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In this paper we consider cases of existence of invariant measure, additional first integrals, and Poisson structure in a
problem of rigid body’s rolling without sliding on plane and sphere. The problem of rigid body’s motion on plane was
studied by S.A.Chaplygin, P.Appel, D.Korteweg. They showed that the equations of motion are reduced to a second-
order linear differential equation in the case when the surface of dynamically symmetric body is a surface of revolution.
These results were partially generalized by P.Woronetz, who studied the motion of body of revolution and the motion
of round disk with sharp edge on the surface of sphere. In both cases the systems are Euler – Jacobi integrable and have
additional integrals and invariant measure. It turns out that after some change of time defined by reducing multiplier,
the reduced system is a Hamiltonian system. Here we consider different cases when the integrals and invariant measure
can be presented as finite algebraic expressions.

We also consider the generalized problem of rolling of dynamically nonsymmetric Chaplygin ball. The results of
studies are presented as tables that describe the hierarchy of existence of various tensor invariants: invariant measure,
integrals, and Poisson structure in the considered problems.
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1. Equations of Rigid Body Motion on Plane and Sphere without
Sliding (Nonholonomic Rolling)

Fig. 1

In this paper we consider the equations of rigid body’s rolling on
plane and sphere, because in these two cases, as opposed to a
rolling on an arbitrary surface, the equations of motion are sim-
ilar the Euler –Poisson equations. In both cases there are six
first-order equations for six variables. In the potential field the
equations have two integrals of motion: the energy integral and
the geometrical integral (for Euler –Poisson equations there is also
the area integral; its analog in problem of rolling is presented only
under additional dynamical and geometrical restrictions).

Suppose that the rigid body rolls without sliding (i.e. the
velocity of contact point Q is equal to zero) on the fixed surface
represented by plane or sphere. The first part of equations of
motion is the vector dynamical equation of kinetic moment M

behavior in time with respect to the contact point Q (Fig. 1). This equation is represented for
arbitrary shapes of body and surface in the form

Ṁ = M × ω +mṙ × (ω × r) +MQ, (1.1)

where M , ω, r = GQ, MQ are supposed to be projected on the principal central axes of inertia in
the body; here ω is the angular velocity, MQ is the moment of external forces with respect to the
contact point, G is the center of mass. The second part of the motion equation is the vector kinetic
equation of Poisson type different for the cases of plane a) and sphere b):

a) γ̇ = γ × ω, (1.2)

where γ is the unit vector orthogonal to the plane,

b) R0(γ̇ + ω × γ) = ṙ, (1.3)

where γ is the unit vector orthogonal to the sphere of radius R0 (see Fig. 8).

In equations (1.1), (1.2), (1.3) we suppose that the radius vector r is expressed as a function of
normal vector γ with the help of equation

γ = − grad f

| grad f | (1.4)

that define the Gauss transformation, where f(r) = 0 is the equation of the body’s surface in the main
central frame of references connected with the body. We suppose that the body is everywhere convex
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(to exclude the collisions during the motion), and equation (1.4) is uniquely solvable with respect
to r = r(γ). We assume that this condition is always fulfilled in the following text.

Using (1.4) we can represent kinematic equation (1.3) describing the dynamics of vector γ in the
case of sphere in the form

γ̇ =
(
1 + k(B− k)−1

)
γ × ω, k = R−1

0 , (1.5)

where B = ‖bij‖ is a degenerate matrix with the components bij = − ∂
∂ri

(
1

|∇f |
∂f

∂rj

)
.

The relation between M and ω is defined by the equation

M = Iω +mr × (ω × r), ω =
AM −mr × (Ar ×AM )

1−m(r ,Ar)
, (1.6)

where m is the mass of body, I is the central tensor of inertia, A = (I+mr
2)−1.

If the potential U = U(γ) depends only on the components of vector γ, then we can present the
moment of external forces in the form:

a) in the case of plane MQ = γ × ∂U
∂γ

;

b) in the case of sphere MQ = γ × (1 + k(BT − k)−1)∂U
∂γ

, where B is matrix (1.5).

For equations (1.1) and (1.2),(1.3) we always have the energy integral and the geometrical integral

H = 1
2
(M , ω) + U(γ), F1 = γ2 = 1. (1.7)

Remark. The proof is based on the formula

1
2
(M ,ω). = (MQ,ω).

It follows only from equation (1.1) and does not depend on the shape of the surface, on which the body is
rolling.

According to Euler –Jacobi theorem (the theory of last multiplier), to integrate these equations
we need two more independent first integrals and an invariant measure [15]. Recall that the density
of invariant measure ρ of the general system

ẋ = v(x ), x = (x1, . . . , xn)

satisfies the Liouville equation div(ρv) = 0. In the general case none of these objects exists; therefore,
the system shows some interesting asymptotic and chaotic properties characteristic for the oscillation
of Celtic stones. Such properties are not typical for conservative systems [13, 15]. We consider all the
known cases of existence of additional first integrals (one or two at once) and the cases of existence of
invariant measure.

Dynamical and geometrical bounds leading to the existence of the first integrals and of the
invariant measure are independent in some sense. For some combinations of parameters there exist
only the measure or only the additional integral. In some extreme cases two additional integrals and
measure can exist at the same time; thus, the system became completely integrable.

The results of the study are presented separately for the cases of body’s rolling on plane and on
sphere and collected in tables 1, 2. The following subsections are essentially the comments for these
tables.

REGULAR AND CHAOTIC DYNAMICS, V. 7, �2, 2002 179



A.V.BORISOV, I. S.MAMAEV

2. Body on a Plane

Body of revolution’s rolling on plane (S.A. Chaplygin [26], P. Appell [1, 31]). If both
the surface of body and the central ellipsoid of inertia are coaxial surfaces of revolution, then for
equations (1.1), (1.2) there exist two additional integrals and invariant measure. We assume that the
potential U is an arbitrary function of γ3 = cos θ, i. e. it depends only on the slope of revolution axis
of the body to the vertical. In particular, in the case of the gravity field the center of mass must be
situated on the axis of revolution.

The integrability of problem for an arbitrary body of revolution was shown by S.A. Chaplygin in
1897 [26]. He also demonstrated that it is possible to add a balanced uniformly revolving rotor along
the axis of revolution (gyrostat) preserving the integrability of problem. More specific cases of this
problem were studied by

a. Routh (1884): the rolling of unbalanced dynamically symmetric ball on plane.
b. Neumann, Carvallo (1898), Appell (1899) and Korteweg (1900): the rolling of round disk.
The results of Neumann and Carvallo mainly concern the deduction of motion equations and

determination of stationary solutions. Note that Neumann during the deduction of equations of motion
at first made the same mistake that occurred before in Lindelöf paper. He applied the Lagrangean
formalism without the necessary ”nonholonomic” modifications. In the subsequent studies he corrected
this mistake, but did not solve the problem in quadratures. The lindelöf mistake was analyzed in detail
by S.A. Chaplygin (1897). He obtained a new form of equations of nonholonomic dynamics and was
able to reduce the considered problem of rolling of revolution body to two linear first-order equations.
In the case of round disk’s rolling, S.A.Chaplygin showed the possibility of reduction of these two
equations to one linear (second-order) equation solvable in hypergeometric functions. We should also
note that, before Chaplygin’s work, the equations of heavy revolution body motion were obtained
in 1861 by G. Slesser, but their integrability was not indicated.

Somewhat later (in 1898), the analogous substitution (in the equations obtained by Carvallo in
the paper presented for the Fourneyron prize) was used by Appell and in the slightly different form by
Korteweg. They both did not know S.A. Chaplygin’s paper that was published in inaccessible journal
only in Russian (the English translation of Chaplygin’s papers dedicated to this problem is published
in this journal in 2002). This is the reason of the fact that in many modern textbooks and research
papers (O’Reily [36]) the problem of round disk’s rolling is connected with the names of Appell and
Korteweg, although the previous text show that this opinion is not completely correct.

Here we present the results obtained by S.A.Chaplygin in the modern algebraic form that let us
to show the invariant measure in the explicit form and also to obtain the simplest forms of the first
integrals. It turns out that we can generalize these results to dynamically nonsymmetric situation.

In the case of body of revolution we can find the solutions of equation of surface (1.6) in the
explicit form

r1 = f1(γ3)γ1, r2 = f1(γ3)γ2, r3 = f2(γ3), (2.1)

where fi(γ3), i = 1, 2 are function subjected to the differential equation that defines the meridional
section

df2
dγ3

= f1 −
1− γ23
γ3

df1
dγ3

. (2.2)

If we denote the main central tensor of inertia as I = diag(I1, I1, I3), (I1 = I2), then we can
explicitly calculate the density of invariant measure of equations (1.1), (1.2). It exists for arbitrary
functions f1(γ3), f2(γ3) that define the surface

ρ = 1√
I1I3 +m(r , Ir)

= 1√
I1I3 + I1mf21 (1− γ23) + I3mf22

. (2.3)

Remark. For the equations motion in variables ω,γ the density of invariant measure differs from (2.3)
by factor det IQ, where IQ = I +m(r2E− r ⊗ r) is the tensor of inertia with respect to the point of contact.
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In the case I1 = I2 we have det IQ = (I1 +mr
2)(I1I3 +m(r , Ir)). It is interesting that measure (2.3) contain

one of these factors.

It is easy to verify that under the above conditions the equations of motion also have the symmetry

field v defined by the differential operator

v̂ =M1
∂

∂M2
−M2

∂
∂M1

+ γ1
∂
∂γ2

− γ2
∂
∂γ1

. (2.4)

It corresponds to the invariance of the system with respect to rotations about the axis of dynamical
symmetry. Using this field we can reduce the order of system. For that we should choose the integrals
of vector fields (2.4) as reduced variables to present the equations in the simplest form. After a number
of tries, we choose the following reduced variables

K1 =
(M , r)

f1
=M1γ1 +M2γ2 +

f2
f1
M3

K2 =
ω3
ρ = ρ

(
mf1f2(M1γ1 +M2γ2) + (I1 +mf22 )M3

)

K3 =
M2γ1 −M1γ2√

(1− γ23)(I1 +mr2)
.

(2.5)

In these variables the equations of motion of the reduced system have the following form

γ̇3 = kK3

K̇1 = −kK3ρI3

(
1−

(f2
f1

)
′
)
K2,

K̇2 = −kK3ρmf1
(
f1 − f ′2

)
K1,

K̇3 = − k

I21f
2
1 (1− γ23)

2

(
f2
(
f1(1− γ23) + γ3f2

)
(mf21K

2
1 + I3K

2
2 )+

+γ3f
2
1 I1K

2
1 − f1

(
f1(1− γ23) + 2γ3f2

)K1K2
ρ +

+mf21ρf2(1− γ23)(γ3f1I1 − f2I3)K1K2

)
− k

∂U(γ3)

∂γ3
,

(2.6)

where k =

√
1− γ2

3

I1 +mr
2
.

It is easy to show that these equations have the invariant measure with density ρ = k−1 and
integral of energy

H = 1
2
(M ,ω) + U(γ3) =

= 1

2I1(1− γ23)

(
K2

1 − I3

mf21
K2

2 +
mf22
I1

(
K1 −

K2

ρmf1f2

)2)
+ 1

2
K2

3 + U(γ3).
(2.7)

Moreover, for system (2.6) we have the following theorem

Theorem. After the change of time k dt = dτ vector field (2.6) become Hamiltonian

dxi
dτ

= {xi,H}, x = (γ3,K1,K2,K3)
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with Hamiltonian (2.7) and degenerate Poisson bracket:

{γ3,K3} = 1, {K1,K3} = −I3ρ
(
1−

(f2
f1

)
′
)
K2,

{K2,K3} = −mρf1(f1 − f ′2)K1

(2.8)

(all the other brackets are equal to zero).

The proof of theorem is obtained by the direct verification of equations and of Jacobi identity.
It turns out that equation (2.6) can be written in antisymmetric, almost Hamiltonian form (that

sometimes is referred to as antigradient form)

dxi
dτ

= Jλij
∂H
∂xj

, Jλ = −JT
λ , (2.9)

where

Jλ =




0 0 0 1

0 0 λ −I3ρ
(
1−

(
f2
f1

)
′
)
K2 − λu

0 −λ 0 −mρf1(f1 − f ′2)K1 − λv

−1 I3ρ
(
1−

(
f2
f1

)
′
)
K2 + λu mρf1(f1 − f ′2)K1 + λv 0




u = 1

f21 I
2
1 (1− γ23)K3

((r , Ir)
m K2 −

f1f2
ρ K1

)
,

v = 1

I21 (1− γ23)K3

( f2
f1ρ

K2 − (I1 +mf22 )K1

)
,

(2.10)

and λ is an arbitrary function of (K1,K2,K3, γ3). At λ = 0 we obtain the degenerate tensor J0

corresponding to bracket (2.8); although for λ 6= 0 tensor (2.10) is nondegenerate, it does not satisfy
the Jacobi identity, i. e. it does not define a Poisson bracket.

If λ is chosen in the form
λ = α(γ3)K3, (2.11)

then the tensor J̃ = (λ−1Jλ) satisfies the Jacobi identity, and the corresponding vector field

v = (λ−1Jλ)∇H (2.12)

is Hamiltonian; at the same time the divergence of field (2.12) is nonzero. Thus, the considered
nonholonomic system generate an example of Hamiltonian vector field with nontrivial measure ρ =
= α(γ3)K3. Note also that the function ρ = α(γ3)K3 is a reducing multiplier in Chaplygin’s terminol-
ogy, and in this case it differs from invariant measure (2.3). The close example of Poisson structure
for the problem of ball’s rolling on body of revolution was presented by Hermans [32].

Bracket (2.8) has two Casimir functions [5] that are integrals of motion; therefore, system (2.6)
is integrable. The integrability and existence of linear integrals can be established by the different
classical method: we divide the second and the third equation of system (2.6) by γ̇3 and obtain the
system of two linear non-autonomous first-order equations

dK1

dγ3
= −ρI3

(
1−

(f2
f1

)
′
)
K2,

dK2

dγ3
= −mρf1(f1 − f ′2)K1. (2.13)

In somewhat different variables connected with semifixed axes, equations (2.13) were obtained by
S.A. Chaplygin. Equations (2.13) do not contain the potential, which is presented only in the ex-
pression of energy integral (2.7). Using this equation we determine the dependence of nutation angle
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on time after the solving of linear system (2.13). In the general case this dependence has periodic
oscillating character.

Because the equations (2.13) are linear with respect to γ3, the general solution can be obtained
as the linear superposition

Ki = c1g
(1)
i + c2g

(2)
i , i = 1, 2, (2.14)

where g
(1)
i (γ3), g

(2)
i (γ3) are elementary solutions of (2.13). Inverting expressions (2.14) with respect

to ci we obtain the expressions for the lacking first integrals, which are expressed in the general case in
terms of real analytic, but nonalgebraic (for example, hypergeometric) functions. Nevertheless, they
are always linear with respect to Mi (i. e. with respect to generalized velocities).

These integrals in some sense generalize the area integral (corresponding to the cyclic angle of
precession) and the cyclic Lagrange integral (corresponding to the cyclic angle of proper rotation) [5]
that exist in the classical problem of heavy symmetric top’s motion about a fixed point (the Lagrange
case). The presence of such integrals causes the great similarity of qualitative researches of these
problems.

Let’s consider all known situations when integrals are algebraic or can be expressed through
members of some known classes of special functions.

Round disk (S.A. Chaplygin, P.Appell, D.Korteweg). Generally speaking, we consider
a disk with the center of mass displaced along the axis of dynamical symmetry (Fig. 2). In this case
functions (2.1) are explicitly expressed as

f1 =
R√
1− γ23

, f2 = a, (2.15)

where R is a radius of coin, a is the displacement of the center of mass along the axis of dynamical
symmetry (Fig. 2).

Fig. 2

The interesting fact in this case is the independence of mea-
sure (2.3) from the phase variables ρ = const. For variables (2.5) we
obtain the equations

dK1

dθ
=
ρmR2

sin θ
K2,

dK2

dθ
= I3ρ(sin θ +

a
R

cos θ)K1, (2.16)

where ρ = (I1I3 + I1mR
2 + I3ma

2)−
1/
2 . These two linear equations are

reduced to one linear second-order equation with respect to ω3

d2ω3

dθ2
− ctg θ

dω3

dθ
+ ρ2mR(R+ a ctg θ)I3ω3 = 0. (2.17)

At a = 0 with the help of substitution cos θ = 1− 2x equation (2.17) is transformed to the hypergeo-
metric type equation [1]

x(1− x)
d2ω3

dx2
+ (1− 2x)

dω3

dx
− ρ2I3mR

2ω3 = 0.

In the papers [17, 24] the following result was shown: the disk for almost all initial conditions do
not fall on the plane. In [2] the similar result was obtained for the nonintegrable problem of heavy
disk’s rolling on a slopping plane.

The results concerning the stability of stationary motions and the qualitative analysis of motion
see in the papers [19, 24] and also in the book [22].
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Dynamically symmetric ball with the displaced center of mass (E.Routh, S.A. Chap-
lygin). In this case

f1 = R, f2 = Rγ3 + a, (2.18)

where R is the radius of ball, a is the distance from the center of mass to the geometrical center. The
measure ρ is not constant any more

ρ =
(
I1I3 + I1mR

2(1− γ23) + I3m(Rγ3 + a)2
)
−

1/
2 , (2.19)

and the equations for K1, K2 become trivial: K̇1 = 0, K̇2 = 0, i. e. the expressions

K1 = ω3ρ
−1 = ρ−1

(
mR2γ3(M , γ) + I1M3 +maR((M , γ) +M3γ3) +ma2M3

)
= const,

K2 =
1
R
(M , r) = (M , γ) + a

R
M3 = const.

(2.20)

are integrals of motion.

The integral K2 represents the Jellett integral. This integral is also present under the arbitrary
law of friction at the point of contact [22]. The integral K1 was found by E.Routh in 1884 [23] and its
form is a little bit mysterious. It was also indicated by S.A.Chaplygin in the paper [26]. Once again
we shall note that both integrals are linear with respect to the velocities. They are the immediate
generalizations of the cyclic integrals corresponding to the precession ψ and to the proper rotation ϕ,
but have no such natural dynamical origin. The integral K2 sometimes is referred to as the Chaplygin
integral.

Remark. For axisymmetric bodies we can also indicate the other cases of existence of simple quadratic
integral of the form

F = aK2

1
+ bK2

2
, a, b = const.

Obviously, we have to require in addition to condition (2.2) the following one

K−1

2
K̇1

K−1

1
K̇2

=

I3

(
1−

(f2
f1

)
′
)

mf1(f1 − f ′

2
)

= λ = const. (2.21)

The general solution of equations (2.21) and (2.2) is expressed in hypergeometric functions. Among the ax-
isymmetric figures of the second order only the ball with displaced center satisfies these equations. The closed
bounded curves satisfying (2.21) and (2.2) and different from ball are similar to the ovals. Below we show that
in this case the simple quadratic integral exists in the totaly symmetric case. (I1 6= I2 6= I3 6= I1).

Three-dimensional point maps in nonholonomic mechanics. Before we consider the
following cases of the body’s motion, we shall present some general construction that let us to establish
relations between equations (1.1), (1.2), (1.3) to some point one-to-one map in three-dimensional space.
We present the computer analysis of this map using the numerical integration of the indicated system
at the fixed value of energy. Using this method we can find out and give a visual interpretation to
various possibilities of existence of measure and integrals in their various combinations.

To construct the three-dimensional map we use the Andoyer–Deprit variables (L,G,H, l, g, h),
which were regularly used in our book [5] for computer (and analytical) research of Euler –Poisson,
Kirchhoff and other Hamiltonian equations. As against to nonholonomic situation, in the classical case
these variables are canonical, and by virtue of the fact that the area integral is always present in the
Euler –Poisson type equations, we can limit ourselves in the classical case to two-dimensional maps.
The problems described above require two additional integrals of motion; therefore, it is necessary
to use three-dimensional maps, and such maps are not necessarily possess an invariant measure (as
against to Hamiltonian mechanics). Using the known formulas we make the transition from the
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variables (M ,γ) to the Andoyer–Deprit variables

M1 =
√
G2 − L2 sin l, M2 =

√
G2 − L2 cos l, M3 = L,

γ1 =

(
H
G

√
1−
(
L
G

)2
+ L
G

√
1−
(
H
G

)2
cos g

)
sin l+

√
1−
(
H
G

)2
sin g cos l,

γ2 =

(
H
G

√
1−
(
L
G

)2
+ L
G

√
1−
(
H
G

)2
cos g

)
cos l −

√
1−
(
H
G

)2
sin g sin l,

γ3 =
(
H
G

)(
L
G

)
−
√

1−
(
L
G

)2√
1−

(
H
G

)2
cos g, (2.22)

in which we can express the energy E = E(L,G,H, l, g).

In the Euler –Poisson equations the value ofH = (M ,γ) is constant, but for equations (1.1), (1.2),
(1.3) this is not the case any more. We fix the level of energy E = E0, then choose the intersecting
plane, for example, as g = g0 = const, and obtain the three-dimensional map induced by sequential
intersections of the phase trajectory with the chosen intersecting plane. We present the map in the

variables (L/G,H/G, l), because of its compactness by virtue of the fact that
∣∣∣L
G

∣∣∣ 6 1,
∣∣∣H
G

∣∣∣ 6 1.

Typical examples of such three-dimensional maps are presented in Figs. 3, 5, 6, 7. It is obvious that,
because of the presence of one additional integral, the trajectories are situated

Fig. 3. The three-dimensional map
described in subsection 2 for the case
of Chaplygin ball. The figure shows
very clearly that all trajectories are
situated on joint level surfaces of two
integrals H = const and M

2 = const
(I1 = 1, I2 = 2, I3 = 3)

on two-dimensional invariant manifolds of the point map, and the
presence of two additional integrals imply the stratification of the
three-dimensional space on invariant curves (Fig. 3). In general
case when both the integrals and the measure are absent, the com-
plicated behavior of trajectories is possible. In this case random
motions alternate with the asymptotic attracting properties typ-
ical for dissipative systems. Note also that as against to (M ,γ)
the variables L,G,H, l, g, h are more convenient for the analysis
of three-dimensional map, because in this variables the linear and
angular components are separated, and they have the obvious ge-
ometrical meaning (see [5]).

One of examples of three-dimensional map is the well-known
Smale–Williamson map. It does not preserve the measure, but is
expressed by analytical formulas. Other examples can be obtained
by the study of general (nonconservative) perturbations of two-
degree Hamiltonian systems.

Rolling of balanced, dynamically nonsymmetric ball
(Chaplygin ball [25]). The equations of motion of dynamically
nonsymmetric ball with the center of mass coinciding with the
geometrical center can be written in the form

Ṁ = M × ω + γ × ∂U
∂γ

, γ̇ = γ × ω,

M = Iω +Dγ × (ω × γ), D = ma2,

(2.23)

where I = diag(I1, I2, I3) is the central tensor of inertia, U = U(γ) is the potential energy. Equa-
tions (2.23) always have the measure with density ρ and the first integrals of the form

ρ = 1√
1−D(γ, Aγ)

, A = (I+DE)−1, E = ‖δij‖,

H = 1
2
(M , ω) + U(γ), F1 = γ2 = 1 F2 = (M , γ).

(2.24)
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At U = 0 there exists the additional integral F3 = M
2 and the problem become integrable

(S.A.Chaplygin, 1903 [25]); the corresponding three-dimensional map is presented in Fig. 3.
It was shown in the paper [15] that this problem is still integrable with a Brun potential

U = 1
2
k(Iγ, γ).

The integral F3 in this case has the form

F3 = M
2 − k

detA
(γ,Aγ)

The authors indicated in [6] that for any potential U the change of time dτ = ρ dt in equa-
tions (2.23) makes them Hamiltonian with a Poisson bracket, which is nonlinear with respect to the
phase variables (M ,γ) and has the form

{Mi,Mj} = εijkρ
−1(Mk − gγk), {Mi, γj} = εijkρ

−1γk, {γi, γj} = 0,

g = D(ω,γ) =
D(γ,AM )

1−D(γ,Aγ)
.

(2.25)

Bracket (2.25) is degenerated; its Casimir functions are integrals F1, F2 (2.24). The Hamiltonian
corresponding to bracket (2.25) is obtained from energy (2.24) expressed as a function of the moments
by the formula

H = 1
2
(M ,AM ) + 1

2
g(AM ,γ) + U(γ). (2.26)

After the change of variables K = ρM the Poisson bracket and the Hamiltonian are represented in
the form

{Ki,Kj} = εijk(Kk −Dρ2(K ,γ)akγk), {Ki, γj} = εijkγk, {γi, γj} = 0,

H = 1
2
ρ−2(K ,AK ) + 1

2
D(AK ,γ)2 + U(γ).

(2.27)

Thus, at the zero level (K ,γ) = 0 bracket (2.27) passes to the bracket described by algebra e(3). on
which we can write the Euler –Poisson and Kirchhoff equations [5].

Note that for the considered problem the density of measure ρ is the reducing multiplier (by
Chaplygin [27]). With its help the nonholonomic equations are reduced to the Hamiltonian system.
Chaplygin himself used such reduction integrating the equations of motion of nonsymmetric ball;
as a preliminary he introduced a nonholonomic analog of spherocon variables. It is possible to do
these operations in inverse order [25]: one makes at first the change of time dτ = ρ dt to receive a
Hamiltonian system, and then introduces the usual spherocon variables and use the Hamilton–Jacobi
method.

As against to Poisson structure (2.8) related to the system reduced on the field of a symmetry
corresponding to proper rotation, structure (2.12) is related to complete system (1.1), (1.2). Un-
fortunately, we were unable to generalize (to lift) reduced structure (2.8) to such complete system.
Possibly it is either too difficult or some dynamic effects prevent such generalization. Unfortunately,
the dynamic effects preventing the reduction to Hamiltonian form are very purely investigated [4].

Rolling of unbalanced, dynamically nonsymmetric ball on plane. In this case equations
(1.1), (1.2) can be written in the following convenient form

{
Ṁ = M × ω +mṙ × (ω × r),

ṙ = r × ω − a × ω = (r − a)×ω

M = Iω +mr × (ω × r),

(2.28)
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Fig. 4

where a is the vector connecting the center of mass with the geometrical
center r = Rγ + a (see Fig. 4). It turns out that in the case a 6= 0 the
integral F3 = M

2 of system (2.23) can be directly generalized and written
in the form

F = M
2 −mr

2(M ,ω) = M
2 − 2mr

2H, (2.29)

where H = 1
2
(M ,ω) is the energy integral. Though this integral is simple

enough, but probably it was not known earlier. Note only that under the
additional requirement of the dynamical symmetry the Jellett integral and the Chaplygin integrals
were found (see subsection 2). Integral (2.29) can be considered as their generalization for dynamically
nonsymmetric situation.

Fig. 5. One of trajectories in the problem of rolling of unbalanced ball on plane. The figure shows clearly that

all points are situated on some surface; the condensations of points correspond to asymptotic approximations

of the trajectory to periodic solutions. The trajectory goes out from the top and approaches to the three points

in lower part of surface

Fig. 6. Three trajectories in the problem of rolling of unbalanced ball on plane. The figure shows very clearly that

points are situated on two-dimensional surfaces (corresponding to the level of integral (2.29)). The condensation

of points corresponds to an asymptotic approximation to some periodic solution.

We were unable to obtain generalizations of this integral for cases with gyrostat and Brun field.
Note also that for a 6= 0 there is probably no measure. This is illustrated in Figs. 5, 6. These
figures shows the asymptotic trajectories of the point map situated on the two-dimensional surface of
integral (2.29).

An arbitrary body with a spherical central ellipsoid of inertia. I1 = I2 = I3 = µ,
µ = const.
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This problem in general case requires both additional integrals, nevertheless, there is always an
invariant measure. For the first time this fact was noted by V.A.Yaroschuk [28]. In this case the
equations written in variables ω,γ are more convenient. They have form

(µ +mr2)ω̇ = m(ṙ + ω × r)(r, ω)−mω(r, ṙ) + γ × ∂U
∂γ

,

γ̇ = γ × ω.

(2.30)

Equations (2.30) have an invariant relation (ω̇, r) = 0, which is used for simplification of some
calculations.

The density of invariant measure for these equations indicated in [28] can be represented in the
form

ρ = (µ + r2)
3/
2 . (2.31)

We were unable to reproduce the generalization of this measure for the case of body’s rolling on sphere
indicated in the paper [28]. Probably, this generalization does not exist. Also it is not known, what
nontrivial integrable cases can be obtained with the help of measure (2.31), and whether the system
has any Hamiltonian origin, possibly after the appropriate change of time.

Gyrostatic generalizations. Following mainly the paper by S.A. Chaplygin [26], we present
the generalizations of the indicated problems for the case with additional uniformly rotating balanced
rotor. The corresponding system can be interpreted as a nonholonomic gyrostat. The gyrostatic
effect can be also obtained by an addition of multiply connected cavities completely filled by the ideal
incompressible liquid possessing nonzero circulation into the body [5]. In the described case, equation
for the moment (1.1) can be presented as

Ṁ = (M + S)× ω +mṙ × (ω × r) +MQ,

where S is the constant three-dimensional vector of gyrostatic moment. It is easy to verify that the
addition of rotor does not influence the existence of invariant measure with the density depending on
the positional variables γ.

a) Body of revolution. The equations of type (2.13) for the rotor with gyrostatic moment S =
= (0, 0, s) directed along the axis of revolution in variables (2.5) have the form

dK1

dγ3
= −I3ρ

(
1−

(f2
f1

)
′
)
K2 − s,

dK2

dγ3
= −mρf1((f1 − f ′2)K1 + f2s). (2.32)

Equations (2.32) were obtained in less convenient form by S.A. Chaplygin [26]. The density of invariant
measure is also defined by equation (2.3).

Let’s consider sequentially the generalizations of the indicated earlier cases of disk, ellipsoid, and
ball with the displaced center.

b) Round disk. Now equation (2.17) have to the following form

d2ω3

dθ2
− ctg θ

dω3

dθ
+mRI3(R+ a ctg θ)ρ2ω3 = smRρ2(R+ a ctg θ),

ρ = (I1I3 + I1mR
2 + I3ma

2)−
1/
2 ,

(2.33)

and at a = 0 in general case it is reduced to non-homogeneous (for s 6= 0) hypergeometric equation.

c) Ball with the displaced center of mass. Here system (2.32) has the form

dK1

dγ3
= −s, dK2

dγ3
= −mρR(Rγ3 + a)s, (2.34)
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where ρ is defined by relation (2.19). We can immediately show the first integral that generalizes the
Jellett integral

F = K1 + sγ3 = const. (2.35)

The second integral generalizing Routh (Chaplygin) integral has more complicated nonalgebraic form

(I1 − I3)ρ
−1ω3 − s

{
ρ−1 − I1

√
ma2

I1 − I3
arctg

(√
m

I1 − I3
ρ(Rγ3(I1 − I3)− aI3)

)}
= const. (2.36)

In integral (2.36) we assume I1 > I3. For I1 < I3 the integral contain hyperbolic functions. Inte-
gral (2.36) was explicitly presented by A. S.Kuleshov [18]. It is essentially simplified at I1 = I3 = µ
and has the form

ρ−1
(
3µω3 − s

µ+mR2 − 2ma2 −maRγ3

ma2

)
= const. (2.37)

The form of integral is even simpler for the case of balanced homogeneous ball (a = 0):

ω3 +
1
2

mR2γ23√
µ(µ+mR2)

= const.

This simple integrable generalization was indicated by D.K.Bobylev [3] (some additional simpli-
fications in the case of explicit integration were also indicated by N. E. Zhukovsky [12]).

d) Dynamically nonsymmetric ball. The most general gyrostatic generalization for the case of
Chaplygin ball was suggested by A. P.Markeev [20]. The equations of motion and the integrals are

Ṁ = (M + S)× ω, γ = γ × ω,

H = 1
2
(M ,ω), F1 = γ2 = 1, F2 = (M + S ,M + S), F3 = (M + S ,γ),

(2.38)

where S is the constant three-dimensional vector of gyrostatic moment. Note that we were unable to
generalize Poisson structure (2.25) to system (2.38) for S 6= 0.

Rolling of ellipsoid on plane. It turns out that in the problem of rolling of balanced ellipsoid,
which axes are principal axes of inertia, there are cases of existence of specific invariant measure, that
are defined by restrictions on ratios of moments of inertia and semiaxes of the ellipsoid of the surface.
This measure has found by V.A.Yaroschuk in [29].

For the problem of ellipsoid’s rolling, two cases of existence of the invariant measure were already
indicated in subsections 2 and 2. They are accordingly measures of balanced, dynamically nonsym-
metric ball (2.24) and of arbitrary body with the spherical central ellipsoid of inertia (2.31). It is
interesting that no obstacles to existence of the analytical invariant measure of the general rolling
problem of balanced ellipsoid, which principal axes are principal axes of inertia, are not found yet (as
against to the case of Celtic stone [15]). It is possible, that this measure exists (at least in this situation
there is no asymptotical behavior typical for the Celtic stones), but is complicated and nonalgebraic.

For the surface of ellipsoid (r, B−1r) = 1, where B = diag(b1, b2, b3), bi are squares of larger
semiaxes, we have the explicit expression

r =
Bγ√

(Bγ, γ)
. (2.39)

If the cental tensor of inertia has the form

I = µE+ λmB, (2.40)
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Fig. 7. Some trajectories in the problem of rolling of ellipsoid with the spherical tensor of inertia on plane. The

figure shows clearly the regular trajectories filling some curves that enclose stable periodic solutions (permanent

rotations), which in this case are degenerated as it was stated above. A random layer (which is obtained from

one trajectory) in this case is not situated on any surface.

then equations (1.1), (1.2) have a measure only in the case λ = 0 and λ = 1 with the density (in
variables M , γ)

ρ = (µ+mr2)−
1/
2 =

(
(µ+mB)r, B−1r

)
−

1/
2 . (2.41)

Remark. For the case λ = 0, measure (2.41) was already indicated in subsection 2. It is defined by
formula (2.31) and is present for any surface of the body. The differences in powers of expressions (2.41)
and (2.31) are connected with the various systems of variables (M ,γ) and (ω,γ) and with the corresponding
transformations of densities of invariant measures.

Note that if equality (2.40) is fulfilled, then the motion equations have a two-parameter set of verti-
cal permanent rotations at arbitrary real λ (in other cases this set is one-parameter). A.V.Karapetyan
in [14] showed that the conditions of existence of such sets are even a little bit wider and have the
form ∑

ijk

Ii(bi − bk) = 0, (2.42)

where I = diag(I1, I2, I3). In addition to tensor (2.40) conditions (2.42) are fulfilled in the case of non-
holonomic Chaplygin ball (b1 = b2 = b3 = R2) when there exist both the measure and integral (2.24),
and also the conditions hold in the axially symmetric situation I1 = I2, b1 = b2. Unexpectedly,
equality (2.40) is also the necessary (but, generally speaking, insufficient) condition of the integrabil-
ity of equations of motion for the case of ellipsoid on ideally smooth plane [8]. Note the interesting
fact that for λ 6= 0 and λ 6= 1, both the measure and obstacles to its existence are not found. The
three-dimensional section in the case λ = 0 is presented on Fig. 7.

All the results described above that are connected to the rolling of body on plane are presented
in table 1.

3. Body on a Sphere

Now we consider systematically the situations analogous to one in the case of plane that originate in
the problem of rolling of body on a sphere. First of all we shall note that kinematic equation (1.3)
can be written as

γ̇ = γ ×ω ∓ kṙ, k = 1/R0, (3.1)
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Table 1. Rolling of body on plane

tensor of inertia
dynamically nonsymmetric case

I1 6= I2 6= I3 6= I1

axial dynamical symmetry
I1 = I2, U = U(γ3)

total dynamical
symmetry

I1 = I2 = I3 = µ
surface
of body

ball ellipsoid
an arbitrary body of

revolution

round disk with
sharp edge

unbalanced ball arbitrary

geometrical
and dynamical
restrictions

the center of mass
coincides with the
geometrical center

the center of
mass does not
coincide with
the geometrical

center

the axes of
dynamical and

geometrical ellipsoid
coincide

I = µE+mB

the geometrical and dynamical axes coincide
and contain the center of mass

—

measure (1−D(γ,Aγ))−
1/
2 unknown (µ+mr

2)−
1/
2 (I1I3 +m(r , Ir))−

1/
2 const (I1I3 +m(r , Ir))−

1/
2

(µ+mr
2)

3/
2 (for

variables ω and γ)

additional inte-
grals

M
2 = const

(M ,γ) = const
(two integrals)

M
2
−mr

2(M ,ω) =

= const
(one integral)

none of integrals are
found

two integrals are
obtained from the

solution of system of
two linear

equations (2.13)

two integrals are
obtained from the

solution of
hypergeometric
equation (2.17)

ω3/ρ = const

(M , r) = const

none of integrals are
found

integrable
addition
of gyrostat

possible
(A.P.Markeev

1986)

it seems to be
impossible

the measure is
preserved

S.A.Chaplygin
(1897)

S.A.Chaplygin
(1897)

at I1 = I2 = I3 the
gyrostat was added
by D.K.Bobylev,
at I1 = I2 6= I3 by
A. S.Kuleshov

(2000)

the measure is
preserved

Hamiltonian
form

the system is
Hamiltonian after the

change of time
(A.V.Borisov,

I. S.Mamaev, 2001)

it seems that the
system is not
Hamiltonian

unknown

the reduced system is Hamiltonian after the
change of time, defined by the reducing

multiplier
(A.V.Borisov, I. S.Mamaev, 2001)

unknown

authors
S.A.Chaplygin

(1903)

A.V.Borisov,
I. S.Mamaev

(2001)

V.A.Yaroschuk
(1995)

S.A.Chaplygin
(1897)

S.A.Chaplygin
(1897), P.Appell,
D.Korteweg (1898)

E. J. Routh (1884),
S.A.Chaplygin

(1897)

V.A.Yaroschuk
(1992.)

generalizations
and remarks

the integrable addition of
Brun field is possible
(V.V.Kozlov, 1985)

the Hamiltonian form is
preserved for arbitrary

fields with the loss of one
integral

the Brun field
can not be added
(preserving the
integral)

— — — — —

Remark. The cases of existence of the corresponding (tensor) invariants are indicated by gray color in the table. The partial filling corresponds to the uncomplete
set of integrals.
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where the ”minus” sign means the rolling on interior of surface of sphere (Fig. 8 a), and the ”plus”
sign means the rolling on exterior of surface of sphere (Fig. 8 b).

Fig. 8.

Rolling of body of revolution. The body of revolution is defined analogously by formu-
las (2.1), and we can obtain the explicit form of the density of invariant measure

ρ(γ3) = ρ0(1− kf1)
3(1− kf ′2),

ρ0 =
(
I1I3 +m(r, Ir)

)
−1/2

=
(
I1I3 +mI1f

2
1 (1− γ23) +mI3f

2
2γ

2
3

)
−1/2 (3.2)

and establish the presence of the symmetry field v with operator (2.4).
Reduced system (2.13) in the variables of type (2.5)

K1 = (M , r)(1− kf1)f
−1
1 , K2 = ω3ρ

−1
0 , (3.3)

has the form

1
ρ0
dK1

dγ3
= −

[
I3

(
1−

(f2
f1

)
′

)
+ kf1(I1 − I3)

(
1− kf ′2

)]
K2 ,

1− kf1
ρ0

dK2

dγ3
= −mf1

(
f1 − f ′2 − kf1f

′

2

)
K1 +mkρ0I1f

2
1

(
γ3f

′

2 +
√

1− γ23

(
f1

√
1− γ23

)
′

)
K2 .

(3.4)

Equations (3.4) in somewhat different variables connected with the semifixed axes were obtained by
P.V.Woronetz [11], who generalized the Chaplygin arguments to the case of sphere.

Integrating the equations of system (3.4) we determine the dependence on time of the nutation
angle θ = arccos(γ3) using the quadrature of the energy integral

H = 1
2
I1 +mr

2

1− γ23
γ̇23+

+ 1

2I1(1− γ23)

( K2
1

(1− kf1)
2
− I3
mf21

K2
2 +

mf22
I1

(
K1

1− kf1
− K2

mρf1f2

)2)
+ U(γ3).

For the problem of rolling of the body of revolution on sphere we can describe the reduced system
in variables (2.5) and the corresponding Poisson structure similarly to the case of plane. We do not
present the corresponding calculations because of their bulkiness.

Similarly to the problem of rolling on a plane we shall consider some special cases.
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The problem of rolling of round disk with the center of masses displaced along the axis
of symmetry in general case is not reduced to the hypergeometric equation any more, but the system
nevertheless becomes simpler; thus, the measure is not constant any more. Same as above, f1, f2 are
defined by relations (2.15), and the density of invariant measure has the following form

ρ = ρ0

(
1− kR√

1− γ23

)3

, ρ0 =
(
I1I3 +m

(
I1R

2 + I3a
2
))−1/2

= const,

where R is the disk radius and a is the displacement of the center of mass.
The second-order equation has the form

d2ω3

dθ2
+ ctg θ

(
1 + kR

sin θ − kR

)
ω3 −

ρ20mRI3

1− kR
sin θ

(
R+ a ctg θ +

kR2(I1 − I3)

I3 sin θ

)
ω3 = 0, (3.5)

where γ3 = cos θ.
This equation in the particular case I3 = 2I1, a = 0 (the homogeneous balanced disk) was

obtained by P.Woronetz [40], and at a = 0 it was investigated in [33] by methods of the qualitative
analysis. In particular, the stability of stationary motions and the probability of falling of disk on
sphere was investigated and this probability is found to be equal to zero. In the paper [34] it was
also shown that, as against to the nonholonomic problem, the the Hamilton system describing the
motion of disk on a sphere with absolute (ideal) sliding that seems to be simpler is not integrable any
more, and its behavior has random properties. The number of degrees of freedom for this system is
increased in comparison with the case of plane, where the indicated system is integrable because of
the preservation of impulse’s horizontal component, and this is the reason for such result.

Ball with displaced center. Here functions f1, f2 are also defined by relations (2.18), and the
expression for measure ρ is the same as in the case of plane:

ρ =
(
I1I3 + I1mR

2(1− γ23) + I3m(Rγ3 + a)2
)
−1/2

.

In variables (3.3) equations (3.4) have the form

1
ρK

′

1 = −kR(I1 − I3)(1− kR)K2,
1
ρK

′

2 =
kmR3

1− kR
K1. (3.6)

With the help of these equations we obtain two linear with respect to K1,K2 nonalgebraic integrals
of the form

F2 =
(√

m(I3 − I1)K2 +
mR

1− kR
K1

)
eλτ , F3 =

(√
m(I3 − I1)K2 − mR

1− kR
K1

)
e−λτ , (3.7)

where λ2 = mk2R4(I3 − I1), τ =
∫
ρ0(γ3) dγ3, and the additional quadratic algebraic integral (depen-

dent on F2,F3)

F = F2F3 =
mR2

(1− kR)2
K2

1 + (I1 − I3)K
2
2 . (3.8)

The integrals F2, F3 are new and generalize Routh and Jellett integrals (2.20). Integral (3.8) was
found by A. S.Kuleshov [18]. In the case of spherical tensor of inertia I3 = I1 we have

K1 = (M , r) =M1γ1 +M2γ2 +M3

(
γ3 +

a
R

)
= const,

(1− kR)K2 − kmR3K1

∫
ρ(γ3) dγ3 = const,

(3.9)

i. e. K1 coincide with the classical Jellett integral.
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Fig. 9

Balanced, dynamically nonsymmetric ball on sphere.
We shortly describe an integrable case connected with the problem
of rolling of balanced, dynamically nonsymmetric ball on sphere anal-
ogous to the motion of Chaplygin ball on plane (see (2.23), (2.24)).
This system is defined by the equations

Ṁ = M × ω, γ̇ = kγ × ω,

M = (I+D)ω −Dγ(ω,γ),
(3.10)

where k = R
R− a

, a is the radius of ball, m is its mass, D = ma2,

R is the radius of the fixed sphere (see Fig. 9). (In the case of plane
R→ ∞ and k = 1.) Equations (3.10) always have the integrals

H = 1
2
(M ,ω), F1 = γ2 = 1, F2 = M

2.

and the invariant measure with density ρ (2.24). We need one more integral for the complete integrabil-
ity of system (such as the area integral at k = 1). It exists only under the additional condition a = 2R
found by A.V.Borisov in [7], which corresponds to the rolling of balanced, dynamically nonsymmetric
ball on the interior of the fixed sphere (see Fig. 9). This integral have the form

F = (M ,Aγ), A = E− 2(tr(I+D))−1(I+D) (3.11)

and can be generalized to case (3.10) with the additional Brun potential U = 1
2
(Iγ,γ) [7]. Using

the transformations M̃ = AM , γ̃ = γ under condition a = 2R we transform equations (3.10)
into the equations describing the motion of Chaplygin ball on the horizontal plane. For arbitrary
parameter k and potential U the Poisson structure of equations (3.10) similar to one indicated at k =
= 1 in subsection 2 2 (formula (2.25)) is still unknown.

Unbalanced, dynamically nonsymmetric ball on sphere. In this case there exists one
(and only one) quadratic integral generalizing the corresponding result on plane. The equations are





Ṁ = M × ω +mṙ × (ω × r),

ṙ = 1
1− kR

(r − a)× ω,
(3.12)

where r = Rγ + a , M = Iω +mr × (ω × r). It has exactly the same form

F = M
2 −mr

2(M ,ω). (3.13)

Note also that for a 6= 0 it seems that there is no invariant measure, and also generalizations for
the cases with additional gyrostat or with the field of Brun problem are unknown. In the case of
rotational symmetry I1 = I2, integral (3.13) was indicated by A. S.Kuleshov and the acquaintance
with this result has induced authors to the analysis of dynamically nonsymmetric situation.

Gyrostatic generalizations. Let’s briefly discuss the integrable gyrostatic generalizations. So
to preserve the integrability for the body of revolution’s case we should direct the balanced rotor with
the moment S along the axis of dynamical symmetry. In variables (3.3) the analog of system (2.32)
has the following form

1
ρ0
K ′

1 = −
[
I3

(
1−

(
f2
f1

)′
)

+ kf1(I1 − I3)(1− kf ′2)

]
K2+

+sρ−1
0 (1− kf ′2)(1 − kf1),

1− kf1
ρ0

K ′

2 = kmρ0I1f
2
1

[
γ3f

′

2 +
√

1− γ23

(
f1

√
1− γ23

)
′

]
K2−

−mf1
(
f1 − f ′2 − kf1f

′

2

)
K1 − smf1f2(1− kf ′2)(1− kf1),

(3.14)
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where ρ0 is defined by relation (3.2); thus, the linear system is non-homogeneous.

Fig. 10

In the case of round disk, the integrals and equations (3.14) can
not be essentially simplified. In the case of ball with the displaced cen-

ter, f1, f2 are defined by equations (2.19), and equations (3.14) are

1
ρ0
K ′

1 = −kR(I1 − I3)(1 − kR)K2 − 1
ρ0
R(1− kR)2s,

1
ρ0
K ′

2 =
mR3k
1− kR

K1 −mR(1− kR)(Rγ3 + a)s.
(3.15)

The first integrals in this case can not be written with the help of ele-
mentary functions.

In the case of total dynamical symmetry I1 = I3 with the help of
equations (3.15) we obtain the explicit integral of Jellett type

F2 = K1+(1−kR)2
(
γ3+

a
R

)
=
(
MR−1+S(1−kR), r

)
(1−kR) = const.

Expressing from this integral K1 and substituting the expression in the
first equation of system (3.15), we obtain the explicit quadrature for
K1(γ3). The gyrostatic generalizations of integral (3.11) for the case of
nonsymmetric ball are unknown.

G

Q

O

R

r

z

Fig. 11

Rolling of body with partially flat surface on sphere. Let’s con-
sider one more problem connected with the rolling of body on a sphere, which
has no analog in the case of plane. We consider the rolling of the body with
the flat foundation on the exterior surface of sphere (Fig. 11). This problem for
the first time was considered by P.Woronetz, who indicated the integrability
of the problem in the case of rotational symmetry. Let’s write the equations
of motion in the frame of references connected with the body in the case when
the field of force is absent:

Ṁ = M × ω +mṙ × (ω × r), M = Iω +mγ × (ω × γ), (3.16)

where I is the central tensor of inertia, m is the mass of body.

For the flat part of surface we have r = (r1, r2, z), z = const, γ = (0, 0, 1),
where r1, r2 are the projections of position of the center of mass on the flat
foundation (see Fig. 11), and using the fact that γ̇ = 0 we obtain for them
using equation (1.3)

ṙ1 = k−1ω2, ṙ2 = −k−1ω1, k = R−1. (3.17)

We can specify two cases, when equations (3.16), (3.17) have invariant measure.

a) z = 0 — the center of mass is situated on the contact plane, and tensor of inertia I =
= diag(I1, I2, I3) is arbitrary. For the variables M , r the density of invariant measure is

ρ(M , r1, r2) =
(
I3 +mr

2
)
−1/2

. (3.18)

It can be also written for the equations in variables ω, r1, r2:

ρ(ω, r1, r2) = (I1I2 +m(r , Ir))(I3 +mr
2)

1/
2 . (3.19)

Remark. In this form under additional and not essential restriction I3 = I1 + I2 (i. e. in the case of flat
plate) the invariant measure was indicated by V.A.Yaroschuk [28].
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In the considered case in addition to the measure, equations (3.16), (3.17) have one (and only
one for I1 6= I2) first integral

F = M
2 − 2mr

2H, H = 1
2
(M ,ω), (3.20)

independent of energy integral. It was not known earlier.

Besides, it turns out that integral (3.20) is transferred without modifications to the case z 6= 0, for
which the measure is not known (and probably does not exist). Note that we already see the similar
situation in the problem of rolling of unbalanced, dynamically nonsymmetric ball (see subsection 3).
The lack of measure for z 6= 0 obviously prevent the existence of Hamiltonian form. For z 6= 0 though
the measure exists, the system is probably also not Hamiltonian even after the appropriate change of
time.

b) I1 = I2, z 6= 0, i. e. the center of mass is situated on the axis of dynamical symmetry. In
variables (M , r) the density of invariant measure is

ρ = (I1I3 +m(r , Ir))−
1/
2 . (3.21)

This system is already integrable. Indeed, in variables

K1 = (M , r) =M1r1 +M2r2 +M3r3,

K2 =
ω3
ρ =

mz(M1r1 +M2r2) + (I1 +mz2)M3√
I1I3 +m(r , Ir)

the equations of motion of system have linear form

dK1

du
=

I1 − I3

2R
√
I3(I1 +mz2) + I1mu

K2,
dK2

du
= m

2R
√
I3(I1 +mz2) + I1mu

K1. (3.22)

P.Woronetz in the paper [38] noted that their explicit solution can be obtained in elementary functions.
This solution defines two linear with respect to M additional first integrals.

There are two different methods of solving of (3.22).

1) I1 < I3.

K1 =
√
I1 − I3

(
−c1 cosϕ(u) + c2 sinϕ(u)

)
, K2 =

√
m
(
c1 sinϕ(u) + c2 cosϕ(u)

)
,

ϕ2 =
(I1 − I3)(I1I3 + I3mz

2 + I1mu)

I21mR
2

, c1, c2 = const.
(3.23)

2) I1 > I3, In this case we should use hyperbolical instead of trigonometrical functions

In this case there is also simple, but dependent quadratic integral

F = mK2
1 + (I1 − I3)K

2
2 , (3.24)

that evidently is a particular case of (3.20). The energy integral can be presented in the form

H = 1
2
(M ,ω) + U(r) = 1

8
I1 +mz2 +mu

R2u
u̇2+

+ 1

2I21u

(
(I1 +mz2)K2

1 + (I1u+ I3z
2)K2

2 − z

I21u

√
I1I3 + I3mz2 + I1muK1K2

)
+ U(u),

(3.25)
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and using this form we obtain after the integration of system (3.22) the explicit quadrature for u̇.
In the axisymmetric case we can add rotor with the moment S = (0, 0, s) along the axis of

dynamical symmetry; measure (3.21) is preserved, and equations (3.22) are

2R
dK1

du
=

I1 − I3√
I3(I1 +mz2) + I1mu

K2 − s, 2R
dK2

du
= − m(K1 + zs)√

I3(I1 +mz2) + I1mu
. (3.26)

The general solution of system (3.26) is presented as a superposition of the solution of homogeneous
equation at s = 0 (3.23) and the particular solution of non-homogeneous equation (3.26) of the
following form

K
(part)
1 =

sz(I3 + I1(1 +R/z))

I1 − I3
, K

(part)
2 =

s
√
I3(I1 +mz2) + I1mu

I1 − I3
.

Thus quadratic integral (3.24) in this case is presented as

F = m(K1 −K
(part)
1 )2 + (I1 − I3)(K2 −K

(part)
2 )2.

Remark. We have noted in the paper two nontrivial cases of non-existence of one quadratic integral. The
similar integral is present in the case of homogeneous ball’s motion on the triaxial ellipsoid. The origin of such
integrals is connected with the presence of similar integrals in the axisymmetric situation, when the system is
completely integrable, and there are two linear integrals. However, in the general case the dependence on the
positional variables in these integrals is complicated and is expressed in special functions. In three cases that
we have found, the linear integrals are expressed in elementary functions and generate the quadratic integral,
which is represented by rational function. This integral can be also generalized to the nonsymmetric situation.

4. Conclusions

In this paper we collect all the known at present cases of existence of invariant measure, integrals,
Poisson structure for the equations of nonholonomic rolling of rigid body on plane and sphere. In all
conceivable assortment of situations we have not found out any case when there are two integrals, but

no measure. Possibly it is connected with the specificity of the equations of nonholonomic mechanics.
Depending on the presence of this or that set of invariants there are qualitative distinctions in the

behavior of system. The system can exhibit both typically Hamiltonian properties and the properties
of conservative systems realized on the example of Celtic stones’ problem. For the analysis of the
indicated situations we use the method of three-dimensional Poincaré maps and exactly this method
at first let us to find out integrals (2.29), (3.13), (3.20) numerically, and then to obtain their explicit
form. Undoubtedly, the research of three-dimensional point maps in the cases of presence and lack of
the measure both from analytical and from the computational point of view allows to find out many
remarkable effects in nonholonomic systems.

From the point of view of this approach the problem of global evolution of the Celtic stone [14, 21]
is the most interesting. In this problem we have to study the invariant and asymptotic manifolds on
the level surface of three-dimensional maps (not preserving an area) realizing under various restrictions
on the parameters of system.

Authors thank A.V.Karapetyan for useful discussions and A.A.Kilin for the help with realization
of numerical experiments.
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Table 2. Rolling of the body on sphere

tensor of
inertia

dynamically nonsymmetric case I1 6= I2 6= I3 6= I1 dynamical symmetry I1 = I2, U = U(γ3)

surface
of the body

ball body with partially flat surface
an arbitrary body of

revolution
round disk unbalanced ball

body with partially
flat surface

geometrical
and dynamical
restrictions

the center of mass coincides with
the geometrical center

the center of
mass does not
coincide with

the
geometrical

center

the center of
mass is

situated on
the contact
plane (z = 0)

the center
of mass is

not
situated
on the
contact
plane

geometrical and dynamical axes coincide and contain the center of
mass

a = 2R

measure
(1−D(γ, Aγ))−1/2

(V.A.Yaroschuk, 1992)
unknown

(I3 +mr
2)−1/2

(V.A.Yaroschuk,
1992,

A.V.Borisov,
I. S.Mamaev,

2001)

unknown

(1− kf1)
3(1− k(γ3f2)

′)√
I1I3 +m(r , Ir)

(A.V.Borisov, I. S.Mamaev, 2001)

(I1I3 +m(r , Ir))−1/2

integrals
M

2 = const
one integral

M
2 = const,

(M , Aγ) =
= const

(two integrals)
(A.V.Borisov,

1994)

M
2 −mr

2(M ,ω) =
= const

one integral
(A.V.Borisov,

I. S.Mamaev, 2001)

M
2 −mr

2(M ,ω) = const
(A.V.Borisov, I. S.Mamaev, 2001)

two integrals are
obtained from the

solution of system of
two linear

equations (3.4)
(P.V.Woronetz,

1909)

two integrals are
obtained from the
solution of second
order equation (3.5)
(P.V.Woronetz,

1909)

two integrals are
expressed in
elementary

functions (3.7)
(A. S.Kuleshov,

2000, A.V.Borisov,
I. S.Mamaev, 2001)

two integrals are
expressed in
elementary

functions (3.23)
(P.V.Woronetz,

1911)

integrable
addition
of gyrostat

possible
without loss of
integral and
measure

not
found

not
found

not found not found possible along the axis of dynamical symmetry

Hamiltonian form
probably, the
system is not
Hamiltonian

the system is
Hamiltonian
after the
change of

time
(A.V.Borisov,
I. S.Mamaev,

2000)

probably, the
system is not
Hamiltonian

probably, the system is not Hamiltonian
the reduced system is Hamiltonian after the change of time defined by the reducing

multiplier (A.V.Borisov, I. S.Mamaev, 2001)

generalizations
and remarks

the addition of
Brun field is

possible
preserving one
integral and
measure

the integrable
addition of
Brun field is

possible
(A.V.Borisov,
Yu.N. Fedorov

(1994))

the Brun field
could not be

added
(preserving the

integral)

V.A.Yaroschuk
found the

measure under
additional
nonessential
restriction
I3 = I1 + I2

— — —

A.S.Kuleshov
found only one

quadratic
integral

dependent on
two present

linear integrals

P.V.Woronetz
found the solution
in quadratures
under additional

nonessential
restriction

I1 = I2 =
1
2
I3,

z = 0

Remark. The cases of existence of the corresponding (tensor) invariants are indicated by gray color in the table. The partial filling corresponds to the uncomplete set of integrals.
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une arête circulaire sur un plan horizontal; cas parti-
culier du cerceau. Rendiconti del circolo matematico
di Palermo. 1900. V. 14. P. 1–6.

[32] J.Hermans. A symmetric sphere rolling on a surface.
Nonlinearity. 1995. V. 8(4). P. 493–515.

REGULAR AND CHAOTIC DYNAMICS, V. 7, �2, 2002 199



A.V.BORISOV, I. S.MAMAEV

[33] A.G.Kholmskaya. On a disk rolling within a sphere.
Reg. & Chaot. Dyn. 1998. V. 3. �1. P. 86–92.

[34] A.G.Kholmskaya. Motion of a disk within a sphere.
Reg. & Chaot. Dyn. 1998. V. 3. �2. P. 74–81.

[35] D.Korteweg. Ueber eine ziemlich verbrietete un-
richtige Behandlungswiese eines Problemes der relle-
den Bewegung und insbesondere über kleine rollende
Schwingungen um eine Gleichgewichtslage. Nieuw
Archiefvoor Wiskunde. 1899. Bd. 4. S. 130–155.

[36] O.M.O’Reilly. The Dynamics of rolling disks and
sliding disks. Nonlinear Dynamics. 1996. V. 10.
P. 287–305.

[37] G.M. Slesser. Notes on rigid dynamics. Quart. J. of
Math. 1861. V. 4. P. 65–77.
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