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Clustering of inertial particles in a turbulent flow
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We analyzed formation of small-scale inhomogeneities of particle spatial distribution (particle
clustering) in a turbulent flow. The particle clustering is a consequence of a spontaneous breakdown
of their homogeneous space distribution, and is caused by a combined effect of the particle inertia
and a finite correlation time of the turbulent velocity field. Theory of the particle clustering is
extended to the case when the particle Stokes time is larger than the Kolmogorov time scale, but
is much smaller than the correlation time at the integral scale of turbulence. The criterion of the
clustering instability is obtained. Applications of the analyzed effects to the dynamics of inertial
particles in industrial turbulent flows are discussed.

PACS numbers: 47.27.Qb

I. INTRODUCTION

It is generally believed that turbulence promotes mix-
ing (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9]). However,
laboratory experiments and observations in the atmo-
spheric turbulence show formation of long-living inho-
mogeneities in concentration distribution of small iner-
tial particles and droplets in turbulent fluid flows (see,
e.g., [10, 11, 12]). The origin of these inhomogeneities is
not always clear but there influence on the mixing can
be hardly overestimated.
The goal of this study is to analyze the particle-air

interaction leading to the formation of strong inhomo-
geneities of particle distribution, referred to as particle

clustering(see [13, 14], and references therein). Particle
clustering is a consequence of a spontaneous breakdown
of their homogeneous space distribution. As a result of
the nonlinear stage of clustering, the local density of par-
ticles may rise by orders of magnitude and strongly in-
crease the probability of particle-particle collisions.
It was suggested in [13, 15, 16] that the main reason

for the particle clustering is their inertia: the particles
inside the turbulent eddies are carried out to the bound-
ary regions between the eddies by the inertial forces.
This mechanism of the preferential concentration acts in
all scales of turbulence, increasing toward small scales.
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Later, this was contested in Refs. [17, 18] using the so-
called ”Kraichnan model” [19] of turbulent advection
by the delta-correlated in time random velocity field,
whereby the clustering instability did not occur. How-
ever, it was shown in Ref. [14] that accounting for a finite-
ness of correlation time of the fluid velocity field results
in the clustering instability of heavy particles. The the-
ory of the clustering instability of the inertial particles
advected by a turbulent velocity field was developed in
Ref. [14] and applied to the dynamics of aerosols in the
turbulent atmosphere.

In the present study we extended the theory of parti-
cle clustering to the case when the particle Stokes time
is larger than the Kolmogorov time scale, but is much
smaller than the correlation time at the integral scale
of turbulence. The paper is organized as follows. In
Sec. II we present a qualitative analysis of the clustering
instability that causes formation of particle clusters in a
turbulent flow. In Sec. III we evaluate the characteris-
tic parameters that affect clusters formation as a result
of the clustering instability: the particle response time
τp, the Kolmogorov micro-scale time τη, the characteris-
tic velocity of small and large particles in turbulent fluid;
the degree of compressibility of the particle velocity field,
σv(a), where a is the particle size. In Sec. III B we study
the velocity of small and large particles in the turbulent
fluid, required for evaluation of the effect of turbulent
diffusion in these two regimes. In Sec. IV we present a
quantitative analysis for the clustering instability of the
second moment of particle number density. This allows
us to generalize the criterion of the clustering instability,
obtained in Ref. [14]. Finally, in Sec. V we overview the
nonlinear effects which lead to saturation of the cluster-
ing instability and determine the particle number density
in the cluster. In Sec. V we also present numerical esti-
mates for droplet dynamics for the conditions pertinent
to turbulence in diesel engines.
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II. CLUSTERING OF PARTICLES IN

TURBULENT GAS

A. Basic Equations

To analyze dynamics of particles we use the standard
continuous media approximation, introducing the num-
ber density n(t, r) of spherical particles with radius a.
The particles are advected by a turbulent velocity field

u(t, r). Since typically the velocity of the carrier gas is
much smaller than the sound velocity, the incompressibil-
ity constrain divu(t, r) = 0 is applicable. The particle
material density ρp is much larger than the density ρ of
the ambient fluid. For heavy particles v(t, r) 6= u(t, r)
due to the particle inertia [20, 21, 22]. Therefore, the
compressibility of the particle velocity field v(t, r) must
be taken into account (see [13, 14, 15, 16]), since the
growth rate of the clustering instability, γ, is proportional
to 〈|div v(t, r)|2〉, where 〈·〉 denotes ensemble average.
Let Θ(t, r) be the deviation of the particle number den-

sity n(t, r) from its uniform mean value n̄ ≡ 〈n〉:

Θ(t, r) = n(t, r)− n̄ . (2.1)

The pair correlation function of Θ(t, r) is defined as

Φ(R, r, t) ≡ 〈Θ(t, r+R)Θ(t, r)〉 . (2.2)

For the sake of simplicity we will consider only a spa-
tially homogeneous, isotropic case when Φ(R, r, t) de-
pends only on the separation distance R and time t:

Φ(t,R, r) → Φ(t, R) . (2.3)

Denote the probability of the pair collisions between par-
ticles as p(t) which can be expressed as

p(t) ∝ c

{

1 +
〈[n(t, r)]2〉

n̄2

}

= c

[

1 +
Φ(t, 0)

n̄2

]

. (2.4)

Obviously, a large increase of Φ(t, R) above the level of
n̄2 leads to a strong grows in the frequency of the particle
collisions.
In the analytical treatment of the problem we use the

standard equation for n(t, r):

∂n(t, r)

∂t
+∇ · [n(t, r)v(t, r)] = D△n(t, r), (2.5)

where D is the coefficient of molecular (Brownian) diffu-
sion. The equation for Θ(t, r) follows from Eq. (2.5):

∂Θ(t, r)

∂t
+ [v(t, r) · ∇]Θ(t, r) (2.6)

= −Θ(t, r) divv(t, r) +D△Θ(t, r) .

Here we neglected the term ∝ n̄ divv, describing the ef-
fect of an external source of fluctuations. It was shown in
Ref. [14] that this effect is usually much smaller than the
effect of self-excitation of fluctuations of particle number
density.

One can use Eq. (2.6) to derive equation for Φ(t, R) by
averaging the equation for Θ(t, r+R)Θ(t, r) over statis-
tics of the advected turbulent velocity field v(t, r). In
general this procedure is quite involved even for simple
models of the advecting velocity fields, see, e.g., Ref. [14].
Nevertheless, the qualitative understanding of the un-
derlying physics of the clustering instability, leading to
both, the exponential growth of Φ(t, R) and its nonlin-
ear saturation, can be elucidated by a more simple and
transparent analysis, that is presented below.

B. Qualitative analysis of the clustering instability

1. On Richardson-Kolmogorov cascade theory of turbulence

In our discussion we will use the well known
Richardson-Kolmogorov cascade theory of turbulence
(see, e.g., Refs. [1, 23, 24]). For the large Reynolds num-
bers Re ≫ 1 the characteristic scale L of energy injection
(outer scale) is much larger than the length of the dissi-
pation scales (viscous scale η) L ≫ η. In the so-called
inertial interval of scales, where L > r > η, the statistics
of turbulence within the Kolmogorov theory is governed
by the only dimensional parameter, ε, the rate of the tur-
bulent energy dissipation. Then, the velocity u(r) and
the energy of turbulent motion E(r) at the characteristic
scale r (referred below as r-eddies) may be found by the
dimensional reasoning:

u(r) ≈ (εr)1/3, E(r) =
1

2
ρ[u(r)]2. (2.7)

Similarly, the turnover time of r-eddies, τ(r), which is of
the order of their life time, may be estimated as

τ(r) ≈ r/u(r) ≈ ε−1/3r2/3. (2.8)

To elucidate the clustering instability let us consider a
cluster of particles with a characteristic scale ℓ moving
with the velocityVcl(t). The scale ℓ is a parameter which
governs the growth rate of the clustering instability, γ.
It sets the bounds for two distinct intervals of scales:
L > r > ℓ and ℓ > r > η. However, if the size of particles
a is larger than the viscous scale η, the second range of
scales becomes ℓ > r > a, because we cannot consider
scales which are smaller than the size of particles. Large
r-eddies with r > ℓ sweep the ℓ-cluster as a whole and de-
termine the value of Vcl(t). This results in the diffusion
of the clusters, and eventually affects their distribution
in a turbulent flow. The small r-eddies determine the dy-
namics of particles inside the cluster. The role of these
eddies is multifold. First, they lead to the turbulent dif-
fusion of the particles within the scale of a cluster size.
Second, due to the particle inertia they tend to accumu-
late particles in the regions with small vorticity, which
leads to the preferential concentration of the particles.
Third, the particle inertia also causes a transport of fluc-
tuations of particle number density from smaller scales



3

to larger scales, i.e., in regions with larger turbulent dif-
fusion. The latter can decrease the growth rate of the
clustering instability (see below). Thus, the clustering is
determined by the competition between these three pro-
cesses.

2. Effect of turbulent diffusion

We consider Eq. (2.6) for Θ(t, r) in the coordinate sys-
tem co-moving with the ℓ-cluster and assume v(t, r) ≈
u(t, r). In this reference frame the advectived velocity
v(t, r) should be replaced by [v(t, r) − Vcl(t)]. In par-
ticular, the advection term in Eq. (2.6) takes the form

Adv ≡ {[v(t, r) −Vcl(t)] · ∇}Θ(t, r) . (2.9)

Averaging this term over statistics of turbulent velocity
field leads to the turbulent diffusion of particles. It is well
known (see, e.g. Ref. [1]) that the turbulent diffusion can
be modelled by the renormalization of the diffusion term
in the right hand side (RHS) of Eq. (2.6):

D ⇒ D +D
T
, (2.10)

where D
T
is the turbulent diffusion coefficient. The main

contribution to the advected velocity in Eq. (2.9) is due
to the velocity of ℓ-eddies, v(ℓ). Therefore D

T
becomes

a function of scale ℓ, D
T
⇒ D

T
(ℓ), and can be estimated

from the parameters of ℓ-eddies, using dimensional rea-
soning:

D
T
(ℓ) ≈ 1

3
ℓv(ℓ) . (2.11)

Here we used the commonly accepted [23, 24] numeri-
cal factor 1

3 for the turbulent diffusion coefficient in an
isotropic turbulence. Now the part of Eq. (2.6) describing
the turbulent diffusion may be written as

∂Θ(t, r)

∂t
= −D

T
(ℓ)△Θ(t, r) . (2.12)

During the linear stage of the cluster evolution the
particle distribution inside the cluster does not change.
Therefore, the function Θ(t, r) in the expression for the
correlation function Φ can be factorized:

Θ(t, r) ⇒ Aℓ(t)θℓ(r) . (2.13)

Then, Eq. (2.12) yields

A2
ℓ (t) = A2

ℓ (0) exp[−γdif t] , γdif =
2D

T
(ℓ)

ℓ2
≈ 2v(ℓ)

3ℓ
,

(2.14)
where the Laplace operator is evaluated as 1/ℓ2 and we
used Eq. (2.11).

3. Effect of particles inertia

For the qualitative analysis of the particle inertia we
consider Eq. (2.6), written in the co-moving reference
frame, taking into account only inertia term:

∂Θ(t, r)

∂t
= −Θ(t, r) div[v(t, r) −Vcl(t)] . (2.15)

As before we can factorize the function Θ(t, r) according
to Eq. (2.13) and simplify the partial differential equa-
tion (2.15), reducing it to the differential equation for
the cluster amplitude Aℓ(t):

dAℓ(t)

dt
= −Aℓ(t) bℓ(t) . (2.16)

Here we neglected the r-dependence of the divergence
term inside the cluster in the RHS of Eq. (2.15), so that
this term becomes a function of t only:

div[v(t, r) −Vcl(t)] ⇒ bℓ(t) . (2.17)

In the turbulent flow field the function bℓ(t) may be
considered as a random process with some correlation
time τb, which will be evaluated below. Since the insta-
bility of ℓ-clusters is caused by ℓ-eddies, the correlation
time τb can be estimated as the turnover time of the par-
ticle velocity field of ℓ-eddies:

τb ≈ ℓ/v(ℓ) . (2.18)

The evaluation of the mean square value of bℓ(t) re-
quires a more careful consideration. One cannot estimate
divv(r) by the dimensional reasoning as v(r)/r. Indeed,
in the incompressible flow divv(r) = 0. To elucidate this
issue we introduce a dimensionless parameter σv, a de-

gree of compressibility of the velocity field of particles in
ℓ-clusters, vℓ(t, r), defined by

σv ≡ 〈[divvℓ]
2〉/〈|∇ × vℓ|2〉 . (2.19)

This parameter may be of the order of 1 (see Refs. [15,
17]). At the moment we can evaluate bℓ(t) via this yet
unknown parameter σv as follows:

〈bℓ(t)〉 = 0, 〈b2ℓ(t)〉 ≈ σv[v(ℓ)/ℓ]
2 . (2.20)

Let us show that the stochastic differential equation
(2.16) results in an exponential growth of 〈A2

ℓ (t)〉, i.e.
in the instability. Indeed, the solution of this equation
reads:

Aℓ(t) = Aℓ(0) exp[−I(t)] , I(t) ≡
t
∫

0

bℓ(τ)dτ . (2.21)

Integral I(t) may be written as the sum of integrals In
over small time intervals τb:

I(t) =

N
∑

n=1

In , In ≡
(n+1)τb
∫

nτb

bℓ(τ)dτ, N =
t

τb
. (2.22)
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By definition, τb is the correlation time of the random
process bℓ(t). Therefore the integrals In can be consid-
ered as independent random variables. According to the
central limit theorem, the sum of a large number of sta-
tistically independent random variables is distributed as
the Gaussian random variable. Therefore the total inte-
gral I(t) can be estimated as

I(t) ≃
√

N〈I2n〉 ζ̃ , 〈I2n〉 = τ2b 〈b2ℓ(t)〉 . (2.23)

Here ζ̃ is a Gaussian random variable with zero mean
and unit variance. The probability density function of ζ̃
reads

P(ζ̃) =
1√
2π

exp

(

− ζ̃2

2

)

. (2.24)

Using Eqs. (2.21), (2.24) and (2.22) we obtain

〈A2
ℓ (t)〉 ≃ A2

ℓ(0)

∫

exp[−2
√

N〈I2n〉ζ̃]P(ζ̃)dζ̃

= A2
ℓ(0) exp[γint] , (2.25)

where the growth rate γin is given by

γin =
N〈I2n〉
τb

≈ 2τb〈b2ℓ(t)〉 ≈
2σv v(ℓ)

ℓ
. (2.26)

In the last estimate we used Eqs. (2.18) and (2.20). It is
clearly seen that the source of the instability is a nonzero
value of σv, i.e. a compressibility of the particle velocity

field, v(t, r).
In the case of the small enough particles, τp ≤ τ(η),

where τ(η) is the turnover time of the smallest, Kol-
mogorov micro-scale eddies. In this case all the particles
are almost fully involved in turbulent motion, and one
concludes that u(t, r) ≈ v(t, r) and v(ℓ) ≈ u(ℓ). Also
we will see below that in this case the largest value of
σv is attained for ℓ ≈ η. Hence for τp ≤ τ(η) the most
unstable clusters are those with ℓ ≈ η. In summary:
• In the case τp ≤ τ(η), the characteristic scale of the

most unstable clusters of small enough particles is of the
order of Kolmogorov micro-scale of turbulence, η.
• The characteristic growth rate of the clustering insta-

bility is of the order of the turnover frequency of η-eddies,
1/τ(η).
• The particle clusters are unstable for heavy enough

particles, such that the degree of compressibility σv(η)
of their effective advective velocity field exceeds some
threshold value σcr ≈ 0.3 (see Ref. [14]).

III. THE PARTICLE VELOCITY FIELD

In this section we discuss the compressibility of the
particle velocity field. In particular, to clarify the range
of validity of the Stokes approximation for the particle
motion in fluid, in Sec. III A we evaluate the particle re-
sponse time τp as compared with the Kolmogorov micro-
scale time τη. In Sec. III B we study the velocity of small

and large particles in the turbulent fluid, required for
evaluation of the effect of turbulent diffusion in these
two regimes. This study also allows us to find the de-
pendence of the degree of compressibility of the particle
velocity field, σv, on the particle response time.

A. Characteristic time scales and validly of the

Stokes approximation

Let us assume that the radius of the particles is small,
so that the particle Reynolds number Rep is smaller
than the critical value, Recr, at which the laminar flow
over a particle looses its stability. Then, we can ap-
ply the Stokes approximation. It states that the fluid-
particle friction force is proportional to the slip velocity,
the difference between the particle velocity and the fluid
velocity. A careful analysis performed by Lumley [25]
shows that in a turbulent flow the validity condition for
Rep ≤ Recr may be expressed via the particle radius a
and the Kolmogorov micro-scale η as follows:

a ≤ 2η(ρ/ρp)
1/3. (3.1)

In the present analysis the ratio of the inertial time
scale of the particles (the Stokes time scale τp) and the
turnover time of η-eddies in the Kolmogorov micro-scale
τ(η), is of primary importance. The particle response
time is given by

τp =
mp

6πνρa
=

2ρpa
2

9ρν
, (3.2)

where the particle mass mp is:

mp =
4π

3
a3ρp . (3.3)

The Kolmogorov micro-scale η is determined from the
condition that the Reynolds number for eddies of scale η
is equal to 1:

Reη = ηv(η)/ν = 1 . (3.4)

Here v(η) is the characteristic velocity of η-scale eddies.
It is related to the turnover time of the eddies as τ(η) =
η/v(η). This allows us to rewrite the expression (3.4) as
follows:

τ(η) = η2/ν. (3.5)

Then, the ratio of the time-scales τp and τ(η) follows
from Eqs. (3.2) and (3.5):

τp
τ(η)

=
2ρpa

2

9ρη2
. (3.6)

Substituting the condition (3.1) for the validity of the
Stokes approximation we find

τp
τ(η)

≤
(

ρp
ρ

)1/3

, (3.7)
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Equation (3.7) implies that for ”heavy” particles in a
gas, that satisfy the Stokes approximation, the particle
response time scale may be about ten times larger than
the Kolmogorov time scale: τp ≤ 10τ(η).

B. Particle velocity in turbulent fluid

1. Equation for a particle velocity

Assuming that the particles are small enough such that
Eq. (3.1) is valid, we can apply Stokes’ law for the fluid-
particle friction force Fp(t, r):

Fp(t, r) = ζ[vp(t, r)− u(t, r)] , (3.8)

with the Stokes friction coefficient ζ given by

ζ = 6 π ρν a . (3.9)

The Newton equation for a particle reads:

mp
dvp(t, r)

dt
= −Fp(t, r) = ζ[u(t, r)− vp(t, r)] . (3.10)

Here the total time derivative (d/dt) takes into account
the time dependence of the particle coordinate r:

d

dt
=

[

∂

∂t
+ vp(t, r) · ∇

]

. (3.11)

Now Eq. (3.10) takes the form:

{

τp

[

∂

∂t
+ vp(t, r) · ∇

]

+ 1

}

vp(t, r) = u(t, r) . (3.12)

In the following we analyze this equation in two limit-
ing cases: for small particles with τp smaller than the
turnover time of ℓ-eddies (Sec. III B 2), and for large par-
ticles, in Sec. III B 3.

2. Velocity of small particles

In this section we consider small particles for which
the Stokes time τp is smaller than the turnover time of
ℓ-eddies, τ(ℓ) ≈ ℓ/u(ℓ). These particles are completely
involved in the motion of ℓ-eddies and for τp/τ(ℓ) = 0, we
can write vℓ(t, r) = uℓ(t, r). Here subscript ”ℓ” denotes
that we are dealing with the velocity field of ℓ-eddies,
uℓ(t, r), and the velocity of particles in ℓ-clusters, vℓ(t, r),
that was generated by ℓ-eddies. In this approximation
the velocity field vℓ(t, r) is incompressible. Therefore,
the compressibility parameter σv may be determined by
the first order corrections.
To find the corrections to vℓ(t, r) linear in τp, we con-

sider a formal solution of Eq. (3.12) in the form:

vℓ(t, r) =

[

τp
d

dt
+ 1

]−1

uℓ(t, r) . (3.13)

Here the inverse operator is understood as its Taylor se-
ries expansion:

vℓ(t, r) = uℓ(t, r)− τp
duℓ(t, r)

dt
+

τ2p
2

[

duℓ(t, r)

dt

]2

+ ...,

(3.14)
In the linear in τp approximation, this solution becomes

vℓ(t, r) = uℓ(t, r) − τp

[

∂

∂t
+ uℓ(t, r) · ∇

]

uℓ(t, r) ,

(3.15)
where in the RHS we replaced vℓ(t, r) → uℓ(t, r). Con-
sequently, in this approximation

div uℓ(t, r) =
duα

ℓ (t, r)

drα
≈ τp

duβ
ℓ (t, r)

drα
duα

ℓ (t, r)

drβ
(3.16)

(see Ref. [13]). Equation (3.16) allows to determine the
compressibility parameter σv, (2.19), as follows:

σv ≈
[

τp
τ(ℓ)

]2

≈
(

2ρp
9ρ

)2(
a

η

)4
(η

ℓ

)4/3

. (3.17)

In deriving this equation we estimated [duα
ℓ (t, r)/dr

α] as
[1/τ(ℓ)] and used Eqs. (3.6) and (2.8).
Let a∗ be the characteristic size of particles for which

τp = τ(η) for ℓ = η and, respectively, σv = 1:

a∗ ≡ η
√

9ρ/2ρp . (3.18)

Using this notation Eq. (3.17) can be rewritten as

τ(ℓ)

τp
≈
(a∗
a

)2
(

ℓ

η

)2/3

, (3.19)

σv ≈
(

a

a∗

)4
(η

ℓ

)4/3

. (3.20)

Equations (3.17) and (3.20) are valid only if σv < 1,
otherwise the approximation of small τp/τ(ℓ) ratio is vi-
olated.

3. Velocity of large particles

a. Effective equation of motion. In this section we
consider the opposite case: the large particles with τp is
larger than the turnover time of the smallest eddies in
the Kolmogorov microscale τ(η), but smaller than the
turnover time of the largest eddies τ(L). Denote by ℓ∗
the characteristic scale of eddies for which

τp = τ(ℓ∗) . (3.21)

This scale as well as the particles cluster size was intro-
duced in Ref. [13]. The eddies with ℓ ≫ ℓ∗ almost fully
involve particles in their motions, while the eddies with
ℓ ≪ ℓ∗ do not affect the particle motions within the zero
order approximation in the ratio [τ(ℓ)/τp] ≪ 1.
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To determine vℓ(t, r) we consider Eq. (3.12) in the co-
moving with ℓ-eddies frame, where the surrounding fluid
velocity u equals to the relative velocity of the ℓ-eddy at
r, i.e., u(t, r) ⇒ uℓ(t, r). At this point one has to take
into account that the ℓ-eddy is swept out by all ℓ′-eddies
of larger scales, ℓ′ > ℓ, while the particle participates
in motions of ℓ′-eddies with ℓ′ > ℓ∗ > ℓ. Therefore,
the relative velocity Uℓ of the ℓ-eddy and the particle
is determined by ℓ′-eddies with the intermediate scales,
ℓ∗ > ℓ′ > ℓ. This velocity is determined by the con-
tribution of ℓ∗-eddies, and can be considered as a time
and space independent constant u∗ during the life time
of the ℓ eddy and inside it. Velocity u∗ in our approach
is random and we have to average the final result over
statistics of ℓ∗-eddies. Then Eq. (3.12) becomes

(

τp
∂

∂t
+ 1

)

vℓ(t, r) = uℓ(t, r + u∗t)

−τp [vℓ(t, r) · ∇]vℓ(t, r) . (3.22)

In Eq. (3.22) the velocity uℓ is calculated at point r and
the velocity vℓ is at r−u∗ t. For the sake of convenience
we redefine here r − u∗ t ≡ r′ ⇒ r and, respectively,
r = r′ + u∗ t ⇒ r + u∗ t.
b. First non-vanishing contribution to vℓ. Clearly,

vℓ(t, r) ≪ uℓ for ℓ ≪ ℓ∗. Therefore we can find the
first non-vanishing contribution to vℓ(t, r) in the limit
[τ(ℓ) ≪ τp] by considering the linear version of Eq. (3.22):

(

τp
∂

∂t
+ 1

)

vℓ(t, r) = uℓ(t, r + u∗t) . (3.23)

In the ω,k representation this equation takes the form:

(iω τp + 1)vℓ(ω,k) = uℓ(ω − k · u∗,k) , (3.24)

that allows one to find the relationship between the sec-

ond order correlation functions Fαβ
v,ℓ (ω,k) and Fαβ

u,ℓ (ω,k)
of the velocity fields vℓ and uℓ:

Fαβ
v,ℓ (ω,k) =

1

ω2τ2p + 1
Fαβ
u,ℓ (ω − k · u∗,k) . (3.25)

Functions Fαβ
u,ℓ (ω,k) and Fαβ

v,ℓ (ω,k) are defined as usual:

(2π)4δ(ω + ω′) δ(k + k′)Fαβ
u,ℓ (ω,k) (3.26)

≡
〈

vαℓ (ω,k) v
β
ℓ (ω

′,k′)
〉

, etc.

The simultaneous correlation functions are related to
their ω-dependent counterparts via the integral

∫

dω/2π,
e.g.,

Fαβ
v,ℓ (k) =

∫

dω

2π
Fαβ
v,ℓ (ω,k) . (3.27)

The tensorial structure of Fαβ
u,ℓ (k) follows from the incom-

pressibility condition and the assumption of isotropy:

Fαβ
u,ℓ (k) = Pαβ(k)Fu,ℓ(k) , (3.28)

where Pαβ(k) is the transversal projector:

Pαβ(k) = δαβ − kαkβ/k2 . (3.29)

In the inertial range of scales the function Fαβ
u,ℓ (ω,k) may

be written in the following form:

Fαβ
u,ℓ (ω,k) = Pαβ(k)Fu,ℓ(k) τ(ℓ) f [ω τ(ℓ)] . (3.30)

Here the dimensionless function f(x) is normalized as
follows:

∫ ∞

∞

f(x) dx = 2π . (3.31)

Now we can average Eq. (3.25) over the statistics of ℓ∗-
eddies. Denoting the mean value of some function g(x)

as g(x) we have:

f [(ω − k · u∗) τ(ℓ)] ≈ δ[(ω − k · u∗) τ(ℓ)] (3.32)

≈ ℓ

τ(ℓ)u∗

f∗

(u∗ ω

ℓ

)

.

Here the dimensionless function f∗(x) has one maximum
at x = 0, and it is normalized according to Eq. (3.31).
The particular form of f∗(x) depends on the statistics of
ℓ∗-eddies and our qualitative analysis is not sensitive to
this form. Thus, we may choose, for instance:

f∗(x) = 2/[x2 + 1] . (3.33)

In Eqs. (3.32) we took into account that the characteristic
Doppler frequency of ℓ-eddies (in the random velocity
field u∗ of ℓ∗-eddies) may be evaluated as:

γ
D
(ℓ) ≡

√

(k · u∗)2 ≃ u∗/ℓ . (3.34)

This frequency is much larger than the characteristic fre-
quency width of the function f [ωτ(ℓ)] (equal to 1/τ(ℓ)),
and therefore the function f(x) in Eq. (3.32) may be ap-
proximated by the delta function δ(x).
After averaging, Eq. (3.25) may be written as

Fαβ
v,ℓ (ω,k) =

Pαβ(k)f∗(0)

ω2τ2p + 1

ℓ

u∗

Fu,ℓ(k) . (3.35)

Here we took into account that τp ≫ ℓ/u∗ that allows us
to neglect the frequency dependence of f∗(u∗ ω/ℓ) and to
calculate this function at ω = 0. Together with Eq. (3.35)
this yields

Fαβ
v,ℓ (k) = Pαβ(k)Fu,ℓ(k)

ℓ

τp u∗

, (3.36)

where we used the estimate f∗(0) ≈ 2, that follows from
Eq. (3.33).
The equation (3.36) provides the relationship between

the mean square relative velocity of ℓ-separated particles,
vℓ, and the velocity of ℓ-eddies, uℓ:

vℓ ≃ uℓ

√

ℓ

τp u∗

≃ uℓ

√

ℓ

ℓ∗
. (3.37)
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c. Effective nonlinear equation. For a qualitative
analysis of the role of the nonlinearity of the particle
behavior in an ℓ-cluster we evaluate ∇ in the nonlinear
term, Eq. (3.22), as 1/ℓ, neglecting the spatial depen-
dence and the vector structure. The resulting equation
in ω-representation reads:

(iω + γp)Vℓ(ω) = γdrUℓ(ω) +Nω , γp = 1/τp ,

Nω = − 1

2πℓ

∫

dω1dω2δ(ω + ω1 + ω2)Vℓ(ω1)Vℓ(ω2) ,

Vℓ(ω) =

∫

vℓ(t) exp[−iωt]dt , (3.38)

vℓ(t) =
1

2π

∫

Vℓ(ω) exp[iωt]dω .

In the zeroth order (linear) approximation (Nω → 0)

V
(0)
ℓ (ω) =

γpUℓ(ω)

iω + γp
, (3.39)

which is the simplified version of Eq. (3.24). This allows
us to find in the linear approximation

〈v2ℓ (t)〉 =
∫

dω

2π
Fℓ(ω) =

∫

dω

2π

γ2
pFu,ℓ(ω)

ω2 + γ2
p

, (3.40)

where Fu,ℓ(ω) is the correlation functions of Uℓ(ω):

2πδ(ω + ω′)Fu,ℓ(ω) = 〈Uℓ(ω)Uℓ(ω
′)〉 , (3.41)

similarly to Eq. (3.26).
In the limit τp ≫ ℓ/u∗ one can neglect in Eq. (3.40) the

ω-dependence of Fu,ℓ(ω), which has characteristic width
ℓ/u∗ and conclude:

v2ℓ,0 ≡ 〈v2ℓ (t)〉 ≈
γp
2
Fu,ℓ(0) ≈ u2

ℓ

ℓ γp
u∗

≈ u2
ℓ

ℓ

ℓ∗
,

u2
ℓ ≡ 〈u2

ℓ(t)〉 , (3.42)

in agreement with Eq. (3.37).
d. First nonlinear correction. To evaluate the first

nonlinear correction to Eq. (3.42) one has to substitute
Vℓ(ω) from Eq. (3.39) into Eq. (3.38) for Nω:

Vℓ,1(ω) = −
γ2
p

2πℓ

∫

dω1dω2δ(ω + ω1 + ω2)

× Uℓ(ω1)

iω1 + γp

Uℓ(ω2)

iω2 + γp
. (3.43)

Using Eq. (3.43) instead of Eq. (3.39) we obtain instead
of Eq. (3.40)

v2ℓ,1 ≡ 〈[vℓ,1(t)]2〉 =
∫

dω

2π
Fu,ℓ,1(ω) , (3.44)

Fu,ℓ,1(ω) =
2γ4

p

(ω2 + γ2
p)ℓ

2

∫

dω1dω2

2π

×Fu,ℓ(ω1) Fu,ℓ(ω2)δ(ω + ω1 + ω2)

(ω2
1 + γ2

p)(ω
2
2 + γ2

p)
.

In this derivation we assumed for simplicity the Gaussian
statistics of the velocity field.
Now let us estimate

v2ℓ,1 ≈

[

Fu,ℓ(0)
]2

ℓ2
≈ u4

ℓ

u2
∗

≈ u2
ℓ

(

ℓ

ℓ∗

)2/3

, (3.45)

that is much larger than the result (3.42) for v2ℓ,0 ob-
tained in the linear approximation. This means that the
simple iteration procedure we used is inconsistent, since
it involves expansion in large parameter [(ℓ∗/ℓ)

1/3].
e. Renormalized perturbative expansion. A similar

situation with a perturbative expansion occurs in the
theory of hydrodynamic turbulence, where a simple it-
eration of the nonlinear term with respect to the lin-
ear (viscous) term, yields the power series expansion in
Re2 ≫ 1. A way out, used in the theory of hydro-
dynamic turbulence is the Dyson-Wyld re-summation
of one-eddy irreducible diagrams (for details see, e.g.,
Refs. [26, 27, 28]). This procedure corresponds to ac-
counting for the nonlinear (so-called ”turbulent” viscos-
ity) instead of the linear, kinematic viscosity. A similar
approach in our problem implies that we have to account
for the self-consistent, nonlinear renormalization of the
particle frequency γp ⇒ Γp(ℓ) in Eq. (3.38) and to sub-

tract the corresponding terms from Ñω . With these cor-
rections, Eq. (3.38) reads:

[ iω + Γp(ℓ) ]Vℓ(ω) = γpUℓ(ω) + Ñω . (3.46)

Here Ñω is the nonlinear term Nω after substraction of
the nonlinear contribution to the difference

∆p ≡ Γp(ℓ)− γp ≈ v2ℓ /ℓ
2

Γp(ℓ)
. (3.47)

The latter relation actually follows from a more detailed
perturbation diagrammatic approach. In our context it
is sufficient to realize that in the limit Γp(ℓ) ≫ γp one
may evaluate Γp(ℓ) by a simple dimensional reasoning:

Γp(ℓ) ≈ vℓ/ℓ , (3.48)

which is consistent with Eq. (3.47). In addition,
Eq. (3.47) has a natural limiting case Γp(ℓ) → γp when
vℓ/ℓ ≪ γp. Now using Eq. (3.46) instead of Eq. (3.39)
we arrive at:

V
(0)
ℓ (ω) =

γpUℓ(ω)

iω + Γp(ℓ)
. (3.49)

Accordingly, instead of the estimates (3.42) one has:

ṽ2ℓ,0 ≈ u2
ℓ

γ2
p ℓ

Γp(ℓ)u∗

≈ u2
ℓ

γp
Γp(ℓ)

(

ℓ

ℓ∗

)

. (3.50)

The latter equation together with Eq. (3.48) allows to
evaluate Γp(ℓ) as follows:

Γp(ℓ) ≈
(

γ2
pu

2
ℓ

ℓ u∗

)1/3

≈ γp

(

ℓ∗
ℓ

)1/9

. (3.51)
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Hence the estimate (3.50) becomes

ṽ2ℓ,0 ≈ u2
ℓ

(

ℓ

ℓ∗

)10/9

≈ u2
ℓ

[

τ(ℓ)

τp

]5/3

. (3.52)

Repeating the evaluation of the nonlinear correction ṽ2ℓ,2
with the renormalized Eq. (3.46) we find that

ṽ2ℓ,1 ≈ ṽ2ℓ,0 . (3.53)

This means that now the expansion parameter is of the
order of 1, in accordance with the renormalized pertur-
bation approach.

IV. THE CLUSTERING INSTABILITY OF THE

SECOND MOMENT OF PARTICLE NUMBER

DENSITY

In this section we will present a quantitative analysis
for the clustering instability of the second moment of
particles number density.

A. Basic equations

To determine the growth rate of the clustering insta-
bility let us consider the equation for the two-point cor-
relation function Φ(t,R) of particle number density:

∂Φ

∂t
= [B(R) + 2U(R) ·∇+ D̂αβ(R)∇α∇β ] Φ(t,R) ,

(4.1)

(see Ref. [14]). The meaning of the coefficients B(R),

U(R) and D̂αβ(R) is as follows:
The function B(R) is determined by the compressibil-

ity of the velocity field and it causes the generation of
fluctuations of the number density of particles.
The vector U(R) determines a scale-dependent drift

velocity which describes a transport of fluctuations of
particle number density from smaller scales to larger
scales, i.e., in the regions with larger turbulent diffusion.
The latter can decrease the growth rate of the clustering
instability. Note that U(R = 0) = 0 whereas B(R =
0) 6= 0. For incompressible velocity field U(R) = 0 and
B(R) = 0.
The scale-dependent tensor of turbulent diffusion

D̂αβ(R) is also affected by the compressibility. In very
small scales this tensor is equal to the tensor of the molec-
ular (Brownian) diffusion, while in the vicinity of the
maximum scale of turbulent motions this tensor coincides
with the regular tensor of turbulent diffusion.
Thus, the clustering instability is determined by the

competition between these three processes. The tensor
D̂αβ(R) may be written as

D̂αβ(R) = 2Dδαβ +D
T

αβ(R) , (4.2)

D
T

αβ(R) = D̃
T

αβ(0)− D̃
T

αβ(R) .

The form of the coefficients B(R), U(R) and D̂αβ(R)
depends on the model of turbulent velocity field. For
instance, for the random velocity with Gaussian statistics
of the Lagrangian trajectories ξ(r|t) these coefficients are
given by

B(R) ≈ 2

∫ ∞

0

〈b[0, ξ(r1|0)]b[τ, ξ(r2|τ)]〉 dτ , (4.3)

U(R) ≈ −2

∫ ∞

0

〈v[0, ξ(r1|0)]b[τ, ξ(r2|τ)]〉 dτ ,

D̃
T

αβ(R) ≈ 2

∫ ∞

0

〈vα[0, ξ(r1|0)]vβ [τ, ξ(r2|τ)]〉 dτ

(for details see Ref. [14]), where b = divv.

B. Clustering instability

Let us study the clustering instability. Consider the
range of scales a ≤ ℓ ≪ ℓ∗, where the size of a particle
a ≥ η. Then the relationship between ṽ2ℓ,0 and u2

ℓ reads:

ṽ2ℓ,0 = u2
ℓ

[

τ(ℓ)

τp

]s

, (4.4)

where according to Eq. (3.52) the exponent s = 5/3. In
this case the expression for the turbulent diffusion tensor
in nondimensional form reads

D
T

αβ(R) = R(4s−7)/3(C1R
2δαβ + C2RαRβ) , (4.5)

C1 =
5 + 4s+ 6σ

T

9 (1 + σ
T
)

,

C2 =
(4s− 1)(2σ

T
− 1)

9 (1 + σ
T
)

,

where R is measured in the units of L and time t is mea-
sured in the units of τ

L
≡ τ(ℓ = L). The parameter σ

T

is defined by analogy with Eq. (2.19):

σ
T
≡ ∇ ·D

T
·∇

∇×D
T
×∇

=
∇α∇βD

T

αβ(R)

∇α∇βD
T

α′β′(R)ǫαα′γǫββ′γ

, (4.6)

where ǫαβγ is the fully antisymmetric unit tensor. Equa-
tions (2.19) and (4.6) imply that σ

T
= σv in the case of

δ-correlated in time compressible velocity field.
For a random incompressible velocity field with a fi-

nite correlation time the tensor of turbulent diffusion
D̃

T

αβ(R) = τ−1〈ξα(r1|t)ξβ(r2|t)〉 (see Ref. [14]) and the
degree of compressibility of this tensor is

σ
T
=

〈(∇ · ξ)2〉
〈(∇×ξ)2〉 , (4.7)

where ξ(r|t) is the Lagrangian trajectory.
To determine the functions B(R) and U(R) we use

the general form of the two-point correlation function
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of the particle velocity field in the the range of scales
η ≤ ℓ ≪ ℓ∗:

〈vα(t, r)vβ(t + τ, r +R)〉 = 1

3
[δαβ − (Cv

1R
2δαβ

+Cv
2RαRβ)R

2(s−2)/3]f(τ) , (4.8)

Cv
1 =

(4 + s+ 3σv)

3 (1 + σv)
,

Cv
2 =

(1 + s)(2σv − 1)

3 (1 + σv)
.

Substitution Eq. (4.8) into Eq. (4.3) yields

U(R) = U0 R
(4s−7)/3 , (4.9)

B(R) = B0 R
(4s−7)/3 ,

where

U0 = β
σv

σv + 1
, B0 = αU0

and the coefficients α and β depend on the properties of
turbulent velocity field. The dimensionless functions B0

and U0 in Eq. (4.9) are measured in the units of τ−1
L

.
For the δ-correlated in time random Gaussian com-

pressible velocity field σ
T
= σv and

B(R) = ∇α∇βD̂αβ(R) , (4.10)

Uα(R) = ∇βD̂αβ(R) (4.11)

(for details see Ref. [14, 17, 18]). In this case the second
moment Φ(t,R) can only decay, in spite of the compress-
ibility of the velocity field.
For the finite correlation time of the turbulent velocity

field σ
T
6= σv and Eqs. (4.10) and (4.11) are not valid.

The clustering instability depends on the ratio σ
T
/σv.

In order to provide the correct asymptotic behaviour of
Eq. (4.9) in the limiting case of the δ-correlated in time
random Gaussian compressible velocity field we have to
choose the coefficients β and α in the form:

β = 8(4s2 + 7s− 2)/27 , α = (4s+ 2)/3 .

Note that when s < 1/4 the parameters β < 0 and
B(R) < 0. In this case there is no clustering instabil-
ity of the second moment of particle number density.
Thus, Eq. (4.1) in a non-dimensional form reads:

∂Φ

∂t
= R(4s−7)/3[R2Φ′′(C1 + C2) + 2RΦ′(U0 + C1)

+B0Φ] . (4.12)

Consider a solution of Eq. (4.12) in the vicinity of the
thresholds of the excitation of the clustering instability,
where (∂Φ/∂t)R(7−4s)/3 is very small. Thus, the solution
of (4.12) in this region is

Φ(R) = A1R
−λ1 , (4.13)

where λ1 = λ± iµ,

λ =
C1 − C2 + 2U0

2(C1 + C2)
, µ =

C3

2(C1 + C2)
,

C2
3 = 4B0(C1 + C2)− (C1 − C2 + 2U0)

2 .

Since the correlation function Φ(R) has a global maxi-
mum at R = a, the coefficient C1 > C2 − 2U0 if µ is
a real number (see below). Thus the asymptotic solu-
tion of the equation for the two-point correlation func-
tion Φ(t,R) of the particle number density in the range
of scales a ≤ ℓ ≤ ℓ∗ reads

Φ(R) = A1R
−λ sin[µ ln(ℓ∗/R)] , (4.14)

where

A1 =

(

L

a

)λ
1

sin[µ ln(ℓ∗/a)]
.

Now consider the range of scales ℓ∗ ≪ ℓ ≪ L. In this
case the nondimensional form of the turbulent diffusion
tensor is given by

D
T

αβ(R) = R−2/3(C̃1R
2δαβ + C̃2RαRβ) , (4.15)

C̃1 =
2(5 + 3σ̃

T
)

9 (1 + σ̃
T
)
, C̃2 =

4(2σ̃
T
− 1)

9 (1 + σ̃
T
)
,

and Eq. (4.1) reads:

∂Φ

∂t
= R−2/3[R2Φ′′(C̃1 + C̃2) + 2RΦ′C̃1] . (4.16)

Here we took into account that in this range of scales the
functions B(R) and U(R) are negligibly small, and the
degree of compressibility of the turbulent diffusion tensor
can be different in the above two ranges of scales.
Consider a solution of Eq. (4.16) in the vicinity of

the thresholds of the excitation of the clustering instabil-
ity, when (∂Φ/∂t)R2/3 is very small. Thus, the solution
of (4.16) is given by

Φ(R) = A2R
−λ2 , (4.17)

where

λ2 =
|C̃1 − C̃2|
C̃1 + C̃2

=
|7− σ̃

T
|

3 + 7σ̃
T

.

The growth rate of the second moment of particle num-
ber density can be obtained by matching the correlation
function Φ(R) and its first derivative Φ′(R) at the bound-
ary of the above two ranges of scales, i.e., at the points
R = ℓ∗/L. The matching yields that in the range of scales
ℓ∗ ≪ ℓ ≤ L the asymptotic solution of the equation for
the two-point correlation function Φ(t,R) has the form
of Eq. (4.17) with

A2 = (−1)kA1

(

ℓ∗
L

)λ2−λ+1
µ

λ2
.
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FIG. 1: The range of parameters (σv, σT
) for which the

clustering instability may occur. The various curves indi-
cate results for s = 7/4 (dashed), s = 5/3 (solid), for s = 1
(dashed-dotted) and for s = 2/3 (dotted). The thin dashed
line σv = σ

T
corresponds to the δ-correlated in time random

compressible velocity field.

Such matching is possible only when λ1 is a complex
number, i.e., when C2

3 > 0 (i.e., µ is a real number). The
latter determines the necessary condition for the cluster-
ing instability of particle spatial distribution. The range
of parameters (σv , σT

) for which the clustering instabil-
ity of the second moment of particle number density may
occur is shown in Fig. 1. The line σv = σ

T
corresponds

to the δ-correlated in time random compressible veloc-
ity field for which the clustering instability cannot be
excited. The various curves indicate results for different
value of the parameter s. In particular, the value s = 7/4
corresponds to the turbulent diffusion tensor with the
scaling ∝ R2 [see Eq. (4.5)]. The curves for s = 7/4
(dashed) and s = 5/3 (solid) practically coincide. The
parameter s can be considered as a phenomenological pa-
rameter, and the change of this parameter from s = 5/3
to s = 0 can describe a transition from one asymptotic
behaviour (in the range of scales a ≤ ℓ ≤ ℓ∗) to the other
(ℓ∗ ≪ ℓ ≤ L).

V. DISCUSSION

Formation and evolution of particle clusters are of
fundamental significance in many areas of environmen-
tal sciences, physics of the atmosphere and meteorol-
ogy (e.g., smog and fog formation, rain formation), see
e.g., Ref. [29, 30, 31, 32], transport and mixing in in-
dustrial turbulent flows (like spray drying and cyclone
dust separation, dynamics of fuel droplets), see e.g.,

Ref. [33, 34, 35, 36, 37, 38] and references therein. The
analysis of the experimental data showed that the spatial
distributions of droplets in clouds are strongly inhomo-
geneous [12]. The small-scale inhomogeneities in particle
distribution were observed also in laboratory turbulent
flows [10, 11].
The analyzed effect of particle clustering may be of

relevance in turbulent fluid flows of different nature with
inertial particles or droplets (e.g., in atmospheric turbu-
lence, combustion and in a laboratory turbulence). In
particular, this effect can cause formation of small-scale
inhomogeneities in spatial distribution of fuel droplets in
diesel engines. The starting point is the above theoreti-
cal model that describes the inertial particle clustering.
For numerical estimates we adopt the operating param-
eters for a typical diesel engines, taking the crankshaft
rotational speed N=3000 rev/min, that corresponds to
the average piston speed, v̄p = 103 cm/s, and the turbu-
lent velocity v′ ≃ 5 · 102 cm/s. Taking into account that
the spatial integral space (the characteristic scale of the
largest turbulent eddies) for this conditions is L ≃ 0.3
cm (see Ref. [36]), we find for the Reynolds number:

Re =
v′L

ν
≃ 104 , with (5.1)

v′ ≃ 5 · 102cm/sec., L ≃ 0.3 cm .

Here the kinematic viscosity of fluid is ν ≈ 0.015 cm2/s.
To estimate ν we used the following values for the fluid
density ρ = 0.025 g/cm3 (at 62 atm. and T=860 K), and
for kinematic viscosity

ν = ν0R
(3−γ)/2, (5.2)

where R = (ρ/ρ0) ≈ 15 is the compression ratio. Then
the Kolmogorov micro-scale is η ≈ L/Re3/4 ∼ 3µm. A
more accurate estimate is

η ≈ L

(Re/Recr)3/4
, (5.3)

where Recr > 1 is the critical value of Re at which the
laminar flow becomes unstable. Taking Recr ≈ 5, we
obtain a more realistic value η ≃ 10µm.
Note that turbulence in the in diesel engines is neither

homogeneous nor isotropic. However, we study dynam-
ics of droplets at very small scales which are of the order
of tens of hundreds microns. In such small scales the
turbulence can be considered as a quasi isotropic and
homogeneous. Anisotropy and inhomogeneities of turbu-
lence can be essential in scales which are of the order of
1 cm and larger.
Consider a region of unstable cluster scales: η <

ℓ < ℓ∗. Assuming the fuel density in droplets ρdr =
0.85 g/cm

3
, we find from the expression (3.18) the esti-

mate for the critical value of the droplet radius, a∗ ≈
4µm, indicating that all droplets with a > 4µm are un-
stable against formation of the clusters with scales rang-
ing from η to ℓ∗. This equation yields the following val-
ues of ℓ∗: ℓ∗ ≈ 160µm for a = 10µm and ℓ∗ ≈ 1cm for
a = 40µm.
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The characteristic time of the cluster growth τcl(ℓ) =
1/γcl depends on the cluster size ℓ. Estimate for ℓ = ℓ∗/3
gives τcl(ℓ∗/3) ≈ 1.7τ(ℓ∗) ≈ τdr. The turnover time τ(ℓ)
can be estimated as follows:

τ(ℓ) ≃ 5

(

L

v′

)(

ℓ

L

)2/3

≃ 3× 10−3

(

ℓ

L

)2/3

sec . (5.4)

Here we used our estimates (5.1) for the integral scale L
and turbulent velocity v′. Assuming for the droplets with
the size a = 10µm, ℓ = ℓ∗/3 ≈ 50µm (with ℓ∗ = 160µm)
one has τcl(ℓ) ≈ 0.35µs. For the droplets with the radius
a = 40µm with ℓ∗ ≈ 1 cm, one has τcl(ℓ∗/3) ≈ 5.5µs,
which is larger than the characteristic spray time in the
combustion chamber (a few milliseconds). These esti-
mates imply that for the chosen parameters the distri-
bution of the droplets in the spray will be shifted to the
droplets with larger diameters at the given turbulent in-
tensity.
Now we estimate the time of the turbulent air-fuel mix-

ing, τ
T
≃ 1/γ

T
in the combustion chamber. Taking into

account that

γ
T
=

D
T

d2
=

v′L

3d2
, (5.5)

where D
T

is the coefficient of turbulent diffusion, and
d ≃ 10 cm is the bore diameter, we find for the time of
turbulent air-fuel mixing τ

T
≈ 1 s. Thus, the turbulent

diffusion itself is too slow and a strong external global
flow - ”swirl” is needed for the effective air-fuel mixing.
In the previous sections we have shown that the parti-

cle spatial distribution in the turbulent flow field is un-
stable against formation of clusters with particle num-
ber density that is much higher than the average parti-
cle number density. Obviously this exponential growth
at the linear stage of instability should be saturated by
nonlinear effects. The nonlinear saturation for the water
droplets in the atmospheric turbulence (in clouds) was
discussed in Ref. [14]. Here we discuss a similar issue for
the fuel droplets under the typical conditions pertinent
to diesel engines.
A momentum coupling of particles and turbulent fluid

is essential when mpncl ∼ ρ, i.e., the mass loading pa-
rameter, φ = mpncl/ρ, is of the order of unity (see, e.g.,
Ref. [39]). This condition implies that the kinetic energy
of air ρ〈u2〉 is of the order of the droplets kinetic energy
mpncl〈v2〉, where |u| ∼ |v|. This yields:

ncl ∼ a−3(ρ/3ρp) . (5.6)

For the fuel droplets in the diesel combustion chambers
(see, e.g. Ref. [34]) ρp/ρ ≃ 34. Thus, e.g., for a ≃ 10µm
we obtain ncl ∼ 3 × 107 cm−3. For the cluster with the
size ℓ ≈ ℓ∗/3 ≈ 50µm this yields for the total number of
particles in the cluster of that sizeNcl ≃ ℓ3ncl ∼ 30. Note
that the mean number density of droplets in a combus-
tion camera n̄ is about 104 cm−3. Therefore the clustering

instability of droplets in the diesel engines increases their
concentrations in the clusters by the orders of magnitude.
Note that in the initial stage of the clustering instabil-

ity, when the mass loading parameter is small, i.e., for
the small number density of droplets, we can neglect the
droplets collisions, and consider only the collisions be-
tween the droplets and the molecules of the surrounding
fluid (air). In the nonlinear stage of the clustering in-
stability, the four-way coupling can be effective, and the
kinetic approach for analysis of the droplets collisions
inside the cluster can be important. Moreover, the co-
agulations of droplets due to their collisions change the
size of the droplets. This effect is determined by the
kinetic Smoluchovsky equation for droplets size distri-
bution. However, the interaction between droplets and
the surrounding fluid even at this stage of the clustering
instability can be described on the level of the contin-
uum hydrodynamic approach. The main purpose of the
present paper is to describe the initial (linear) stage of
the clustering instability and to determine the conditions
for the onset of the clustering instability of fuel droplets.
This stage of the instability can be analyzed only us-
ing the continuum hydrodynamic approach because the
mean free path lc of the molecules of the surrounding fluid
is much smaller than all the characteristic spatial scales in
the problem (e.g., the Kolmogorov micro-scale η, the size
of droplets a, etc). Indeed, for diesel engines these param-
eters are: lc = 0.01µm, η = 3µm, a ≥ 10µm. Similarly,
the mean time τc between collisions of the molecules of
the surrounding fluid is much smaller than all the char-
acteristic time scales (e.g., the correlation time in the
Kolmogorov micro-scale τη, the Stokes time for droplets
τp, etc). Indeed, for diesel engines these parameters are
τc = 2 × 10−11 s, τη = 3 × 10−5 s, and τp = 10−4 s for
a = 10µm. At the strongly nonlinear stage of the cluster-
ing instability, when the mean free path of the droplets
inside a cluster becomes much smaller than the size of
the cluster, the continuum hydrodynamic approach can
be still used to obtain a rough estimate of the number
density of droplets inside the cluster at the saturation of
the clustering instability.
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