (57)

It can be checked that both these Lax operators lead to the same dynamical equation which is
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nothing other than the sHD-BB equations we have discussed earlier and, therefore, we do not
study this any further.

For the third choice of parameters, the Lax operator can be written in the simple form

L(3) = W−1∂2 +
1

2

(

(D1W
−1)D1 + (D2W

−1)D2

)

∂

=
1

2

(

D1W
−1D1 +D2W

−1D2

)

∂ . (58)

The Lax equation (54), in this case, leads to a nontrivial N = 2 supersymmetric HD equation of
the form

Wt =
1

64

[

2(W−1/2)xxx − 12(D1Wxx)(D1W )W−5/2
− 12(D2Wxx)(D2W )W−5/2

+36(D1Wx)(D1W )WxW
−7/2 + 36(D2Wx)(D2W )WxW

−7/2

+6(D1W )(D2W )(D1D2Wx)W
−7/2

− 9(D1W )(D2W )(D1D2W )WxW
−9/2

]

. (59)

In the bosonic sector, where we set all the fermions to zero so that (see (29))

W = w0 + θ2θ1w1 , (60)

the equation (59) reduces to

w0,t =
1

2
(w

−1/2
0 )xxx ,

w1,t =
1

64

[

−16w1,xxxw
−3/2
0 + 96w1,xxw0,xw

−5/2
0 + 72w1,xw0,xxw

−5/2
0

−258w1,xw
2
0,xw

−7/2
0 − 6w1,xw

2
1w

−7/2
0 + 9w3

1w0,xw
−9/2
0

−108w1w0,xxw0,xw
−9/2
0 + 219w1w

3
0,xw

−9/2
0

]

. (61)

The first of the equations in (61) is, of course, the HD equation (1), but is decoupled from the
second component. Consequently, even though this set of equations represents a new integrable
system, it is not very interesting. Let us note that we can reduce the N = 2 supersymmetry of this
system to N = 1 supersymmetry in the following way. Let us define

W (x, θ1, θ2) = U(x, θ1) + θ2F (x, θ1) , (62)

and set the fermionic superfield F (x, θ1) = 0. This would, therefore, make the superfield W

independent of the Grassmann coordinate θ2 leaving us with N = 1 supersymmetry. Under such
a reduction, it is straightforward to see that the Lax operator (58) and the equation (59) go over
to the ones in (48) and (upto multiplicative factors) the corresponding equation (50) with the
identification

θ1 = θ, U(x, θ1) = (DW (x, θ)) . (63)

12



The conserved charges for this system can be obtained from the Lax operator L(3) in a standard
manner, but we do not go into the details of this.

The fourth case is probably the most interesting of all. Here, the Lax operator takes the form

L(4) = W−1∂2 +
1

2

(

(D1W
−1)D1 + (D2W

−1)D2

)

∂

−W−1/2(D1D2W
−1/2)D1D2

= −

(

W−1/2D1D2

)2
. (64)

Interestingly enough, this Lax operator possesses two nontrivial square roots, namely,

L
1/2
1 = iW−1/2D1D2 ,

L
1/2
2 = W−1/2∂ +

1

2

[

(D1W
−1/2)D1 + (D2W

−1/2)D2 − (W−1/2)x

]

+ · · · . (65)

We note here that a similar situation also arises in the study of the N = 2 sKdV hierarchy [16]
(for the case of the parameter a = 4). In such a case, the general hierarchy of equations can be
obtained from the Lax equation

∂L

∂tn
=

[

(

L
n/2
1 L

1/2
2

)

≥2
, L

]

, (66)

where n = 0, 1, 2, · · ·. For example, the first two flows of the hierarchy take the forms

Wt1 =
1

8

[

−4(D1D2Wx)W
−1 + 6(D1D2W )WxW

2

+6 ((D1W )(D2Wx)− 6(D2W )(D1Wx))W
−2

− 15(D1W )(D2W )WxW
−3

]

,

Wt2 =
1

16

[

8(W−1/2)xxx − 6(D1D2W )(D1D2Wx)W
−5/2 + 9(D1D2W )2WxW

−7/2

+3 ((D1W )(D1Wxx) + (D2W )(D2Wxx))W
−5/2

−9 ((D1W )(D1Wx) + (D2W )(D2Wx))WxW
−7/2

+9((D1W )(D2W )(D1D2W ))xW
−7/2

− 36(D1W )(D2W )(D1D2W )WxW
−9/2

]

.
(67)

In the bosonic sector, the second equation in (67) gives

w0,t2 =
1

16

[

8(w
−1/2
0 )xxx − 6w1,xw1w

−5/2
0 + 9w2

1w0,xw
−7/2
0

]

,

w1,t2 =
1

32

[

−8w1,xxxw
−3/2
0 + 48 (w1,xw0,x)xw

−5/2
0 − 144w1,xw

2
0,xw

−7/2
0

−6w1,xw
2
1w

−7/2
0 + 9w3

1w0,xw
−9/2
0 + 12w1w0,xxxw

−5/2
0

−126w1w0,xxw0,xw
−7/2
0 + 177w3

0,xw1w
−9/2
0

]

. (68)

This is a new bosonic system of coupled equations, which reduces on setting w1 = 0 to the HD

13



equation and is integrable.

The conserved charges for this last case of N = 2 supersymmetrization can be constructed as
follows.

H1 =

∫

dz sResL
1/2
2 =

∫

dz (D1W )(D2W )W−5/2 ,

H2 =

∫

dz sRes(L
1/2
1 L

1/2
2 )

=

∫

dz
[

3(D1D2W )2W−3 + 3W 2
xW

−2

+2 ((D1W )(D1Wx) + (D2W )(D2Wx))W
−3 + (D1W )(D2W )(D1D2W )W−4

]

,

H3 =

∫

dz sResL
3/2
2

=

∫

dz
[

128(D1D2Wx)WxW
−7/2

− 40(D1D2W )3W−9/2 + · · ·

]

, (69)

where dz = dxdθ1dθ2 and “sRes” is defined as the coefficient of the D1D2∂
−1 term in the pseudod-

ifferential operator. We can also perform the N = 1 reduction of this system. Requiring that the
superfield W has no dependence on θ2, it is clear from the form of the Lax operator in (64) that it
reduces to the one involving the second N = 1 supersymmetrization (just as L(3) does).

6 Conclusions:

In this paper, we have studied the question of supersymmetrization of the Harry Dym hierarchy
systematically. We have used the simpler B supersymmetrization to derive the sHD-B and sHD-BB
systems. The analysis of the nontrivial N = 1 supersymmetrization leads to two such integrable
systems. One has a natural bi-Hamiltonian description for which we have not been able to find
the Lax description. On the other hand, the second has a natural Lax description for which we
have not yet found a Hamiltonian structure that satisfies the Jacobi identity. Both these systems
are integrable. The N = 2 supersymmetrization from the Lax approach yields four possible Lax
operators. Two of these describe the sHD-BB system while the other two give nontrivial N = 2
supersymmetric extensions. In the bosonic limit, one of them leads to the HD equation decoupled
from the second component while the other genuinely gives a coupled two component system of
equations that is integrable.
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