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On a family of solutions of the KP equation which also
satisfy the Toda lattice hierarchy

Gino Biondini and Yuji Kodama §
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231 West 18th Ave, Columbus, OH 43210

Abstract. We describe the interaction pattern in thex-y plane for a family of soliton solutions
of the Kadomtsev-Petviashvili (KP) equation,

(−4ut +uxxx+6uux)x+3uyy = 0.
Those solutions also satisfy the finite Toda lattice hierarchy. We determine completely
their asymptotic patterns fory → ±∞, and we show that all the solutions (except the one-
soliton solution) are ofresonanttype, consisting of arbitrary numbers of line solitons in both
aymptotics; that is, arbitraryN− incoming solitons fory→−∞ interact to form arbitraryN+

outgoing solitons fory → ∞. We also discuss the interaction process of those solitons,and
show that the resonant interaction creates aweb-likestructure having(N−−1)(N+−1) holes.
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1. Introduction

In this paper we study a family of solutions of the Kadomtsev-Petviashvili (KP) equation

∂
∂x

(

−4
∂u
∂t

+
∂3u
∂x3 +6u

∂u
∂x

)

+3
∂2u
∂y2 = 0 (1.1)

which can be written in the bilinear form [7],
[
−4DxDt +D4

x+3D2
y

]
τ · τ = 0. (1.2)

HereDx, Dy andDt are the Hirota derivatives, e.g.,Dm
x f ·g= (∂x−∂x′)

m f (x,y, t)g(x′,y, t)|x=x′

etc., andu is obtained from the tau-functionτ(x,y, t) as

u(x,y, t) = 2
∂2

∂x2 logτ(x,y, t) . (1.3)

It is well-known that some solutions of the KP equation can beobtained by the
Wronskian formτ = τM (see Appendix and also [4]), with

τM = Wr( f1, . . . , fM) :=

∣
∣
∣
∣
∣
∣
∣

f1Ø0 · · · fMØ0
...

...
...

f1ØM−1 · · · fMØM−1

∣
∣
∣
∣
∣
∣
∣

, (1.4)
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where fiØn = ∂n fi/∂xn, and { fi(x,y, t) | i = 1, . . . ,M} is a linearly independent set ofM
solutions of the equations,

∂ fi
∂y

=
∂2 fi
∂x2 ,

∂ fi
∂t

=
∂3 fi
∂x3 , for 1≤ i ≤ M. (1.5)

For example, the two-soliton solution of the KP equation is obtained by the set{ f1, f2}, with

fi = eθ2i−1 +eθ2i , i = 1,2, (1.6)

where the phasesθ j are given by linear functions of(x,y, t),

θ j(x,y, t) =−k jx+ k2
j y− k3

j t +θ0
j , j = 1, . . . ,4, (1.7)

with k1 < k2 < k3 < k4. This ordering is sufficient for the solutionu to be nonsingular. (The
orderingk1 6= k2 < k3 6= k4 is needed for the positivity ofτ2.) Note, for example, that if
k1 < k3 < k2 < k4, τ2 takes zero and the solution blows up at some points in(x,y, t). The
formula (1.6) can be extended to theM-soliton solution with{ f1, · · · , fM} [8].

On the other hand, it is also known that the solutions of the finite Toda lattice hierarchy
are obtained by the set of tau-functions{τM | M = 1, . . . ,N} with the choice off -functions,







f1 =
N
∑

i=1
eθi =: f ,

fi = f Øi −1, 1< i ≤ M ≤ N ,
(1.8)

where the phasesθi , 1≤ i ≤N are given in the form (1.7) (see for example [13]). This implies
that each tau-functionτM gives a solution of the KP equation. If thef -functions are chosen
according to (1.8), the tau-functions are then given by the Hankel determinants

τM =

∣
∣
∣
∣
∣
∣
∣

f Ø0 · · · f ØM−1
...

...
...

f ØM−1 · · · f Ø2M−2

∣
∣
∣
∣
∣
∣
∣

, for 1≤ M ≤ N . (1.9)

Note here thatτN = C exp(θ1+ · · ·+θN), with C= constant, yielding the trivial solution, and
τM andτN−M produce the same solution with the symmetry(x,y, t)→ (−x,−y,−t), due to the
duality of the determinants (i.e., the duality of the Grassmannians Gr(M,N) and Gr(N−M,N);
see also Lemma 2.1). The finite Toda lattice hierarchy is defined in the Lax form [3]

∂L
∂tn

= [Bn,L] , n= 1, . . . ,N−1, (1.10)

where the Lax pairs(L,Bn) are given by

L =












b1 a1 0 · · · 0

a1 b2 a1
. . .

...

0 a2
. . .

. . . 0
...

...
. . . bN−1 aN−1

0 · · · 0 aN−1 bN












,

Bn =
1
2 ((L

n)>0− (Ln)<0) ,

and whereC>0 (C<0) denotes the strictly upper (lower) triangular part of a matrix C. Here the
flow parametersti ’s are chosen ast1 = x, t2 = y andt3 = t for the KP equation. The functions
(ai ,b j) are expressed by







a2
n =

τn+1τn−1

τ2
n

, n= 1, . . . ,N−1,

bn =
d
dt

log
τn

τn−1
, n= 1, . . . ,N ,

(1.11)



On a family of solutions of the KP equation satisfying the Toda lattice hierarchy 3

whereτ0 = 1. Then the tau-functionsτn satisfy the bilinear equations

1
2

D2
x τn · τn = τnτn,xx− (τn,x)

2 = τn+1τn−1 , (1.12)

which are just the Jacobi formulae for the determinantsD := τn+1, i.e.

D

[
n+1
n+1

]

D

[
n
n

]

−D

[
n

n+1

]

D

[
n+1

n

]

= D

[
n, n+1
n, n+1

]

D . (1.13)

HereD

[
i, j
k, l

]

denotes the determinant obtained by deleting thei-th and j-th rows and the

k-th and thel -th column inD [5].

Remark 1.1. According to the Sato theory (see for example [14]), these bilinear equations for
the KP equation and the Toda lattice hierarchy are the Plücker relations with proper definitions
of the Plücker coordinatesτY labeled by Young diagramsY = (ℓ1, ℓ2), with ℓ1 ≤ ℓ2 giving the
numbers of boxes inY,

τ(0,0)τ(2,2)− τ(0,1)τ(1,2)+ τ(0,2)τ(1,1) = 0. (1.14)

For the KP equation, those Plücker coordinates are relatedto the derivatives of the tau-function
τM,







τ(0,0) = τM ,

τ(0,1) = ∂xτM,

τ(0,2) = 1
2(∂

2
x + ∂y)τM ,

τ(1,1) = 1
2(∂

2
x − ∂y)τM

τ(1,2) = 1
3(∂

3
x − ∂t)τM,

τ(2,2) = 1
12(∂

4
x −4∂x∂t +3∂2

y)τM .

Then the Hirota bilinear equation (1.2) is equivalent to thePlücker relation (1.14). For
the Toda lattice equation, the Jacobi formula (1.13) can be considered as (1.14) with the
identificationτ(0,0) = D etc.

We should also recall that the solutions of the Toda lattice equation show the sorting
property of the Lax matrixL [12]; that is,

L −→

{
diag(λ1, . . . ,λN) as x→ ∞ ,
diag(λN, . . . ,λ1) as x→−∞ ,

(1.15)

whereλ1 > λ2 > · · · > λN are the eigenvalues ofL. These eigenvalues are related to the
parameterski in (1.7) asλi =−ki (see below).

In this paper, we are concerned with the behavior of the KP solutions (1.3) whose tau-
functions are given by (1.9). We describe the patterns of thesolutions in thex-y plane where
each soliton solution of the KP equation is asymptotically expressed as a line, namely,

x= c±y+ ξ± for y→±∞

with appropriate constantsc± and ξ± for a fixed t. In particular, we found that all the
solutions (except the one-soliton solution) are “resonant” solitons in the sense that these
solutions are different from ordinary multi-soliton solutions. The difference appears in the
process of interaction, which results, for example, in a different number of solitons (or lines)
asymptotically asy→ ∞ or y→−∞.
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In our main result (Theorem 2.5) we show that for the solutionwith the tau-function
given by (1.9) with (1.8), the number of solitons in asymptotic stages asy→±∞, denoted by
N+ andN−, is given by

N+ = M , N− = N−M .

Thus, the total numberN of exponential terms in the functionf in (1.8) gives the total number
of solitons present in both asymptotic limits, i.e.,N = N−+N+, and the number of outgoing
solitonsN+ is given by the size of the Hankel determinant (1.9). We call these solutions
“(N−,N+)-solitons”. In particular, ifN = 2N+ = 2N−, the solution describes anN+-soliton
having the same set of line solitons in each asymptotics fory→±∞. However, these multi-
soliton solutions also differ from the ordinary multi-soliton solutions of the KP equation. The
ordinaryn-soliton solution of the KP equation is described byn intersecting line solitons
with a phase shift at each interaction point. If we ignore thephase shifts, thesen lines form
(n−1)(n−2)/2 bounded regions in the generic situation. However, the number of bounded
regions for the (resonant)N+-soliton solution with (1.9) is found to be(N+−1)2; for example,
even in the case of a two-soliton solution there is one bounded region as a result of the resonant
interaction. In general, we show in Proposition 3.1 that forthe case of a(N−,N+)-soliton
solution, the number of bounded regions (holes) in the graphis given by(N−−1)(N+−1),
except at finite values oft in the temporal evolution.

These resonantN+-soliton solutions are similar to some of the solitons of thecoupled KP
(cKP) hierarchy recently studied in Ref. [9], where such solutions were called “spider-web-
like” solutions. The analysis of finding web structure that we describe in the present study
may also be applied to the case of the cKP hierarchy.

2. Asymptotic analysis of the solutions

Before we discuss the general case for the tau-function (1.9) with (1.8), we present some
simple cases corresponding to a (1,1)-soliton and a (2,1)-soliton solution; the latter turns out
to be the resonant case of an ordinary 2-soliton solution of the KP equation.

As explained in the Appendix, we first note that the(N−,1)-soliton can be described as
the solution of the Burgers equation (A.3),

∂w1

∂y
+2w1

∂w1

∂x
=

∂2w1

∂x2 , with w1 =−
∂
∂x

logτ1 .

An explicit solution of this equation is a shock, which corresponds to the case ofN= 2=1+1,
i.e.,τ1 = eθ1 +eθ2. The solutionw1 is then given by

w1 = 1
2(k1+ k2)+

1
2(k1− k2)tanh1

2(θ1−θ2)

−→

{
k1 as x→ ∞,
k2 as x→−∞,

(for k1 < k2)

which leads to the one-soliton solution of the KP equation,

u= 2
∂2

∂x2 logτ1 =
1
2(k1− k2)

2sech2 1
2(θ1−θ2) . (2.1)

In the x-y plane, this solution describes a plane waveu = Φ(kxx+ kyy− ω t) having the
wavenumber vectork = (kx,ky) and the frequencyω,

k = (−k1+ k2, k2
1− k2

2) =: k1,2, ω = k3
1− k3

2 =: ω1,2.

Here(k, ω) satisfies the dispersion relation, 4ωkx+k4
x +3k2

y = 0. We refer to the one-soliton
solution (2.1) as a line soliton, which can be expressed by a (contour) line,θ1 = θ2, in thex-y
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c=3/2 c=1/4

c=3/4

w1=1

w1=1/2

w1=-1/4

Figure 1. The confluence of two shocks of the Burgers equation with(k1,k2,k3) = (− 1
4 ,

1
2 ,1),

which also represents a resonant soliton solution of the KP equation. Here and in the following,
unless indicated otherwise, the horizontal and vertical axes are respectivelyx andy, and the
graph shows contour lines of the functionu(x,y,t) =−2∂x w1(x,y,t).

plane. In this paper, since we discuss the pattern of solitonsolutions in thex-y plane, we refer
to c= dx/dy as the velocity of the line soliton in thex direction; that is,c= 0 indicates the
direction of the positivey-axis.

Now we consider the case of a (2,1)-soliton, whose tau-function is given by

τ1 = eθ1 +eθ2 +eθ3 .

This situation is explained in Ref. [15], and the solution describes the confluence of two
shocks. Takingk1 < k2 < k3 without loss of generality, fory → −∞ the two shocks (which
correspond to line solitons foru) have velocitiesc1,2 = k1 + k2 andc2,3 = k2 + k3, and the
single shock fory → ∞ has velocityc1,3 = k1 + k3. This case is illustrated figure 1 with
(k1,k2,k3) = (− 1

4,
1
2,1). A simple analysis (see below for more details) shows that the

functionw1 = −∂x logτ1 takes the following asymptotic values:w1 ∼ k1 = − 1
4 for largex,

w1 ∼ k3 = 1 for large−x, and in the middle region for large−y, w1 ∼ k2 =
1
2.

This Y-shape interaction represents a resonance of three line solitons. The resonance
conditions for three solitons with the wavenumber vectors{k i, j | 1 ≤ i < j ≤ 3} and the
frequencies{ωi, j | 1≤ i < j ≤ 3} are given by

k1,2+ k2,3 = k1,3, and ω1,2+ω2,3 = ω1,3, (2.2)

which are trivially satisfied by those line solitons. Here wepoint out that this solution is also
the resonant case of the ordinary 2-soliton solution of the KP equation. As we mentioned
earlier, the ordinary 2-soliton solution is given by theM = 2 tau-function (1.4) with (1.6).
The explicit form of theτ2-function is

τ2 = (k1− k3)eθ1+θ3 +(k1− k4)eθ1+θ4 +(k2− k3)eθ2+θ3 +(k2− k4)eθ2+θ4,

where, as before,θi = −kix+ k2
i y− k3

i t + θ0
i . Note that ifk2 = k3, the τ2-function can be

written as

τ2 = eθ1+θ2+θ4
[
(k1− k3)∆e−θ4 +(k1− k4)e−θ2 +(k2− k4)e−θ1

]
,

where ∆ = exp(θ0
3 − θ0

2) = constant. Since the exponential factoreθ1+θ2+θ4 gives zero
contribution to the solutionu= 2∂2

x logτ2, theτ2-function is equivalent to the case of a (2,1)-
soliton solution (except the signs of the phases, and more precisely it is a (1,2)-soliton); that
is, the resonant solution with confluence of solitons. Note also that the conditionk2 = k3

is nothing else but the resonant condition in Ref. [11], and it describes the limiting case of
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an infinite phase shift in the ordinary 2-soliton solution, where the phase shift between the
solitons asy→±∞ is given by

δ =
(k1− k3)(k2− k4)

(k2− k3)(k1− k4)
.

The resonant process for the(N−,1)-soliton solutions of the KP equation can be expressed as
a generalization of the confluence of shocks discussed earlier. This case has been discussed
in Ref. [10].

We now discuss the general case of(N−,N+)-soliton solutions. In order to describe the
asymptotic pattern of the solution associated with the tau-function (1.9), we start with the
following:

Lemma 2.1. Let f be given by

f =
N
∑

i=1
eθi , with θi =−kix+ k2

i y+θ0
i .

Then for N= N+ + N− and 1 ≤ N+ ≤ N − 1, the tau-function defined by the Hankel
determinant (1.9) has the form

τN+ = ∑
1≤i1<···<iN+≤N

∆(i1, . . . , iN+) exp

(
N+

∑
j=1

θi j

)

, (2.3)

where∆(i1, . . . , iN) is the square of the van der Monde determinant,

∆(i1, . . . , iN) = ∏
1≤ j<l≤N+

(ki j − ki l )
2 .

Proof. Apply the Binet-Cauchy theorem [5] for

τN+ = det



















eθ1 eθ2 · · · eθN

k1eθ1 k2eθ2 · · · kNeθN

...
...

. . .
...

kN+−1
1 eθ1 kN+−1

2 eθ2 · · · kN+−1
N eθN



















1 k1 · · · · · · kN+−1
N

1 k2 · · · · · · kN+−1
N

...
...

. . .
. . .

...
...

...
. . .

. . .
...

1 kN · · · · · · kN+−1
N























.

One should note from (2.3) that theτN+ -function containsall possible combinations of
N+ phases from the set{θ j | j = 1, . . . ,N}, unlike the case of ordinary multi-soliton solutions
of the KP equation. For example, theτ2-function for the 2-soliton solution with (1.6) include
only four terms, and is missing the combinationsθ1+ θ2 andθ3+ θ4. This makes a crucial
difference on the interaction patterns of soliton solutions, as explained in this paper. In
particular, we will see that the(N−,N+)-solitons are all of resonant type in the sense that local
structure of each interaction point in those solitons consists of either(2,1)- or (1,2)-solitons.

Remark 2.2. TheτN+ -function given by (1.9) is positive definite, and thereforethe solution
u has no singularity. In general, the Wronskian (1.4) takes zeros at some points in the
flow parameters. The set of those points is called Painlevé divisor, whose geometry has an
interesting structure related to the Birkhoff stratification of the Grassmannian [1]. Also, if
one includes some exponential terms with negative coefficients in (1.8), theτM-functions
vanish on a set of points in(t1, t2, · · · , tN−1). Then the set of those points can be described as
intersections of the Bruhat cells of the flag manifold (see for example [2]).
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η
1 η

2

η
3

η
4

η
5

c

η

Figure 2. The functionsη j (c) = kj (kj − c) for (k1,k2,k3,k4,k5) = (−2,−1,− 1
2 ,

3
4 ,

3
2). The

levels of intersection 0, 1, 2, 3 are respectively denoted bycircles, diamonds, triangles and
stars.

Let us now define a local coordinate frame(ξ,y) in order to study the asymptotics for
large|y| with

x= cy+ ξ .

Then the phase functionsθi in f of (1.8) become

θi =−kiξ+ηi(c)y+θ0
i , for i = 1, . . . ,N ,

with

ηi(c) := ki(ki − c) .

Without loss of generality, we assume the ordering for the parameters{ki | i = 1, . . . ,N},

k1 < k2 < · · ·< kN .

Then one can easily show that the linesη = ηi(c) are in general position; that is, each line
η = ηi(c) intersects with all other lines atN− 1 distinct points in thec-η plane; in other
words, onlytwo lines meets at each intersection point. Figure 2 shows a specific example,
corresponding to the values(k1,k2,k3,k4,k5) = (−2,−1,− 1

2,
3
4,

3
2).

Now the purpose is to find the dominant exponential terms in the τN+ -function (2.3)
for y → ±∞ as a function of the velocityc. First note that if only one exponential is
dominant, thenw1 = −∂x logτN+ is just a constant, and therefore the solutionu = −2∂xw1

is zero. Then, nontrivial contributions tou arise when one can findtwo exponential terms
which dominate over the others. Note that because the intersections of theηi ’s are always
pairwise, three or more terms cannot make a dominant balancefor large|y|. In the case of
(N−,1)-soliton solutions, it is easy to see that at eachc the dominant exponential term for
y → ∞ is provided by onlyη1 and/orηN, and therefore there is only one shock (N+ = 1)
moving with velocityc1,N = k1 + kN corresponding to the intersection point ofη1 andηN

(see figure 2). On the other hand, asy → −∞, each termη j can become dominant for
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somec, and at each intersection pointη j = η j+1 the two exponential terms corresponding
to η j andη j+1 give a dominant balance; therefore there areN− = N−1 shocks moving with
velocitiesc j , j+1 = k j + k j+1, for j = 1, . . . ,N−1 (see again figure 2).

In the general case,N+ 6= 1, theτN+ -function in (2.3) involves exponential terms having
combinations of phases, and two exponential terms that makea dominant balance can be
found as follows: Let us first define thelevel of intersectionof ηi(c).

Definition 2.3. Let ηi(c) andη j(c) intersect at the value c= ci, j = ki + k j , i.e., ηi(ci, j ) =
η j(ci, j). The level of intersection, denoted byσi, j , is defined as the number of otherηl ’s that
at c= ci, j are larger thanηi(ci, j) = η j(ci, j). That is,

σi, j :=
∣
∣{ηl | ηl (ci, j)> ηi(ci, j) = η j(ci, j )}

∣
∣ .

We also define I(n) as the set of pairs(ηi ,η j ) having the levelσi, j = n, namely

I(n) := {(ηi ,η j ) | σi, j = n, for i < j }.

The level of intersection can take the range 0≤ σi, j ≤ N−2. Then one can show:

Lemma 2.4. The set I(n) is given by

I(n) = {(ηi ,ηN−n+i−1) | i = 1, . . . ,n+1} .

Proof. From the assumptionk1 < k2 < · · · < kN, we have the following inequality at
c= ci, j (i.e. ηi = η j ) for i < j,

ηi+1, . . . ,η j−1 < ηi = η j < η1, . . . ,ηi−1, η j+1, . . . ,ηN .

Then takingj = N−n−1 leads to the assertion of the Lemma.

Note here that the total number of pairs(ηi ,η j) is
(

N
2

)

= 1
2N(N−1) =

N−2
∑

n=0
|I(n)| .

We illustrate these definitions in figure 2, where the setsI(n) for the level of intersection
n = 0,1,2,3, which are respectively marked by circles, diamonds, triangles and stars, are
given by







I(0) = {(η1,η5)},

I(1) = {(η1,η4), (η2,η5)},

I(2) = {(η1,η3), (η2,η4), (η3,η5)},

I(3) = {(η1,η2), (η2,η3), (η3,η4), (η4,η5)}.

For the case of(N−,N+)-solitons, the following formulae are useful:
{

I(N−−1) = {(ηi ,ηN++i) | i = 1, . . . ,N−} ,

I(N+−1) = {(ηi ,ηN−+i) | i = 1, . . . ,N+} .

Here recall thatN+ + N− = N. These formulae indicate that, for each intersecting pair
(ηi ,η j) with the level N− − 1 (N+ − 1), there areN+ − 1 termsηl ’s which are smaller
(larger) thanηi = η j . Then the sum of thoseN+ − 1 terms with eitherηi or η j provides
two dominant exponents in theτN+ -function for y → −∞ (y → ∞) (see more detail in the
proof of Theorem 2.5). Note also that|I(N±−1)|= N∓. Now we can state our main theorem:

Theorem 2.5. Let w1 be a function defined by

w1 =−
∂
∂x

logτN+ ,

with τN+ given by (2.3). Then w1 has the following asymptotics for y→±∞ :
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(i) For y→−∞ and x= ci,N++i y+ ξ for i = 1, . . . ,N− ,

w1 −→







Ki(−,−) :=
N++i

∑
j=i+1

k j as ξ →−∞ ,

Ki(+,−) :=
N++i−1

∑
j=i

k j as ξ → ∞ .

(ii) For y→ ∞ and x= ci,N−+i y+ ξ for i = 1, . . . ,N+ ,

w1 −→







Ki(−,+) :=
i−1
∑
j=1

k j +
N+−i+1

∑
j=1

kN− j+1 as ξ →−∞ ,

Ki(+,+) :=
i

∑
j=1

k j +
N+−1

∑
j=1

kN− j+i as ξ → ∞ .

where ci, j = ki + k j .

Proof. First note that at the pointηi = ηN++i , i.e.,(ηi ,ηN++i) ∈ I(N−−1), from Lemma 2.4
we have the inequality,

ηi+1,ηi+2, . . . ,ηi+N+−1

︸ ︷︷ ︸

N+−1

< ηi = ηN++i .

This implies that, forc= ki + kN++i , the following two exponential terms in theτN+ -function
in Lemma 2.1,

exp

(
N++i−1

∑
j=i

θ j

)

, exp

(
N++i

∑
j=i+1

θ j

)

,

provide the dominant terms fory → −∞. Note that the conditionηi = ηN++i leads to
c = ci,N++i = ki + kN++i . Thus the functionw1 can be approximated by the following form
alongx= ci,N++i y+ ξ for y→−∞:

w1 ∼ −
∂
∂ξ

log
(
∆i(+,−)e−Ki(+,−)ξ +∆i(−,−)e−Ki(−,−)ξ)

=
Ki(+,−)∆i(+,−)e−Ki(+,−)ξ +Ki(−,−)∆i(−,−)e−Ki(−,−)ξ

∆i(+,−)e−Ki(+,−)ξ +∆i(−,−)e−Ki(−,−)ξ ,

=
Ki(+,−)∆i(+,−)e(kN++i−ki)ξ +Ki(−,−)∆i(−,−)

∆i(+,−)e(kN++i−ki)ξ +∆i(−,−)
,

where

∆i(+,−) = ∆(i, . . . ,N++ i −1) exp

(
N++i−1

∑
j=i

θ0
j

)

∆i(−,−) = ∆(i +1, . . . ,N++ i) exp

(
N++i

∑
j=i+1

θ0
j

)

.

Now, fromki < kN++i it is obvious thatw1 has the desired asymptotics asξ→±∞ for y→−∞.
Similarly, for the case of(ηi ,ηN−+i) ∈ I(N+−1) we have the inequality

ηi = ηN−+i < η1,η2, . . . ,ηi−1,ηN−+i+1 . . . ,ηN

︸ ︷︷ ︸

N+−1

.
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Figure 3. Asymptotic behavior of the functionw1 with k1 < k2 < · · · ≤ 0< · · · < kN−1 < kN.
As y →−∞ there areN− jumps, moving with velocitiescj,N++ j ( j = 1, . . . ,N−). As y → ∞
there areN+ jumps, moving with velocitiesci,N−+i (i = 1, . . . ,N+).

Then the dominant terms in theτN+ -function onx= ci,N−+iy+ ξ for y→ ∞ are given by the
exponential terms

exp

(
i

∑
j=1

θ j +
N+−i

∑
j=1

θN− j+1

)

, exp

(
i−1
∑
j=1

θ j +
N+−i+1

∑
j=1

θN− j+1

)

.

Then, following the previous argument, we obtain the desired asymptotics asξ → ±∞ for
y→ ∞.

For other values ofc, that is forc 6= ci,N++i andc 6= ci,N−+i , just one exponential term
becomes dominant, and thusw1 approaches a constant as|y| → ∞. This completes the proof.

Theorem 2.5 can be summarized in figure 3: Asy → −∞, the functionw1 hasN−

jumps, moving with velocitiesc j ,N++ j for j = 1, . . . ,N−; as y → ∞, w1 has N+ jumps,
moving with velocitiesci,N−+i for i = 1, . . . ,N+. Each jump represents a line soliton of the
u-solution, and therefore the whole solution represents an(N−,N+)-soliton. Each velocity of
the asymptotic line solitons in the(N−,N+)-soliton is determined from thec-η graph of the
levels of intersections (see figure 2). For example, in the case of(1,4)-soliton in figure 2, one
incoming soliton has velocityc1,4+1 = c1,5, corresponding to the setI(0), and four outgoing
solitons have the velocitiesci,1+i for i = 1, . . . ,4, corresponding toI(3). Note that, given a set
of N phases (as determined by the parameterski for i = 1, . . . ,N), the same graph can be used
for any(N−,N+)-soliton withN−+N+ =N. In particular, ifN= 2M, we haveN+ =N− =M,
and Theorem 2.5 implies that the velocities of theM incoming solitons are equal to those of
the M outgoing solitons. However, we show in the next section thatthese (resonant)M-
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soliton solutions are different from the ordinary (nonresonant) multi-soliton solutions of the
KP equation.

We remark that Theorem 2.5 determines the complete structure of asymptotic patterns of
the solutionsu(x,y, t) given by (1.3) for the Toda lattice equation. In the case of the ordinary
multi-soliton solution of the KP equation, the tau-function (1.4) does not contain all the
possible combinations of phases, and therefore the theoremshould be modified. However,
the key idea for the asymptotic analysis of using the levels of intersection is still applicable.
In fact, one can find from the same argument that the asymptotic velocities for the ordinary
M-solitons are given byc2i−1,2i = k2i−1+ k2i where theτM-function is the Wronskian (1.4)
with fi = eθ2i−1 +eθ2i for i = 1, . . . ,M andk1 < k2 < · · · < k2M. Note that the velocities are
different from those of the resonantM-soliton solution for the Toda case.

Finally, it should be noted that the asymptotic valuesw1, j :=−∂x logτ j asξ →±∞ show
the sorting property of the Toda lattice equation; that is, for j = 1, . . . ,N,

b j =
∂
∂x

log
τ j

τ j−1
= w1, j−1−w1, j −→

{
−k j as ξ → ∞ ,
−kN− j+1 as ξ →−∞ .

Also, one can easily show thata j → 0 as|ξ| → ∞, which implies the sorting behavior, i.e.,

L −→

{
diag(−k1,−k2, . . . ,−kN) as ξ → ∞ ,
diag(−kN,−kN−1, . . . ,−k1) as ξ →−∞ .

Recall here that the set{λ =−ki | i = 1, . . . ,N} contains the eigenvalues of the Lax matrixL,
with λ1 > · · ·> λN as mentioned in (1.15).

3. Intermediate patterns of soliton interactions

In this section we describe the intermediate patterns of theresonant solitons in thex-y plane.
The key idea is to consider the pattern as a collection of fundamental resonances. The
fundamental resonance consists of three parameters:{k1,k2,k3}, that is, the case ofN= 3 with
|N−−N+|= 1. Without loss of generality, let us takeN− = 1 andN+ = 2, i.e., a (1,2)-soliton.
(The case of a (2,1)-soliton is obtained from the symmetry(x,y, t) → (−x,−y,−t) of the KP
equation, i.e., from the duality of the determinants,τ1 andτ2 for N= 3.) Then, withk1 < k2 <
k3, the pattern of the fundamental resonance is a Y-shape graphas shown in figure 4. Here
and in the following we denote with[i, j] theasymptoticline soliton withc = ci, j = ki + k j .
Notice thatI(N−−1) = I(0) = {(η1,η3)} andI(N+−1) = I(1) = {(η1,η2),(η2,η3)}.

One should note that at the vertex of the Y-shape graph each index appears exactly twice
as the result of resonance, and in figure 4b those vertices form a triangle, which we refer to
as a “resonant triangle”. The resonant triangle is equivalent to the resonance condition for
the wavenumber vectors in (2.2). Since the vertex of the Y-shape graph consists of three line
solitons,θi = θ j , 1≤ i < j ≤ 3, the location of the vertex is obtained from the solution ofthe
equationsθ1 = θ2 = θ3, i.e.,

(
k1− k2 −(k2

1− k2
2)

k1− k3 −(k2
1− k2

3)

)(
x
y

)

=

(
θ0

1−θ0
2− (k3

1− k3
2)t

θ0
1−θ0

3− (k3
1− k3

3)t

)

.

Note here that the coefficient matrix is nonsingular fork1 < k2 < k3, and the location(x,y)
is uniquely determined by a function oft. This implies that there always exists a Y-shape
graph if there are three line solitons satisfying the resonance conditions (2.2). Since theτN+ -
function (2.3) contains all possible combinations ofN+ phases, all the vertices in the graph
form Y-shape intersections as a result of dominant balance of three exponential terms in the
τN+ at each vertex. One should also note that a vertex with 4 or more line solitons is not
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[1,3]

[1,2]
[2,3]

η
1

η
2

η
3

c

η

Figure 4. The Y-shape graph (left) illustrating a fundamental resonance with (k1,k2,k3) =
(−1,− 1

4 ,
3
4) and the corresponding functionsηi(c), i = 1,2,3 (right). The graph to the left

represents contour lines ofu(x,y,t). The circle at the level setI(0) corresponds to the incoming
soliton, and the stars atI(1) correspond to the outgoing solitons.

generic: A vertex withm distinctline solitons is obtained from the system ofm equations,
{θik = θ jk | ik 6= jk, k= 1, . . . ,m}, in which at leastm−1 equations are linearly independent.
Then form≥ 4, this system in(x,y) is overdetermined, so that the solution exists only for
specific choices ofθ0

i for fixed values oft. In the cases of both ordinary and resonant 2-
soliton solutions, the two pairs of solitons asy → ±∞ are the same, and therefore there are
only two independent equations. Also, as mentioned before,the ordinary 2-soliton solution
needs a balance of four exponential terms to realize an X-shape vertex. However, this balance
cannot be dominant over a balance of three terms with theτN+ -function given by (2.3). In
what follows, we show that the X-shape vertex of an ordinary 2-soliton solution is blown up
into a hole with four Y-shape vertices for the resonant 2-soliton solution.

We now consider the case withN− = 2 andN+ = 2, which describes the resonant 2-
soliton solution. We can start with the graph in figure 4 having k1 < k2 < k3. Then we
addk4 with k3 < k4. From Theorem 2.5 we find that both asymptotic solutions fory →±∞
consist of the solitons with [1,3] and [2,4]. Withk1 < k2 < k3 < k4, the velocityc2,4 of the
additional soliton [2,4] asy→−∞ satisfiesc2,4 > c2,3 > c1,2. For sufficiently large negative
values oft, the [2,4] soliton starts in the left side of the [1,3] soliton and first intersects with
the [1,2] soliton; then the resonance condition determinesthat the [1,2] and [2,4] solitons
merge and make a new outgoing soliton [1,4]. Since theN+ solitons consist of [1,3] and [2,4],
this [1,4] soliton first branches to [1,3] and [3,4]. Then theintermediate [3,4] soliton now
intersects with the [2,3] soliton to form the [2,4] outgoingsoliton. (Note thatc3,4 is the largest
velocity among these solitons.) The process forming a resonant 2-soliton is shown in figure 5.
Note here that there are four vertices in the interaction pattern, which correspond to the four
resonant triangles in thec-η plane.

One should also note that the [2,4] soliton cannot intersectdirectly the [1,3] soliton unless
a [1,2] soliton or a [3,4] soliton are created as intermediate solitons. The graph of this latter
case is obtained from figure 5 by letting(x,y, t) → (−x,−y,−t). Also note that the ordinary
2-soliton solution with those same parameters(k1, . . . ,k4) for { f1, f2} in (1.6) has different
asymptotic solitons, namely [1,2] and [3,4], and, because of the missing exponential terms in
theτ2-function, this ordinary 2-soliton solution cannot have resonant interactions; that is, no
resonant triangle can be formed with only those exponentialterms. This is also true for any
ordinary multi-soliton solutions of the KP equation.
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Figure 5. A resonant 2-soliton solutionu(x,y,t) (left) with (k1,k2,k3,k4) = (−1,− 1
4 ,

3
4 ,2) and

the corresponding functionsηi(c) (right). Both incoming and outgoing solitons correspond to
the interstections marked by circles at the level setI(1).

We can continue the process of addingn new incoming solitons to the graph in figure 5
to get a(2+n,2)-soliton solution. One can also addmnew outgoing solitons to the new graph
to obtain a(2+n,2+m)-soliton solution. This last step can be done by addingm incoming
solutions to a(2,2+ n)-soliton solution, which is simply obtained by theπ rotation (i.e.,
(x,y)→ (−x,−y)) of the graph of the(2+n,2)-solution using the duality of the determinant.
Then one can show the following:

Proposition 3.1. In the generic situation, the number of holes (bounded regions) in the graph
of the(N−,N+)-soliton solution is(N−−1)(N+−1).

Proof. We use mathematical induction. The caseN+ = 1 corresponds to the Burgers
equation, and it is immediate to show that the graph of the (N−,1)-soliton solution has a
tree shape; that is, no holes (see also Ref. [10]). Now suppose that the(N−,N+)-soliton has
(N−−1)(N+−1) holes. Add a new phaseθN+1, with kN+1 satisfyingk1 < · · ·< kN < kN+1,
which produces a new, fastest, incoming[N−+1,N+1] soliton, and assume that this solution
intersects with the[1,N−+1] soliton, which is the slowest outgoing soliton. Then the resonant
process of those solitons generates a[1,N+1]-soliton as a (2,1) process, which then intersects
with the new slowest[1,N+2] soliton to generate an intermediate[N−+2,N+1] soliton. This
intermediate soliton interacts with the second slowest outgoing soliton, the[2,N+2] soliton,
to generate[2,N+ 3] and [N+ 3,N+ 1] solitons, and so on. This process is illustrated in
figure 6. From this figure, it is obvious that there areN+ −1 newly created holes; that is, if
(N−,N+)→ (N−+1,N+), the number of holes increases as

(N−−1)(N+−1)→ (N−−1)(N+−1)+ (N+−1) = N−(N+−1) .

The case of the(N−,N++1) solution can be analyzed in the same way using the duality of
the determinants. This completes the proof.

One can also show the following from Proposition 3.1:

Corollary 3.2. In the generic situation for N−+N+ =N≥ 3, the total numbers of intersection
points and intermediate solitons in a(N−,N+)-soliton solution are respectively given by
2N−N+−N and 3N−N+−2N.
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Figure 6. A schematic diagram illustrating the creation of new holes in the resonant interaction
process for a(N−+1,N+)-soliton solution withN−+N+ =N. The new soliton[N−+1,N+1]
is assumed to have a resonant interaction with the previous outgoing soliton[1,N− +1].

Proof. By applying mathematical induction on figure 6, one can easily find that the number of
new vertices (intersection points) is 2N+−1 and that of new intermediate solitons is 3N+−2.
This yields the desired results.

One should compare these numbers with the case of ordinaryM-soliton solution, where
the total numbers of holes and intersection points are1

2(M − 1)(M − 2) and 1
2M(M − 1),

respectively. The resonant process blows up each vertex in an ordinaryM-soliton solution to
create a hole, so that the total number of holes in a resonantM-soliton solution is given by

1
2(M−1)(M−2)+ 1

2M(M−1) = (M−1)2 .

Note also that the total number of vertices in a resonantM-soliton is four times of the vertices
of an ordinaryM-soliton, i.e. each vertex is blown up to make 4 vertices withone hole.

Figure 7 shows a few snapshots illustrating the temporal evolution of a resonant 3-soliton
solution with (k1, . . . ,k6) = (− 5

2,−
5
4,−

1
2,

1
2,

3
2,

5
2). This resonant 3-soliton is similar to the

“spider-web-like” soliton solution found for the cKP equation (cf. figure 10 in Ref. [9]), even
though the underlying equation is different in those two cases. As described in this paper, the
behavior is determined by the structure of the tau-functionwhich is just the sum of exponential
functions. The tau-functions of the KP and cKP equations have the same structure for those
solutions.

Figure 8 shows the temporal evolution of a (4,3)-soliton solution with (k1, . . . ,k7) =
(−3,−2,−1,0,1,2,3). In both figure 7 and figure 8, it can be observed that different
intermediate solitons mediate the interaction process at different times. Also note that, for
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Figure 7. Snapshots illustrating the temporal evolution of a resonant 3-soliton solutionu(x,y,t)
with (k1, . . . ,k6) = (− 5

2 ,−
5
4 ,−

1
2 ,

1
2 ,

3
2 ,

5
2) and θ0

1 = · · · = θ0
6 = 0: (a) t = −10, (b) t = 0,

(c) t = 10, (d)t = 20. Note the symmetry(x,y,t) ↔ (−x,−y,−t) in (a) and (c).

some finite values oft, the number of holes in the solution changes. However, Proposition 3.1
applies in the generic situation, and the total number of holes remains(N− − 1)(N+ − 1),
namely 4 holes in figure 7 and 6 holes in figure 8. In both figures,we have set allθ0

i = 0, so
that all line solitons merge initially at the origin. It should be noted that even though several
solitons might merge at the same point for some finite values of t, generically the resonant
interactions are always among three solitons, i.e., fundamental resonances, as explained in
this paper.

Finally, we would like to point out that the KP equation has a large variety of multi-
soliton-type solutions. Among those solutions, we found that, since theτN+ -function of the
resonant(N−,N+)-soliton for the Toda lattice hierarchy contains all possible combinations
of phase terms{θi | i = 1, . . . ,N}, the interaction process for these solutions results in a
fully resonant situation. On the other hand, the ordinaryM-soliton solutions display a
nonresonantcase; that is, resonant triangles representing either (2,1)- or (1,2)-solitons cannot
be formed because of the missing exponential terms in the tau-function. One can then find
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Figure 8. Snapshots illustrating the temporal evolution of a (4,3)-soliton solutionu(x,y,t) with
(k1, . . . ,k7) = (−3,−2,−1,0,1,2,3) andθ0

1 = · · · = θ0
7 = 0: (a) t = −8, (b) t = 0, (c) t = 8,

(d) t = 16. Note the symmetry(x,y,t) ↔ (−x,y,−t) in (a) and (c).

a partially resonant case consisting of ordinary multi-soliton interaction with the addition of
some resonant interactions; one such example is the case having f1 = eθ1 + eθ2 + eθ3 and
f2 = eθ3 +eθ4 for theτ2-function (1.4) where the ordinary 2-soliton interaction coexists with
resonant interactions. We will report the details of the general patterns for multi-soliton-like
solutions for the KP equation in a future communication.
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Appendix: The Wronskian solutions of the KP hierarchy

In this Appendix we briefly explain how the Wronskian solution (1.4) is obtained from the
Sato theory (see Ref. [14] for more details). The Sato theoryis formulated on the basis of a
pseudo-differential operator,

L = ∂+u2∂−1+u3∂−2+ · · · ,

where∂ is a derivation satisfying∂∂−1 = ∂−1 ∂ = 1 and the generalized Leibnitz rule,

∂ν( f g) =
∞
∑

k=0

(
ν
k

)
∂k f
∂xk ∂ν−kg, for ν ∈ Z .

(Note that the series terminates if and only ifν is a positive integer.) Then the KP hierarchy
can be written in the Lax form

∂L

∂tn
= [Bn,L], with Bn := (Ln)≥0, (A.1)

where(Ln)≥0 represents the polynomial (differential) part ofLn in ∂. Here the solution of
the KP equation (1.1) is given byu= 2u2 with t1 = x, t2 = y andt3 = t.

Now writing L in the dressing form,

L = W ∂W
−1, with W = 1+w1∂−1+w2∂−2+ · · · ,

the KP hierarchy becomes

∂W

∂tn
= BnW −W ∂n. (A.2)

Using (A.1), the variablesui ’s can be expressed in terms ofwj ’s; for example,
{

u2 =−w1,x,

u3 =−w2,x+w1w1,x,

and so on. (Here and in the following, subscriptsx andtn denote partial differentiation.) The
equations forwj are, for example,

{
w1,t2 =−2w1w1,x+w1,xx+2w2,x,

w2,t2 =−2w2w1,x+w2,xx+2w3,x,

and so on. Here one can easily show that a finite truncation ofW , given by

WM := 1+w1∂−1+ · · ·+wM∂−M ,

is invariant under the equation (A.2). For example, theW -equation withM = 1 truncation,
i.e. W1 = 1+w1∂−1, is just the Burgers equation,

w1,t2 =−2w1w1,x+w1,xx. (A.3)

For theM-truncation, consider the ordinary differential equationfor a function f ,

WM∂M f = f (M)+w1 f (M−1)+ · · ·+wM f = 0. (A.4)

Let{ f j | j =1, . . . ,M} be a fundamental set of solutions of (A.4). Then the coefficient function
w1 is expressed in terms of the Wronskian for the set of those solutions, i.e.,

w1 =−
∂
∂x

logτM , with τM = Wr( f1, . . . , fM).

which leads to a solution of the KP equation,

u= 2u2 =−2
∂
∂x

w1 = 2
∂2

∂x2 logτM .
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Recall that forM = 1 this equation gives the well-known Cole-Hopf transformation between
the Burgers equation forw1 and the linear diffusion equation forτ1 = f . One can also show
from (A.2) that f satisfies the linear partial differential equations,

∂ f
∂tn

=
∂n f
∂xn , for n= 1,2, . . . .

Thus the equations for(w1, . . . ,wM) on theM-truncation are linearizable, and the behavior of
the solutions is expected to be similar to the case of the Burgers equation. (TheM-truncated
equation is a multi-component extension of the Burgers equation [6].) This is one of the main
motivations of the present study.
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