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Abstract

This article concerns the dressing method for solving of multidimensional nonlinear
Partial Differential Equations. In particular, we join hierarchy of matrix Burgers type
equation with hierarchies of equations integrable by the Inverse Spectral Transform (IST).
Example of resonance interaction of wave packets in (3+1)-dimensions is given.

1 Introduction

It is well known that different versions of the dressing method [1, 2, 3, 4, 5] are very successful
tools for solving of so called completely integrable nonlinear Partial Differential Equations
(PDE). These equations, in turn, have wide application area in different branches of physics,
such as hydrodynamics, plasma physics, superconductivity, nonlinear optics. Although till
recently dressing methods have been used only for PDE integrable by the Inverse Spectral
Transform (IST), it has been shown in [6] that there is another type of equations (maybe not
integrable by IST) which admit properly modified dressing procedure for construction of large
manifold of their solutions. But the technique proposed there left opened many questions. For
instance, it is not clear whether derived nonlinear PDE can be linearized by some substitution
[7, 8]. Also it was difficult to characterize the manifold of available solutions.

In this paper we replace algebraic operator with integral one, generalize system of equations
introducing the set of additional parameters (independent variables of nonlinear PDE) and
modify significantly the algorithm given in [6]. This allows us to simplify description of PDE’s
properties, exhibit more information about solution manifold as well as relations to the classical
solvable (both linearizable and integrable by IST) PDE. Although all statements following
hereafter can be proved, we omit most of the proofs for the sake of brevity. They will be given
in different paper.

Thus, the basic object is the following N ×N matrix integral equation

Φ ≡ Φ(λ, µ; t) =

∫

Dν

Ψ(λ, ν; t)U(ν, µ; t)dν ≡ Ψ ∗ U, (1)
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where λ = (λ1, . . . , λNλ
), µ = (µ1, . . . , µNµ

), ν = (ν1, . . . , νNν
) are vector variables with different

length in general; integration is over whole space Dν of the appropriate vector parameter; Φ,
Ψ and U are N × N matrix functions of arguments. Star means integration over space of
inner variable: f ∗ g ≡

∫

Dν

f(λ1, . . . , ν)g(ν, . . . , µn)dν. We require that Ψ is invertible operator,

i.e. equation (1) can be solved uniquely for the function U . By definition, operator A(λ, µ)
is invertible, if there are operators A−1

L (λ, µ) and A−1
R (λ, µ) such that

∫

Dν

A(λ, ν)A−1
R (ν, µ)dν =

∫

Dν

A−1
L (λ, ν)A(ν, µ)dν = δ(λ−µ). The functions Φ and Ψ are related by means of the compatible

system of linear integral-differential equations, which, on the other hand, introduce (infinite)
set of additional parameters t = (t1, t2 . . . ) (independent variables of nonlinear PDE):

Mi ∗Ψ =
∑

k

Lik ∗ Φ ∗ Cki, Cki = Cki(λ, µ; t), i = 1, 2, . . . (2)

where Mj = Mj(λ, µ; ∂t1, ∂t2 , . . . ) are first order and Ljk = Ljk(λ, µ; ∂t1 , ∂t2 , . . . ) are arbitrary
order linear differential operators with matrix coefficients depending on λ and µ. This overde-
termined system together with its compatibility condition defines Ψ and Φ. Finally, the same
compatibility condition with substitution Φ from the eq.(1) results in nonlinear PDE whose
solution is expressed in terms of U .

After this preliminary discussion we derive some general equations using the following sim-
plified version of the system (2):

Ψti = Si ∗ Φ ∗ Ci, i = 1, 2, . . . , (3)

where Si(λ, µ; t) and Ci(λ, µ; t) are known functions of t, which will be seen later. The com-
patibility condition for the system (3) has the form

Sitj ∗ Φ ∗ Ci − Sjti
∗ Φ ∗ Cj + Si ∗ Φ ∗ Citj − Sj ∗ Φ ∗ Cj ti

+ (4)

Si ∗ Φtj ∗ Ci − Sj ∗ Φti ∗ Cj = 0,

which is linear system of compatible integral-differential equations for the function Φ. Solving
this equation, substituting result in (3) and integrating it, we obtain the expression for Ψ:
Ψ(λ, µ; t) = ∂−1

t1
(S1∗Φ∗C1)(λ, µ; t)+E(λ, µ)+F (λ, µ; t2, t3, . . . ). Here E is invertible operator,

function F provides compatibility of the system (3). Being invertible, operator Ψ provides
unique solution to the eq.(1).

On the other hand, eq.(4) may be given another form after substitution eq.(1) for Φ and
(3) for Ψti

Sitj ∗Ψ ∗ U ∗ Ci − Sj ti
∗Ψ ∗ U ∗ Cj + Si ∗Ψ ∗ U ∗ Citj − Sj ∗Ψ ∗ U ∗ Cj ti

+ (5)

Si ∗ (Sj ∗Ψ ∗ U ∗ Cj ∗ U +Ψ ∗ Utj ) ∗ Ci − Sj ∗ (Si ∗Ψ ∗ U ∗ Ci ∗ U +Ψ ∗ Uti) ∗ Cj = 0,

which is nonlocal equation quadratic in U . It may result in nonlinear PDE for the dependent
variables, expressed in terms of U , Si and Ci. To provide this possibility we must impose
specific dependence of the functions Si and Ci on their arguments, for instance, in accordance
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to the following set of relations:

Si(λ, µ; t) = S(λ, µ), Φ = S ∗ Φ + χ, χ = χ(λ, µ; t), (6)

Ci(λ, µ; t) =

∫

Dν

Ai(λ, ν)p1(ν; t)p2(µ)dν + c1(λ)Bic2(µ; t) ≡ Ai ∗ p1(t)p2 + c1Bic2(t), (7)

Ai ∗ c1 = c1Bi, (8)

where A is invertible operator, Ai ∗ Aj = Aj ∗ Ai, [Bi, Bj] = 0 and [∗, ∗] means commutator of
two matrices. Eqs.(6-8) split eq.(4) into the following set of three integral-differential equations
for Φ, p1 and c2 :

S ∗ Φtj ∗A1 − S ∗ Φt1 ∗Aj = 0, (9)

A1 ∗ (p1)tj − Aj ∗ (p1)t1 = 0, (10)

B1c2tj −Bjc2t1 = 0. (11)

Then one has the following nonlinear equation instead of (5)

Ψ ∗ (Utj ∗ A1 − Ut1 ∗ Aj + U ∗ Cj ∗ U ∗ A1 − U ∗ C1 ∗ U ∗ Aj)+ (12)

χt1 ∗ Aj − χtj ∗ A1 + χ ∗ (C1 ∗ U ∗ Aj − Cj ∗ U ∗ A1) = 0.

Note, that reduction leading to the equations introduced in [6] will be discussed in different
paper. Here we consider two other examples of multidimensional systems. First of them
(Sec.2.) represents combination of linearizable (Burgers type) and completely integrable (n-
wave) (3 + 1)-dimensional systems, having solutions depending on arbitrary functions of three
variables. Second example (Sec.3) is another generalization of the matrix n-wave system [9].
Properly introduced multiple scales expansion of this system results in the multidimensional
((3+1)-dimensional in our case) equation describing resonance interaction of wave packets. Its
solutions may depend on arbitrary functions of two variables. Both examples have extension
into (n + 1)-dimensions with arbitrary n.

2 Generalized hierarchy of linearizable (Burgers type)

and integrable by IST (n-wave) systems

In this section S(λ, µ) = δ(λ − µ), χ = 0, Aj = A ∗ · · · ∗ A
︸ ︷︷ ︸

j

≡ Aj, Bj = Bj , where A(λ, µ) is

invertible operator and B is nondegenerate constant matrix. Thus Ψti = Φ ∗ Ci with Ci given
by (7). After applying operator Ψ−1 from the left to the eq.(12) one results in

Ej = Utj ∗ A+ U ∗ Aj ∗ p1p2 ∗ U ∗ A+ U ∗ c1B
jc2 ∗ U ∗ A− (13)

(Ut1 ∗ A
j + U ∗ A ∗ p1p2 ∗ U ∗ Aj + U ∗ c1Bc2 ∗ U ∗ Aj) = 0

We may derive nonlinear system for the functions

u = p2 ∗ U ∗ c1, qn = p2 ∗ U ∗ An ∗ p1, vn = ∂nc2 ∗ U ∗ c1, wnm = ∂nc2 ∗ U ∗ Am ∗ p1, (14)
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which has the following ”short” form

p2 ∗ Ej ∗ c1 = 0, p2 ∗ Ej ∗ A
n ∗ p1 = 0, ∂nc2 ∗ Ej ∗ c1 = 0, ∂nc2 ∗ Ej ∗ A

m ∗ p1 = 0, (15)

or, extended form

utj − ut1B
j−1 + qju− q1uB

j−1 + uBjv0 − uBv0B
j−1 = 0, (16)

qntj − qn+j−1t1
+ qjqn − q1qn+j−1 + uBjw0n − uBw0(n+j−1) = 0,

vntj − vnt1B
j−1 + wnju− wn1uB

j−1 − Bj−1vn+1 + vn+1B
j−1 + (17)

vnB
jv0 − vnBv0B

j−1 = 0,

wmntj − wm(n+j−1)t1
+ wmjqn − wm1qn+j−1 −Bj−1w(m+1)n+ (18)

w(m+1)(n+j−1) + vmB
jw0n − vmBw0(n+j−1) = 0. (19)

The complete system of pure PDE is represented by the following set: eq. (16) with j = 2, eqs.
(17) and (18) with j = 2, 3, eq. (19) with j = 2, 3, 4. Thus, this system is (3+1)-dimensional.
It may be given the compact form if one introduces column of matrices u, qn, vn, wnm: χ =
[u, q1, q2, . . . , v1, v2, . . . , w00, w10, w01, . . . ]

T :

4∑

l=1

∑

mn

Vlijmn∂tlχmn +
∑

klmn

Tijklmnχklχmn = 0, (20)

where Vlijmn and Tijklmn are constants expressed in terms of the elements of the matrix B.
Physical application of the eqs. (16-19) is not found yet. In particular, it reduces into the

following (2+1)-dimensional systems:

1. Matrix Burgers type system (i.e. linearizable) for the function q0, if c1 = 0 or N = 1.

2. Matrix n-wave equation (n = N(N − 1)/2) for the function v0, if p1 = 0.

2.1 Construction of solutions

First, one needs to solve the system (8-10) for the functions c1, Φ, p1, c2:

A ∗ c1 = c1B, (21)

Φ(λ, µ; t) =

∫

Ωk

∫

Dν

Φ0(λ, ν; k)e
η1(ν;k,t)φ0(ν, µ; k)dkdν, (22)

p1(λ; t) =

∫

Ωk

∫

Dν

p0(λ, ν; k)e
η2(ν;k,t)p10(ν; k)dkdν, (23)

c2(λ; t) =

∫

Ωk

ek
∑

i B
itic20(λ; k)dk (24)

where ηi(µ; k, t) =
∑4

j=1 ηij(µ; k)tj, i = 1, 2, [ηij, ηik] = 0, det(ηij) 6= 0. Parameter k is complex
in general, integration is over whole complex plane Ωk of this parameter. Function c20 is
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arbitrary and functions φ0 and p0 solve the following system:

η1j(ν; k)φ0(ν, µ; k) =

∫

Dν1

η1(j−1)(ν; k)φ0(ν, ν1; k)A(ν1, µ)dν1, (25)

p0(λ, ν; k)η2j(ν; k) =

∫

Dν1

A(λ, ν1)p0(ν1, ν; k)η2(j−1)(ν; k)dν1, j = 2, 3, . . . . (26)

Functions ηj1 (j = 1, 2) are arbitrary, while ηjn with n > 1 provide compatibility of eqs. (25)
and (26).

Now one can integrate (3) to get Ψ (j = 1):

Ψ(t) = E + ∂−1
t1

[Φ(t) ∗ A ∗ p1(t)p2 + Φ(t) ∗ c1c2(t)] , (27)

where E = E(λ, µ) is invertible operator independent on t. For instance, E(λ, µ) = δ(λ− µ).
Next, find U from (1): U = Ψ−1 ∗ Φ. In general, operator Ψ−1 can be constructed only
numerically, unless Φ0 is degenerate (Φ0(λ, µ; k) =

∑

nΦ01(λ)Φ02(µ; k)) and explicit form for
E−1

L is known. In this case Ψ−1 may be found analytically, following the procedure proposed, for
instance, in [10], where ∂̄-problem with degenerate kernel has been solved. Similarly, eqs. (25)
and (26) can be solved numerically, unless A has the following structure: A(λ, µ) = A0(λ, µ) +∑

j Aj1(λ)Aj2(µ), where operator A0 is invertible with known analytical form for A0
−1
R . For

instance, A0(λ, µ) = δ(λ − µ). Then compatibility condition of the system (25) and (26)
produces dispersion relations in the form η1n(µ; k) = η11(µ; k) F1[(φ0 ∗Ai1)(µ; k), i = 1, 2, . . . ],
η2n(µ; k) = F2[(Ai2 ∗ p0)(µ; k), i = 1, 2, . . . ] η21(µ; k), where Fi are given matrix functions of
matrix arguments.

Finally, one can show that solutions of our (3+1)-dimensional system (16-19) constructed
in accordance with definitions (14) may depend on arbitrary functions of three real parameters,
for instance, t1, t2 and t3. This is owing to the factor Ψ ∗ A ∗ p1.

3 Resonance wave interaction in (3+1)-dimensions

In this section we consider eqs.(6-11) with S(λ, µ) 6= δ(λ−µ), χ 6= 0, p1 = 0 and Ψti = S∗Φ∗Ci.
It is convenient to apply operator c1 to the eqs.(1) and (9) from the right, giving them the form:

S ∗ Φ̃ + χ̃ = Ψ ∗ Ũ , Ũ = U ∗ c1, χ̃ = χ ∗ c1, (28)

(S ∗ Φ̃)tj = (S ∗ Φ̃)t1Bj, B1 = I, (29)

I is identity matrix, Bi are diagonal matrices and N ≥ 4. Let χ̃tj (λ; t) = χ̃(λ; t)aj, where aj
are constant matrices. We will need the following notations: bj = a1Bj − aj , V0 = c2 ∗ Ũ and
V1 = c2t1 ∗ Ũ . Nonlinear eq.(12) gets the following form after applying operator c1 from the
right:

Ψ ∗ (∂tj Ũ − ∂t1ŨBj + Ũ [Bj , V0]) + χ̃(bj − [Bj , V0]) = 0. (30)

Now assume that det(bj − [Bj, V0]) 6= 0 for all j and use two equations (30) with indexes j and
k, j 6= k to eliminate function χ̃. After applying operator c2 ∗Ψ

−1 from the left to the resulting
equation, we receive:

(∂tkV0 − ∂t1V0Bk + [V1, Bk] + V0[Bk, V0])(bk − [Bk, V0])
−1 = (31)

(∂tjV0 − ∂t1V0Bj + [V1, Bj] + V0[Bj, V0])(bj − [Bj , V0])
−1.
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Next, let us introduce different scales for variables tk, V0, V1: ∂tk → ǫ∂tk , V0 = ǫv, V1 = ǫ2v1.
Keeping only leading terms, we get from the eq.(31):

Ek ≡ vt1(Bjb
−1
j −Bkb

−1
k ) + vtkb

−1
k − vtj b

−1
j + (32)

[v1, Bk]b
−1
k − [v1, Bj]b

−1
j + v[v, Bj]b

−1
j − v[v, Bk]b

−1
k = 0.

Thus the complete system is represented by the pair of equations (32), Ek and En, k 6= n. One
can see that the following combination of these equations has no function v1 and contains only
off-diagonal elements of v:

Ek

(
Bnb

−1
n −Bjb

−1
j

)
− En

(
Bkb

−1
k − Bjb

−1
j

)
+ (33)

Bj(Ek −En)b
−1
j − BnEkb

−1
n +BkEnb

−1
k = 0.

Let j = 2, k = 3, n = 4 and write this equation in the following form

4∑

n=1

snij∂tnvij +
∑

k:k 6=i 6=j

Tikjvikvkj = 0, i 6= j, (34)

where skij, and Tikj are constants, expressed in terms of the elements of the matrices Bj and
bj . If vij are real, then this equation describes resonance interaction of wave packets.

Reduction tk → itk, vij = v̄ji, with real snij and Tikj , snij = snji, Tikj = Tjki (bar means
complex conjugated value) transforms the (3+1)-dimensional eq.(34) into (2+1)-dimensional
n-wave equation with independent variables τk = tk + t1, k = 2, 3, 4.

3.1 Construction of solutions

In this section we give the algorithm for construction the solution V0 to the eq.(31).
Solutions of the eq.(29) and expression for χ̃ have the form:

S ∗ Φ̃(λ) =

∫

Ωk

Φ̃0(λ, k)e
k
∑

n Bntndk, c2(λ) =

∫

Ωk

ek
∑

n Bntnc20(λ, k)dk, (35)

χ̃(λ) = χ0(λ)e
∑

n antn . (36)

To find Ψ we integrate eq.(3) (j = 1, remember that B1 = I):

Ψ(λ, µ) =

∫

Ωk

∫

Ωq

Φ̃0(λ, k)e
(k+q)

∑

n Bntnc20(µ, q)
dkdq

k + q
+ δ(λ− µ). (37)

Thus

Ũ(λ) = S ∗ Φ̃(λ)−

∫

Ωk

∫

Ωq

Φ̃0(λ, k)e
∑

n Bntn(k+q)φ(q)
dkdq

k + q
+ χ̃(λ), φ = c20 ∗ Ũ (38)

and

V0 = c2 ∗ Ũ . (39)

Unknown function φ, related with Ũ , can be found only numerically in general case, unless
functions Φ̃(λ, k) is degenerate [10]. Eq.(39) shows that V0 may depend on N × N matrix
function of two real variables, for instance, t1 and t2.

Regarding the multi-scale expansion given by eqs.(32), one should replace tn → ǫtn, in
formulae (35-39) and take arbitrary functions Φ̃0 and χ0 proportional to ǫ. Thus V0 ∼ ǫ.
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4 Conclusions

Working with dressing methods we underline two directions: (a) increase of dimension of solv-
able nonlinear PDE and (b) provide rich class of their solutions. Nonlinear PDE derived with
our algorithm admit infinite set of commuting flows corresponding to different parameters tj .
Since general equations are ruther complicated (see (16-19), (31)), the reasonable problem is
construction of their reductions, which would exhibit physical application of these systems.
Another way is multi-scale expansion of general systems, which in our case reveals (3+1)-
dimensional equation describing resonance interaction of wave packets (see eq.(32) and (34)).

Author thanks Prof. S.V.Manakov for discussion. This work was supported by RFBR
grants 03-01-06122 and 1716.2003.1.
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