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Abstract

Transition from chaotic to quasi-periodic phase in modified Lorenz model is analyzed
by performing the contact transformation such that the trajectory inR3 is projected
on R2. The relative torsion number and the characteristics of the template are
measured using the eigenvector of the Jacobian instead of vectors on moving frame
along the closed trajectory.

Application to the circulation of a fluid in a convection loop and oscillation of
the electric field in single-mode laser system are performed. The time series of the
eigenvalues of the Jacobian and the scatter plot of the trajectory in the transformed
coordinate plane X −Z in the former and |X| − |Z| in the latter, allow to visualize
characteristic pattern change at the transition from quasi-periodic to chaotic. In the
case of single mode laser, we observe the correlation between the critical movement
of the eigenvalues of the Jacobian in the complex plane and intermittency.
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1 Introduction

In dissipative dynamical systems exhibiting transition from periodic or quasi-
periodic behaviour to chaotic one, topological method is a useful tool. Gilmore[1]
has recently reviewed how the integer invariants can be obtained from chaotic
time series. In the time series, sudden bursting is called intermittency. Pomeau
and Manneville[2,3] proposed three types of routes to chaos which accompany
intermittency. The type I is due to disappearance of a stable periodic orbit
via pitchfork bifurcation, the type II is via period doubling bifurcation and
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the type III is via Poincaré-Andronov-Hopf bifurcation. The definitions of the
type of bifurcation can be seen in e.g.[11,19].

In the Lorenz model, which simulates the flow of fluids between hot lower
plate and cold upper plate, chaotic behaviour arises at a certain parameter
region through the pitchfork bifurcation. Birman and Williams[4] showed that
the strange attractor of the Lorenz model in R3 can be constructed on a 2-
dimensional bifurcating manifold which is called knot-holder or a template,
and that the topological analysis of the orbits can be reduced to that of braid
groups.

By applying external temperature oscillation ρ1 cosωt on the upper plate,
one can stabilize the chaotic behaviour in the Lorenz model. In this case the
dynamics is extended from R3 to R3 × S1 where S1 is the 1-dimensional
torus, and one can guide the trajectory of the orbit from chaotic to periodic
or quasi-periodic one.

Holmes and Williams[5] extended the Lorenz mapping to mappings that con-
tain Smale’s horseshoe mapping which is characterized by stretching and fold-
ing, and expressed dynamics on the horseshoe template as a sequence of sym-
bols L and R corresponding to the relative position of the two orbits on the
template. They showed that the period-doubling bifurcations can be speci-
fied by the number of half twist ξ and the index of folding p and called the
associated 2-dimensional manifold as (ξ, p)-template.

Aizawa and Uezu[6–8] performed the topological analysis of the perturbed
Lorenz model and specified the bifurcating orbits by the linking number of
two orbits L(C1, C2), torsion number ni and relative torsion number ri which
is equivalent to p/2 of the Holmes-Williams, and derived a recursion formula

for those of the 2kth bifurcation orbit r
(k)
i and n

(k)
i .

Arimitsu and Motoike[9–11] extended the analysis of Holmes and Williams
and showed that from the power spectrum of the bifurcating orbits, topolog-
ical properties of the orbit can be extracted. They defined the local crossing
number C〈n〉, global crossing number c〈n〉 and the linking number l〈n,n−1〉 of the
2nth and the 2n−1the bifurcation orbit and obtained the recursion formula.

The chaos control of the perturbed Lorenz system was studied from the tech-
nological point of view[12,13]. By a simple ρ1 cosωt type parametric driving
of a convection loop model, it was shown that the chaotic system after driven
to periodicity can be led back to chaotic behaviour through intermittency.
General methods of chaos control are proposed by several authors[14,15].

There are analogies between the Lorenz model and the single mode laser sys-
tem[16,17]. The dynamics of the electric field, polarization and the inversion
density can be assigned as the coordinate of the three dimensional manifold,
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but the electric field and polarization are accompanied by the modulation,
and they are expressed as complex numbers. The transition to chaos by ap-
plying external constant electric field to the single mode laser system was
simulated[18].

In this paper, we analyze the convection loop model and the single mode
laser system from a slightly different point of view. We adopt the framework
of differential geometry and adopt the contact transformation to simplify the
analysis. We consider the topological properties of these models following[7,10]
and consider an extension of our method to other systems.

2 Contact transformation

When an orbit in a d-dimensional dynamical system is specified by t, x1, x2, · · · , xd,
p1, p2, · · · , pd, and if the coordinate transformation

T = T (t, x1, x2, · · · , xd, p1, p2, · · · , pd) (1)

Xj = Xj(t, x1, x2, · · · , xd, p1, p2, · · · , pd) (2)

Pj = Pj(t, x1, x2, · · · , xd, p1, p2, · · · , pd) (3)

does not change the total differential equation

dt− p1dx1 − p2dx2 − · · · − pddxd = 0 (4)

i.e. when the equation

dT − P1dX1 − P2dX2 − · · · − PddXd

= ρ(t, x1, x2, · · · , xd, p1, p2, · · · , pd)(dt− p1dx1 − p2dx2 − · · · − pddxd)

= 0 (5)

is identically satisfied, the transformation is called contact transformation.

When the dynamical equation is given as

dx

dt
=h1(x, y)

dy

dt
=h2(x, y, z)

dz

dt
=h3(x, y, z) (6)
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we perform the transformation X = x, Y = h1(x, y). By using
dx

dt
= h1(x, y)

and
dy

dt
= h2(x, y, z), the derivative

dY

dt
can be expressed as g2(X, Y, z), and

we define it as Z. Further using
dz

dt
= h3(x, y, z), the derivative

dZ

dt
can be

expressed as f(X, Y, Z). Thus the system can be expressed as

dX

dt
= Y

dY

dt
=Z

dZ

dt
= f(X, Y, Z) (7)

To show that it is a particular case of contact transformation, it is sufficient
to consider the identity

Zf(X, Y, Z)dX + Y f(X, Y, Z)dY + Y ZdZ

=
Y Zf(X, Y, Z)

h1(x, y)h2(x, y, z)h3(x, y, z)

×(h2(x, y, z)h3(x, y, z)dx+ h1(x, y)h3(x, y, z)dy + h1(x, y)h2(x, y, z)dz)

= ρ(x, y, z)(h2(x, y, z)h3(x, y, z)dx+ h1(x, y)h3(x, y, z)dy

+h1(x, y)h2(x, y, z)dz) (8)

When the system is discretized we obtain

Xn+1=Xn + Yndt

Yn+1=Yn + Zndt

Zn+1=Zn + f(Xn, Yn, Zn)dt (9)

The Jacobian of this mapping is















∂(Xn+1−Xn)
∂Xn

∂(Xn+1−Xn)
∂Yn

∂(Xn+1−Xn)
∂Zn

∂(Yn+1−Yn)
∂Xn

∂(Yn+1−Yn)
∂Yn

∂(Yn+1−Yn)
∂Zn

∂(Zn+1−Zn)
∂Xn

∂(Zn+1−Zn)
∂Yn

∂(Zn+1−Zn)
∂Zn















/dt

=















0 1 0

0 0 1

∂f(Xn+1,Yn+1,Zn+1)
∂Xn

∂f(Xn+1,Yn+1,Zn+1)
∂Yn

∂f(Xn+1,Yn+1,Zn+1)
∂Zn















. (10)
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and its eigenvalues are given by the solution of

λ3 −
∂f(Xn+1, Yn+1, Zn+1)

∂Xn
λ2 −

∂f(Xn+1, Yn+1, Zn+1)

∂Yn
λ

−
∂f(Xn+1, Yn+1, Zn+1)

∂Zn
= 0, (11)

which means that there is a zero eigenvalue if
∂f(Xn+1, Yn+1, Zn+1)

∂Zn

= 0 is

satisfied.

3 Lorenz equation

In the case of Lorenz equation

dx

dt
=σ(y − x)

dy

dt
=−y + rx− xz

dz

dt
=−bz + xy (12)

The derivative
dZ

dt
= f(X, Y, Z) becomes

f(X, Y, Z)= (Y Z + σY 2 + Y 2 − σXZ −XZ −X3Y − σX4

−bXZ − σbXY + σbrX2 − bXY − σbX2)/X, (13)

3.1 Scatter plot in the X − Z plane

We consider a convection loop of water which has the Plandtl number σ =
10 and the geometrical factor b = 8/3. The threshold rt for these values is
24.7368[19]. The time series of x for rt = 24 is shown in Figure 1 and that for
rt = 25 is shown in Figure 2. We find clearly that the system converges to a
fixed point when r < rt but intermittency occurs when r > rt.

After the contact transformation the scatter plot in the X −Z plane is shown
in Figures 3 and 4.
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We remark that in the X-Z plane, the scatter plot X(Z) changes from the
monotonic function in the case of r < rt to 3-valued function in the case of
r > rt.

4 Convection loop model

We consider the stability of thermosyphon or circulation of water in convection
loop with heat source at the bottom and cooler at the top[13]. At the cooler,
modulation of temperature in the form ρ0+ρ1 cosωt is assumed. The modified
Lorenz equation is

dx

dt
=σ(y − x) (14)

dy

dt
=−y + (ρ0 + ρ1 cosωt)x− xz (15)

dz

dt
=−bz + xy (16)

Due to ρ1 term, quasi-stable orbit can appear even when ρ0 > rt.

The derivative
dZ

dt
= f(X, Y, Z) after the contact transformation is

f(X, Y, Z, t)= (Y Z + σY 2 + Y 2 − σXZ −XZ −X3Y − σX4

−bXZ − σbXY + σb(ρ0 + ρ1 cosωt)X
2 − bXY − σbX2)/X

−σ(ρ1ω sinωt)X, (17)

4.1 Scatter plot in the R3 and in the X − Z plane

In Figures 5 and 6, we show quasi-periodic flow in R3 for ρ0 = 26, ρ1 =
2.5, ω = 9 and for ρ0 = 28, ρ1 = 11, ω = 8.5, respectively. After the contact
transformation, the corresponding quasi-periodic flows in the X-Z plane are
shown in Figures 7 and 8, respectively.

We assign eigenvalues of the Jacobian (10) as λi, i=1,2,3 such that Reλ1 ≤
Reλ2 ≤ Reλ3. The branching of the eigenvalues in the quasi-periodic region are
shown in Figure 9(a), 10(a), for the small ρ1 = 2.5 system and large ρ1 = 11
system, respectively. We observe that, when the steps are started from near
the origin, three real roots appear in the beginning but subsequently complex
conjugate pairs corresponding to rotation around two fixed points dominate.
In the plot of time-series of eigenvalues, there appears a discontinuity when
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X = 0. They are absent when contact transformation is not performed and
do not affect the measurement of relative torsion number.

4.2 Topological analysis

For a dynamical system defined by

dx

dt
= F (x, t, µ) (18)

where µ is the bifurcation parameter, one defines eigenvalues of

S(t, 0) = exp[

t
∫

0

∂F

∂x
(x0(t

′), µ)dt′] (19)

as λi, (i = 1, 3), such that@|λ1| ≤ |λ2| ≤ |λ3|, and eigenvectors associated with
them as ei, (i = 1, 3). Around the periodic orbit

C0 = {x0(t)|0 ≤ t ≤ T}, (20)

one defines two closed orbits[7]

Ciζ = {x0(t) + ζwi(t)|0 ≤ t ≤ mT} (21)

where ζ is a sufficiently small number and wi is the normalized eigenvector

wi(t) = ei(t)/‖ei(t)‖. (22)

The parameter m is 1 when λi > 0 and 2 when λi < 0.

In the system after the contact transformation, we define the normalized eigen-

vectors of Jacobian ∂F
∂X

, where X = (X, Y, Z), but not that of S(t, 0) as wi.

The local torsion number r(w), which provides information on the rotation

number of Ci,ζ=1 around C0 is defined by using f1 =
Ẋ

‖Ẋ‖
, f 2 =

Ẋ × Ẍ

‖Ẋ × Ẍ‖
,

f 3 = f 1 × f 2 and αj(t) = w(t) · f j as

r(w) =
1

2π

T
∫

0

α2(t) ·
d
dt
α3(t)−

d
dt
α2(t) · α3(t)

α2(t)2 + α3(t)2
(23)
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In Figure 9(b,c), and 10(b,c) we show the third component of the two nor-
malized eigenvectors w1 and w2 for the small ρ1 system and large ρ1 system,
respectively. The horizontal lines of the third component of the eigenvectors
w1 and w2 equal 1 indicate stability of the orbit C0. In the case of small ρ1
(Figure 9(b)), we find two stable windows, which indicates LR type period 2
structure. While in the case of large ρ1 (Figure 10(b)), there is an additional
breaking in the eigenvector w1 which corresponds to a compensating twist on
the LR type period 2 structure.

The eigenvector w3 has also small first and second components, and its third
component oscillates between -1 and +1. We measure the relative torsion
number of the orbit C3,1, since w1 and w2 specify the trajectory of C0. We
observed that the local torsion number r(w3) in the case of small ρ1 is -1/2
and that of large ρ1 is 1/2.

In order to get local crossing number Ci of the orbit[10], we measure the
position of the highest peak in the power spectrum of the orbit of Figure7 and
Figure8. The results of small ρ1 and large ρ1 together with the pure chaotic
case without perturbation (ρ1 = 0) are shown in Figures 11,12 and 13,14
respectively. Templates are characterized in terms of number of half twists
ξ and the direction of folding p ∈ {−1, 1}, as (ξ, p), and the local crossing
number C〈2〉 = 2ξ + p in the case of period doubling bifurcation[10].

In the power spectrum of ρ0 = 26 and ρ1 = 2.5, ω1 = 9, we observe the peak
position is at ω = 4 in arbitrary unit. When the perturbation is set to ρ1 = 0,
the position moves to ω = 3. Hence, using the information r(w3) = −1/2,

i.e. p = −1, we assign
C2

22
=

3

4
. Since C2 = 3, the template of small ρ1 is

(ξ, p) = (2,−1).

In the power spectrum of ρ0 = 28 and ρ1 = 11, ω2 = 8.5, the peak position
at ω = 4 and it does not change after setting ρ1 = 0. Using the information

r(w3) = 1/2, i.e. p = 1, we assign C1 =
1

1
. The template of large ρ1 is

(ξ, p) = (0, 1).

5 Single mode laser

In 1975, Haken showed that under certain conditions a coherently pumped ho-
mogeneously broadened ring laser obeys the Lorenz equation[16,17]. Whether
laser actually behaves in this way was studied, and data of a kind of infrared
single-mode gas laser was simulated[18].

In this model, the inversion density is defined as D, the electric field and
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polarization are specified as x̃ = xeiθκ̃t and p̃ = pei∆t, respectively. In the
single mode laser, ∆ = θκ̃, and the coupled equation of the system with
external static electric field y becomes

dx

dt
= −κ̃(iθx+ x− y + 2Cp) (24)

dp

dt
= xD − (1 + i∆)p (25)

dD

dt
= −γ̃[

1

2
(xp∗ + x∗p) +D + 1] (26)

We consider the modulation g = ei∆t as a structure group U(1) defined on the
base space. The complex space specified by x, p and D is projected onto R3

specified by |x|, |p| and D by identifying all the fields x and p that are related
as g−1xg = x′.

The stable solution that is obtained by taking l.h.s. of the equations to be zero
gives the relation[18]

y = |x|[(1−
2C

1 + ∆2 + |x|2
)2 + (θ +

2C∆

1 +∆2 + |x|2
)2]1/2 (27)

The function |x|(y) shows a bending behaviour and in the region 300 < |x| <
500 it is 3-valued function(Fig.15).

On the projected space we can perform the contact transformation as before
and we obtain

dX

dt
= Y (28)

dY

dt
= Z (29)

dZ

dt
=−iκ̃θZ − κ̃Z

−2κ̃C[Y F1 +X(−γ̃(
1

2
(XF ∗

2 +X∗F2) + F1 + 1))]

−(Z + iκ̃θY + κ̃Y )(1 + i∆) (30)

where

F1 =
−Z − iκ̃θY − κ̃Y − (Y + iκ̃θX + κ̃X − κ̃y)(1 + i∆)

2κ̃CX
(31)
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F2 =
−Y − iκ̃θX − κ̃X + κ̃y

2κ̃C
(32)

5.1 Scatter plot in the |X| − |Z| plane

Due to the positive real y, the system is unstabilized and shows a strong
sensitivity to the initial condition. In this paper, we present the result of
κ̃ = 1, C = 500, ∆ = θ = 5, and the initial condition X = 350, Y = 0, Z = 1.
The scatter plot of |Z| in the |X| − |Z| plane for each y from 230 to 340 are
plotted in Figure 17 for y ≥ 270 and Figure 16 for y ≤ 260. Convergence to
a stable branch can be observed for y ≥ 300, but at y = 270 intermittency
occurs and the situation becomes chaotic for y ≤ 260.

Although the chaotic behaviour in the time series of x can be observed by the
bursting and spiking phenomena[18], the scatter plot in the |X| − |Z| plane
shows clearer transition between chaos and quasi-stable mode. We observe
intermittency begins to occur at around y = 270 and the system become
chaotic for smaller y values.

• Fig.16 Scatter plot of (|X|, |Z|) for y ≤ 260. The points correspond to
y=230, 240, 250, 260, from left to right. See the extra file:laser1.gif

• Fig.17 Scatter plot of (|X|, |Z|) for y ≥ 270. The points correspond to
y=270, 280, · · ·, 340, from left to right. See the extra file:laser.gif

5.2 Intermittency

The scatter plot of (|X|, |Z|) at y = 270 is presented in Figure 18. The inter-
mittency near |X| = 53 is shown in Figure 19.

In order to check the type of intermittency, we measure the time series of
the eigenvalues of the Jacobian. Figures 20, 21 and 22 are the scatter plot
of the time series of the three complex eigenvalues. There appears a pair of
boomerang type and a ring type.

As the point (|X|, |Z|) moves from right, makes a loop, and then move to left
as shown in Figure 19, the eigenvalues of ring type move from around (0,−3i)
counter clock wise, move to around (−0.5,−6.5i), make a cusp, and then move
clock wise as shown in Figure 22. The movements of eigenvalues of boomerang
type are counter clockwise.

As the eigenvalue of boomerang type approach the real axis, |Z| takes a local
maxima, and as the eigenvalue of ring type makes a cusp, |Z| takes a local mini-
mum. These properties can be qualitatively understood as the movement along
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the trajectory of the U(1) group makes a jump of the flow in (|X|, |Y |, |Z|) base
space, which has the multivalued structure as in the original Lorenz model.

6 Discussion and outlook

We applied the contact transformation to the Lorenz equation and its exten-
sion, and analyzed transition from chaos to quasi-periodic phase in convection
loop and in the single mode laser. The branching of eigenvalues of the Jaco-
bian after contact transformation allows visualizing transition from orbit near
one fixed point to the other one.

In the case of convection loop we considered perturbation by ρ1 cosωt term
with large ρ1 and small ρ1. From the behaviour of eigenvectors of the Jacobian,
we observe transition from quasi-stable to unstable orbits. The relative torsion
number can be measured by using the eigenvectors and the local crossing num-
ber can be measured from the power spectra of Z(t) in periodic orbit with
ρ1 cosωt type perturbation and without perturbation. The topological data
after contact transformation are simpler than those before contact transfor-
mation. Without contact transformation, the measurement of relative torsion
number ri is relatively ambiguous since ri for x, y and z directions are equiv-
alent and there is no guideline for selecting one like Z.

The X − Z plot in the convection loop and |X| − |Z| plot in the single mode
laser allows to visualize characteristic pattern change when the system changes
from chaotic to quasi-periodic phase.

We observed intermittency in the single mode laser system at around y = 270
and observed correlation between the critical movement of complex eigenvalues
of the Jacobian and the sudden large |Z| oscillation. The orbit in the fiber
space specified by the U(1) group causes a jump in the trajectory in the base
space specified by (|X|, |Y |, |Z|). It is a new type of intermittency.

The topological characteristics of the orbit can be attributed to the jump in
the relative linking number of the orbit x0+w3 around the quasi-periodic orbit
x0, where w3 is the normalized eigenvector of the Jacobian, associated with
the eigenvalue possessing the largest real part. We observe that the behaviour
of the eigenvectors corresponding to eigenvalues with the smallest and the
second smallest real part give information of the template and the orbit C0.

When the Lyapnov exponents satisfy λ1 > λ2 = 0 > λ3 > · · · > λd and there
is a strong local attraction, the Lyapnov dimension becomes

dL = 2 +
λ1

|λ3|
< 3 (33)
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which means that the system can be mapped on 2-dimensional template[20,21].
In the decomposition of the three dimensional space to two dimension + one
dimension space, the 2-dimensional template could always contain stable man-
ifold.

In higher dimensional space, 4-dimension as an example, the chosen 2-dimensional
template could contain only the unstable manifold. To study it, we consider
the extended Lorenz equation[22] in R4.

dx

dt
=σ(y − x)

dy

dt
=−y + rx− x(z + w)

dz

dt
=−bz + xy

dw

dt
= kx2 − cw (34)

where parameters are σ = 16, b = 4, c = 1, k = 0.02.

In this model, fixed points exist at x = y = ±

√

r − 1

k + 1/b
and a pitchfork bifur-

cation takes place for the parameter r ≃ 530[22]. Around this point kx2 − cw
becomes positive and w increases monotonically but in the projected (x, y, z)
space we can observe the attractor.

When we perform the contact transformation

dX

dt
= Y,

dY

dt
= Z,

dZ

dt
= W (35)

dW

dt
= (Z(Y + Z)2 − σ(WX2((1 + b+ c)X − 2Y ) + cX5Y − cX2Y 2 +X4Y 2

+2XY 3 + cX3Z +X5Z − 2X2Y Z − cX2Y Z − 2Y 2Z

+2XY 2Z − 2Y Z2 + bX2(−Y 2 +XZ − Y Z + cX(Y + Z))

−σ2(WX3 + bkX6 + 2X5Y + 2kX5Y − bX2Y 2 + 2XY 3 + bX3Z − 2X2Y Z

−Y 2Z + cX2((−1 + r)X2 +X4 − Y 2 +X(bY + Z)))/(σX3) (36)

we find spiral divergence in the Z −W plane.

The dynamical flows in these frames are trapped in their corresponding un-
stable manifolds. To remedy it, one can choose w as X and linearize kx2 − cw
as k(x2

0 + x0x̄) − cw where x0 is the coordinate of the fixed point and study
dynamics on the template in the co-dimensional space of w, i.e. x̄, y, z space.
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In general, when the dimension of the space is larger than three, it is neces-
sary to choose coordinate in the contact transformation so that the template
contains the 2-dimensional stable manifold.

I acknowledge with thanks that graduate students M. Horinouchi and N.
Kamimura obtained some simulation data in this paper. Thanks are also due
to the referee for bringing references[6–8,22] to my attention and Dr. T. Arim-
itsu for kindly sending me his references and helpful discussion.
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Fig. 1. Time series of x. r = 24, σ = 10,
b = 8/3.
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Fig. 2. Time series of x. r = 25, σ = 10,
b = 8/3.
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Fig. 3. Scatter plot in X-Z plane.
r = 24, σ = 10, b = 8/3.
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Fig. 4. Scatter plot in X-Z plane.
r = 25, σ = 10, b = 8/3.
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Fig. 5. Perturbed Lorenz model.
ρ0 = 26, ρ1 = 2.5, ω = 9.
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Fig. 6. Perturbed Lorenz model.
ρ0 = 28, ρ1 = 11, ω = 8.5.
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Fig. 7. Scatter plot in X − Z plane.
ρ0 = 26, ρ1 = 2.5, ω = 9,
4750∆t < t < 5850∆t, ∆t = 0.0015
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Fig. 8. Scatter plot in X − Z plane.
ρ0 = 28, ρ1 = 11, ω = 8.5,
4000∆t < t < 5600∆t, ∆t = 0.001
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Fig. 9. Time series of the real part of the eigenvalues of Jacobian(a), the third
component of the eigenvector corresponding to the lowest eigenvalue of Jacobian(b)
and that corresponding to the second lowest eigenvalue. ρ0 = 26, ρ1 = 2.5, b = 8/3,
ω = 9.
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Fig. 10. Time series of the real part of the eigenvalues of Jacobian(a), third com-
ponent of the eigenvector corresponding to the lowest eigenvalue of Jacobian(b),
and that corresponding to the second lowest eigenvalue. r = 28, ρ1 = 11, b = 8/3,
ω = 8.5.
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Fig. 11. The power spectrum of
ρ0 = 26, ρ1 = 2.5, ω = 9.
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Fig. 12. The power spectrum of
ρ0 = 26, ρ1 = 0.
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Fig. 13. The power spectrum of
ρ0 = 28, ρ1 = 11, ω = 8.5.
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Fig. 14. The power spectrum of
ρ0 = 28, ρ1 = 0.
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Fig. 15. The electric field |x| of the sta-
ble or quasi stable orbit as a function
of the external static field y.
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Fig. 18. Scatter plot of (|X|, |Z|) in the
case of y = 270.
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Fig. 19. Scatter plot of (|X|, |Z|) in
the case of y = 270 near |X| = 53.
The right local maximum, local mini-
mum and the left local maximum are
assigned by circles.
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Fig. 20. Scatter plot of complex eigen-
values of the Jacobian. Eigenvalues of
boomerang type which have negative
real part. Ordinate is the real part
and abscissa is the imaginary part. The
three circles from right to left of Figure
19 correspond to the circle in the right,
in the top and in the left, respectively.

50 100150200250300350400

-400

-200

0

200

Fig. 21. Scatter plot of complex eigen-
values of the Jacobian. Eigenvalues of
boomerang type which have positive
real part. The three circles from right
to left of Figure 19 correspond to the
circle in the left, in the bottom and in
the right, respectively.
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Fig. 22. Scatter plot of ring type com-
plex eigenvalues of the Jacobian. The
three circles from right to left of Figure
19 correspond to the circle in the 2nd
quadrant, at the cusp and in the 3rd
quadrant, respectively.
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